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Abstract. Federated learning is a new distributed learning framework
with data privacy preserving in which multiple users collaboratively train
models without sharing data. However, recent studies highlight poten-
tial privacy leakage through shared gradient information. Several defense
strategies, including gradient information encryption and perturbation,
have been suggested. But these strategies either involve high complex-
ity or are susceptible to attacks. To counter these challenges, we pro-
pose to train on secure compressive measurements by compressed learning,
thereby achieving local data privacy protection with slight performance
degradation. A feasible method to boost performance in compressed learn-
ing is the joint optimization of the sampling matrix and the inference net-
work during the training phase, but this may suffer from data reconstruc-
tion attacks again. Thus, we further incorporate a traditional lightweight
encryption scheme to protect data privacy. Experiments conducted on
MNIST and FMNIST datasets substantiate that our schemes achieve a
satisfactory balance between privacy protection and model performance.
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1 Introduction

Artificial Intelligence (AI) is a transformative technology that enables machines
to mimic human-like thinking, learning, and reasoning capabilities. The perfor-
mance of AI systems heavily relies on the availability of a substantial amount of
high-quality data. However, due to growing public concern over privacy issues
and increasingly stringent data protection regulations, collecting training data
that may contain private information has become a significant challenge. To
tackle these challenges, federated learning (FL) [9] has emerged as a promising
solution. FL offers a powerful approach to addressing the issues of “data islands”
and privacy, making it a prominent area of research in the field of AI technology.
Unlike traditional centralized machine learning training, FL aggregates model
parameter updates from local devices to a central server, so as to realize model
training and updating without sharing raw data.
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Unfortunately, this approach falls short in guaranteeing data privacy suffi-
ciently. Numerous studies have demonstrated the ability to infer sensitive infor-
mation from the shared gradient information. Membership inference attack [12] is
the pioneering research that reveals privacy leakage in FL, by analyzing whether
a specific sample was present in the training data. Building upon this, subse-
quent research has shown that user-level information can be reconstructed from
the gradient [16]. Later, the data reconstruction attack that recovers the origi-
nal data through the gradient is produced, fundamentally challenging the notion
that FL adequately protects local data privacy. In this paper, we focus on data
reconstruction attacks, which represent a type of inference attack.

Recently, there have been several data reconstruction attack methods [4,6,
18–20] proposed, which have demonstrated the ability of an attacker to recon-
struct the local training data by exploiting the shared gradient. These methods
primarily achieve data reconstruction by minimizing the distance between the
gradient generated by the virtual data and label, and the gradient generated by
the real data and label. To tackle the problem of data reconstruction attacks,
various defense strategies have been proposed. These strategies can be broadly
classified into two categories. The first category includes cryptographic-based
methods, such as multiparty secure computation. These methods employ secure
aggregation protocols, such as homomorphic encryption [1,8,13], to safeguard
the original gradient information from exposure. The second category involves
gradient perturbation methods, with differential privacy [15,17] being a promi-
nent example. Furthermore, [20] proposes that gradient compression can effec-
tively mitigate gradient privacy concerns. Another defensive approach suggested
by Sun et al. [14], called Sotera, involves perturbing the data before gradient cal-
culation. Unfortunately, the method proposed in [6] can reconstruct similar data
even when gradient perturbation strategies such as gradient clipping, additive
noise to gradient, gradient sparsification, and Sotera are employed.

Li et al. [6] propose to utilize the latent space of a generative adversarial
network (GAN) trained on a public image dataset to compensate for information
loss caused by gradient degradation. However, training on a dataset that is not
relevant to the public image dataset can prevent GAN from learning relevant
prior information. Hence, we are inspired to address the data reconstruction
attack problem in FL by using secure data. Compressed sensing (CS) [3] is a
mathematical framework for efficient signal acquisition and robust recovery. In
addition to compression, CS measurements are encrypted. Calderbank et al. [2]
introduce the concept of compressed learning (CL), where the inference system
is directly built on CS measurements. Subsequent researches [7,10,11,21] have
further improved CL, with [10] demonstrating that CL can achieve performance
almost comparable to the original image domain. To the best of our knowledge,
CL has not yet been explored in the context of FL to address data reconstruction
attacks, making it a promising area for investigation.

