Skip to main content

Wireless Biosensors for Healthcare: Smart Contact Lenses and Microbial Devices