In this paper, we design a privacy-preserving framework for FL based on
CL, which exploits the secrecy property of CS measurements to achieve the
defensive effect against data reconstruction attacks. Previous studies [10,21] have
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shown that jointly optimizing the sampling matrix and the inference network
can improve model performance. However, as the sampling matrix is part of the
model during the training process, it remains vulnerable to data reconstruction
attacks. To address this issue, we introduce traditional cryptography to encrypt
the training data, which protects the data from the threat of data reconstruction
attacks. Different from the first two categories of defense methods based on
gradient encryption and gradient perturbation, our approach focuses on training
with secure data and is orthogonal to the previous methods. Experimental results
further validate the feasibility of our proposed method.

Our main contributions can be summarized as follows:

• We propose to apply CL to address the privacy leakage problem caused by
data reconstruction attacks in FL.

• To further enhance performance, we jointly optimize the sampling matrix and
the inference network. Additionally, we introduce lightweight encryption novel
methods in both the spatial and frequency domains to protect the training
data.

• Experimental results demonstrate the effectiveness of our proposed scheme
in achieving satisfactory privacy and utility.

2 Related Work

2.1 Data Reconstruction Attacks

Recently, Zhu et al. [20] propose to reconstruct the original data and label by
making the �2 norm of the gradient of a pair of virtual data and label close to
that of the gradient generated by the real data and label. A follow-up work [19]
proposes to use the gradient of the last fully connected network layer to recover
the true label. However, these approaches encounter difficulties when applied to
large-scale and discontinuous network models. Then Geiping et al. [4] introduce
a recovery method that is independent of the gradient magnitude. They utilize
cosine similarity to measure the similarity between gradients, demonstrating that
more complex data can be recovered even in deeper models. Later, Yin et al. [18]
introduce a group consistency regularization term, enabling the reconstruction
of a large batch of images after gradient averaging.

2.2 Defenses Against Data Reconstruction Attacks

The existing defense schemes for FL can be classified into two categories, one is
based on gradient encryption, and the other is based on gradient perturbation.

Homomorphic encryption serves as an effective secure aggregation scheme for
gradient protection. In [1], an asynchronous stochastic gradient descent scheme
leveraging additive homomorphic encryption is proposed. To address the high
computational complexity of homomorphic encryption aggregation on the server
side, [13] introduces a calculation provider third party. Additionally, [8] proposes
homomorphic encryption with multiple keys to resist collusion attacks. However,
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these methods often impose considerable computational complexity, rendering
them unsuitable for resource-constrained users.

Another line of research explores perturbing the gradient to degrade it,
thereby preventing privacy leaks. Differential privacy, which introduces random
noise, can quantify and limit the disclosure of user privacy. The convergence
of FL with the introduction of differential privacy is proven in [17]. Moreover,
[15] incorporates local differential privacy into FL, and customizes improvements
suitable for FL. While these gradient perturbation methods offer lower compu-
tational complexity, they still result in a decrease in model accuracy.

2.3 Compressed Sensing

Compressed sensing (CS) [3] is a mathematical paradigm that exploits signal
redundancy to accurately reconstruct signals from a significantly reduced number
of measurements compared to the Shannon sampling rate.

Specifically, given a signal x ∈ R
N , the CS measurement y ∈ R

N is obtained
by the sampling process y = Φx, where Φ ∈ R

M×N is the sampling matrix,
M � N , and the sampling rate is defined as γ = M/N . Since the number of
unknowns is much larger than the number of equations, it is often impossible to
reconstruct x from the observations y. But if x is sparse in some basis Ψ , then
x can be reconstructed from y, which is CS theory.

There are many studies devoted to solving the above reconstruction problem,
and traditional optimization algorithms usually reconstruct the original signal x
by solving the following optimization problem:

min
x

||Ψx||1 s.t. y = Φx, (1)

where Ψ denotes some sparse basis on which x is sparse.

2.4 Compressed Learning

Compressed learning (CL) aims to perform inference tasks directly in the mea-
surement domain without signal recovery. The concept is initially proposed by
Calderbank et al. [2], who provide the first theoretical foundation for CL and
demonstrate the feasibility of performing inference tasks in the compressed
domain. Subsequently, Lohit et al. [7] utilize Convolutional Neural Network
(CNN) for classification in the compressed domain. Building upon this, Adler et
al. [21] devise an end-to-end deep learning solution for classification in the com-
pressed domain, jointly optimizing the sampling matrix and inference operator.
In [11], the authors demonstrate the robustness of the CL scheme by performing
inference using partially observed image data. Recently, [10] employs an elabo-
rate transformer network to conduct inference tasks in the measurement domain.

3 Methodology

In our approach, we utilize a CL scheme to project the measurement back into the
image space, generating a noise-like proxy image in Sect. 3.1. This proxy image is
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directly used as the training data for the FL client to resist data reconstruction
attacks. To further enhance model performance, we jointly optimize the sampling
matrix and the subsequent inference network. However, during training, the
original training data is re-input into the model, which will suffer from data
reconstruction attacks. To address this, we propose encrypting the training data
before training. In Sect. 3.2, we introduce a spatial domain encryption scheme.
Additionally, to enhance the security of the encryption scheme, we propose a
frequency domain encryption scheme in Sect. 3.3.

3.1 Training with Proxy Image

Motivation. In the scenario where we possess CS measurements, obtained
through an imaging device like a single-pixel camera, these measurements often
manifest as noise distributions. We can adopt the framework of CL and use the
secure measurements as the training data of the client in FL, so that an hon-
est but curious server is unable to extract any information about the original
image, even if it obtains the measurements through data reconstruction attack
methods. Furthermore, let us assume that the server has acquired our sampling
matrix through some means, enabling them to potentially reconstruct the orig-
inal image using CS reconstruction algorithms. However, it is essential to note
that the distribution of CS measurements is closely linked to the image and is
not identical, even when the same sampling matrix is applied. Therefore, before
training the network model, we normalize all measurements, as this step is a
crucial part of the neural network training process. Consequently, even if the
normalized measurements are inferred through a data reconstruction attack, the
inability to restore them to their original distribution prevents the recovery of
the corresponding original images using CS reconstruction algorithms.

We propose a CL scheme to resist the data reconstruction attack and apply
Fig. 1 to illustrate the whole process of the client during one communication
round. For an image, we flatten it into a one-dimensional vector and obtain the
measurement by CS sampling. The measurement obtained is a one-dimensional
vector, which is usually projected back to the original image dimension and
then used by CNN to extract features for image classification tasks. To restore
the measurement back to the original image dimension, we can employ a matrix
related to the sampling matrix (such as its transpose) or utilize a fully connected
network layer. Consider that the data reconstruction attack method we used in
the subsequent experiments is more effective for recovering image data, because
of the addition of the total variation regularization term in its loss function.
Therefore, we project the measurement back into the image space using the
transpose of the sampling matrix and reshape it to obtain the proxy image.
Subsequently, the proxy image undergoes normalization to ensure consistency in
the gray value interval [0, 255]. This step is necessary due to significant changes
in the pixel distribution of the proxy image. The normalized proxy image is then
employed as training data for the network model. The server can only perform
data reconstruction attacks using shared gradients to recover the proxy image,
but can not obtain information about the original image.
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Fig. 1. The whole process of client local training when taking one picture as an exam-
ple. Red arrows represents the data reconstruction attack. (Color figure online)

• Step 1: The client performs CS on the local dataset D. For one N × N image
from D, it is first flattened into a one-dimensional vector. Then the flattened
image is sampled by y = ΦX to obtain the measurement y, where Φ ∈ R

M×N

and the sampling rate is M/N .
• Step 2: Next, the one-dimensional vector projected back into the image space

is obtained by ˜X = ΦT y, and the proxy image is obtained by reshaping it to
N × N .

• Step 3: The proxy image is normalized before being fed into the CNN model
for image classification task training.

• Step 4: After the local training, the selected clients of this communication
round upload the model updates to the server.

• Step 5: The server aggregates all the received model updates and transmits
them back to all clients.

3.2 Training with Encrypted Data in the Spatial Domain

The scheme in Sect. 3.1 uses a fixed sampling matrix for all the training data.
However, optimizing the sampling matrix with the subsequent inference net-
work concurrently will further improve the network’s inference performance. To
achieve this, the original training data needs to be fed into the network during
the training process. However, an honest but curious server could potentially
utilize a data reconstruction attack method to access the original training data.

Therefore, in this section, we propose a novel approach to counter the data
reconstruction attack by encrypting the image data prior to training in the
neural network. However, it is crucial to strike a balance between usability and
privacy, as excessive encryption of the images can render them untrainable. To
address this concern, we explore a two-dimensional random permutation scheme
for encrypting the image data.

For a two-dimensional image X ∈ R
N×N , multiplying the left and right sides

of it by a row random permutation matrix P and a column random permutation
matrix Q, respectively, and the encryption process can be expressed as

E(X) = PXQ. (2)
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The matrices P and Q are N × N square matrices with only one ‘1’ in each
row and column and zeros in the rest. We can use a chaotic system such as
Logistic map to generate these two square matrices. By controlling the keys k1
and k2 as the initial values of the chaotic system, Algorithm 1 describes the
process of generating P and Q using Logistic chaotic map. We apply Fig. 2 to
illustrate the whole process of the client during one communication round.

Algorithm 1: Logistic chaotic system generates two random permutation
matrices.
Input: Initial value x0,y0;Number of iterations N ;Control parameter

µ = 3.56995.
1 Initial chaotic sequence S1 = {};S2 = {};
2 for i = 1 to i = N do
3 xi = µ× xi−1 × (1 − xi−1);
4 yi = µ× yi−1 × (1 − yi−1);
5 S1 = S1

⋃
xi;

6 S2 = S1
⋃

yi;

7 Sort S1 and S2 separately;
8 Denote their corresponding position indexes in the new ordered sequences as

indexS1 and indexS2, which are in the range of [1, N ];

9 Pi,j =

{
1, i = indexS1(j),

0, others
, Qi,j =

{
1, j = indexS2(i),

0, others
;

Output: Row random permutation matrix P ; Column random permutation
matrix Q.

• Step 1: The client encrypts each N ×N image from the local dataset D, using
the two-dimensional random permutation.

• Step 2: The encrypted images are normalized and then input into the sensing
module.

• Step 3: The sensing module samples the flattened one-dimensional vector of
each image with a learnable sampling matrix to obtain the measurements.

• Step 4: The measurements are first activated by ReLU and then projected
back to the one-dimensional vector of the original image dimension using a
fully connected network layer. The vector is reshaped to be input into the
subsequent CNN module.

• Step 5: After the local training, the selected clients of this communication
round upload their model updates to the server.

• Step 6: The server aggregates all the received model updates and transmits
them back to all clients.

3.3 Training with Encrypted Data in the Frequency Domain

To enhance the security and resistance against statistical analysis and other
attacks, it is beneficial to convert the image into a transform domain, such



332 D. Xiao et al.

Fig. 2. The whole process of client local training when taking one picture as an exam-
ple. Red arrows represents the data reconstruction attack. (Color figure online)

as the frequency domain, before encrypting it. Therefore, in this section, we
propose a two-dimensional random permutation encryption scheme for the two-
dimensional discrete cosine transform coefficients of the image.

For a two-dimensional image X ∈ R
N×N , we first apply the two-dimensional

discrete cosine transform (2D-DCT) on it and obtain a transformed coefficient
matrix D ∈ RN×N . This process can be expressed as

D = ΨXΨT , (3)

where Ψ represents the sparse basis matrix of the discrete cosine transform.
Next, the coefficient matrix D is encrypted using the two-dimensional random
permutation scheme described in Sect. 3.2. This encryption process results in
the encrypted coefficient matrix E. Finally, the encrypted coefficient matrix E is
transformed back to the image domain using the two-dimensional inverse discrete
cosine transform. The process can be expressed as

E = PDQ, (4)

X
′
= ΨTEΨ, (5)

where P and Q represent the row random permutation matrix and column ran-
dom permutation matrix, respectively, X

′
denotes the encrypted image after

transforming back to the image domain. Due to the scrambling of the 2D-DCT
coefficient matrix, the distribution range of pixel values undergoes significant
changes after the shuffled coefficient matrix is transformed back to the image
domain. Therefore, after encrypting, all encrypted images are normalized to the
same gray value interval [0, 255], which further improves the security of the fre-
quency domain encryption scheme. The overall client process represented by this
scheme can also refer to Fig. 2.

4 Experiment

In this section, we begin by introducing our experimental settings in Sect. 4.1.
The data reconstruction attack results on different datasets are presented in
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Sect. 4.2. We conduct a security performance evaluation in Sect. 4.3, followed
by the presentation of model performance results in Sect. 4.4. For ease of refer-
ence, we assign the names Scheme I, Scheme II, and Scheme III to the schemes
discussed in Sects. 3.1, 3.2, and 3.3, respectively.

4.1 Experimental Settings

Datasets and Evaluation Metrics. We use the MNIST and FMNIST
datasets for our experiments. These two datasets are commonly used image clas-
sification datasets and are widely used for deep learning algorithms. Our evalu-
ation focuses on defense and performance. To assess the effectiveness of defense
techniques, we employ the peak signal-to-noise ratio (PSNR) as a metric. A lower
PSNR value indicates a greater visual difference. In terms of performance, we
evaluate the test accuracy of model across different datasets.

Training Details. In our simulation experiments, the FL system consists of
a central server and one hundred clients. The total number of training rounds
is 100, and the local epoch in each round is 5. In each communication round,
50 clients are randomly selected to participate in FL training. For the MNIST
dataset, we use the LeNet5 model [5], and the local batch size is set to 32.
For the FMnist dataset, we use a small ConvNet model which contains three
convolutional layers and a fully connected layer. The number of channels in
the convolutional layer is 16,32,64, respectively, and the size of the convolution
kernel is 5. The ReLU activation function and Max pooling are used after each
convolution, and the local batch size is set to 64. We train our models on PyTorch
using a 1080Ti card, and all models are optimized using SGD optimizer with
momentum set to 0.9. The learning rate is initially set to 0.01, and the learning
rate is reduced to 0.001 after 30 rounds of communication.

4.2 Defense Effect Against Data Reconstruction Attacks

We apply the Inverting Gradients (IG) method proposed in [4] to recover a
single input image. The recovery process consists of 24,000 iterations, with a
total variation term weight of 0.0001. To ensure the independence of recovery
results from the initial seed, we conduct 10 repetitions of the experiment for
each attack and report the result with the lowest loss.

Figure 3 displays the results of IG attack against the MNIST and FMNIST
datasets. In the original FL scenario without privacy protection, the original
data is fully exposed. However, in Scheme I, the recovered image is only a proxy
image, which resembles the noise distribution, thereby making its recovery more
challenging. In Scheme II, it can be observed that the recovered image is rel-
atively clear. However, since the image itself is encrypted, the obtained image
remains an unrecognizable encrypted form. Scheme III demonstrates that the
recovered image has no correlation with the original image, indicating that the
encryption effect is superior to that of Scheme II.
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Fig. 3. Recovery results of IG attack on the MNIST and FMNIST datasets for different
methods. For our schemes, the sampling rate is set to 0.1. The PSNR between the image
and its ground truth is displayed on the left side of the image.

We also conduct IG attack experiments on the gradient compression method
proposed in [20]. The defense effect under different sparsity ratios P is illustrated
in Fig. 4. It is observed that the image remains recognizable until P = 0.01. It is
worth noting that [20] claims resistance against data reconstruction attacks when
the sparsity ratio approaches 0.8. However, while [20] utilizes a reconstruction
attack based on minimizing the �2 norm between gradients, our paper employs
IG attack based on minimizing the cosine similarity between gradients.

4.3 Secure Performance Evaluation

In Scheme I, we employ a linear transformation operation on the image. It is
important to consider that if the CS sampling matrix is stolen, an attacker may
utilize the least square method to reconstruct the original image based on the
proxy image recovered through the data reconstruction attack, this process can
be described as

X̂ = (ΦTΦ)
−1

X, (6)

where X ∈ R
N×N represents the proxy image recovered through the data recon-

struction attack, and X̂ denotes the final original image reconstructed using the
least square method. After projecting the CS measurement back into the original
image space, the proxy image is then normalized to the gray value interval of [0,
255]. So, if the pixel distribution of the proxy image is not restored, the attacker
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Fig. 4. Recovery results of IG attack at different sparsity ratios. The PSNR between
the image and its ground truth is displayed on the left side of the image.

Fig. 5. (a) original image, (b) proxy image with a sampling rate of 0.25, (c) image
inferred from the IG attack, (d) image reconstruct from the inferred image.

cannot obtain a relatively clear image using the least square method. This claim
is further validated by the example depicted in Fig. 5.

In Scheme II and Scheme III, we employ the two-dimensional random per-
mutation encryption method. In Scheme II, the encryption is applied to the
original image, while in Scheme III, it is applied to the corresponding 2D-DCT
coefficients of the original image. The key space for an N ×N dimensional image
is (N !)2, which provides sufficient resistance against brute-force search attacks.
It is worth noting that even if the encryption key is compromised, Scheme III
remains secure due to the normalization of all encrypted images to the same
gray value interval [0, 255].

We employ information entropy to evaluate the level of chaos in the datasets
associated with the three schemes. Given the strong correlation between adjacent
pixels, image data tends to exhibit low entropy, indicating higher predictability.
As depicted in Table 1, the corresponding datasets of Scheme I and Scheme III
demonstrate relatively higher entropy, rendering the data less predictable. In
Scheme II, only the pixel positions in the image are shuffled, while the distri-
bution of pixel values remains unchanged, resulting in the same entropy as the
original dataset. Consequently, Scheme III significantly enhances the security
performance compared to Scheme II.
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Table 1. The entropy of dataset corresponding to different schemes.

Dataset Original Scheme I Scheme II Scheme III

MNIST 1.60 7.13 1.60 6.89

FMNIST 4.12 7.19 4.12 7.06

4.4 Model Performance

The accuracy of the model on different test datasets for various compression
sampling rates and schemes is presented in Table 2 and Table 3. For Scheme I,
the model demonstrates improved performance with higher compression sam-
pling rates. At a sampling rate of 0.25, the model performs reasonably well,
slightly below the federated average (FedAvg) algorithm without protection.
Turning to Scheme II, employing only encryption without a sensing module at
a sampling rate of 1, an interesting observation emerges. When a sensing mod-
ule is added, the final model achieves higher accuracy compared to the scheme
with encryption alone, particularly at sampling rates of 0.25, 0.1, and 0.05. One
potential explanation is that the addition of CS reduces the dimensionality of the
data, rendering the data distribution more traceable and improving the model’s
performance. Scheme II outperforms Scheme I across all sampling rates. Intro-
ducing Scheme III to further protect the training data, we observe that, similar
to Scheme II, the model’s performance with encryption followed by CS surpasses
that of the model with encryption alone (sampling rate of 1) at sampling rates
of 0.25 and 0.1. Both Scheme II and Scheme III exhibit relatively minor perfor-
mance degradation compared to the unprotected FedAvg algorithm.

In other privacy-preserving approaches in FL, the adoption of gradient
encryption methods, such as homomorphic encryption, significantly increases
computational complexity and communication overhead. On the other hand, gra-
dient perturbation methods such as differential privacy approaches, often lack
specific demonstrations of their protective effects and primarily focus on differ-
ent privacy budget scenarios. For instance, in the study conducted by [15], the
optimal test accuracy on the FMNIST dataset is reported as 86.93%, whereas
the FedAvg algorithm achieves approximately 90% accuracy. Notably, some of
our proposed schemes achieve comparable results at an appropriate sampling
rate.

We evaluate the performance of the gradient compression (GC) method pro-
posed in [20] with a prune ratio of 0.99. The accuracy achieved by GC on the
MNIST and FMNIST test datasets is 96.78% and 85.74%, respectively. These
results indicate that our schemes all outperform GC at some sampling rates.
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Table 2. Model accuracy of different schemes on the MNIST test dataset.

Sampling Rate Scheme I Scheme II Scheme III FedAvg

1 – 96.30 96.23

98.98

0.25 97.53 97.57 96.84

0.1 95.32 97.34 96.53

0.05 91.55 96.94 95.96

0.01 56.68 93.45 93.05

Table 3. Model accuracy of different schemes on the FMNIST test dataset.

Sampling Rate Scheme I Scheme II Scheme III FedAvg

1 – 87.26 87.54

89.89

0.25 86.69 87.98 87.98

0.1 85.32 87.88 87.72

0.05 83.68 87.55 87.43

0.01 58.69 85.27 84.57

5 Conclusion

In this paper, we propose a novel privacy-preserving FL framework based on CL.
Our approach introduces CL as a mechanism to address gradient leakage privacy
concerns in FL, and we demonstrate its feasibility. Additionally, we propose the
utilization of lightweight encrypted data as a protective scheme against data
reconstruction attacks. Through simulation results, we validate the effectiveness
of our schemes in resisting attacks, with slight impact on accuracy under suitable
compression rates. In future research, we plan to explore additional protection
schemes derived from CL for integration into FL. Furthermore, we aim to develop
protection solutions tailored for resource-constrained device scenarios, ensuring
their suitability and practicality.
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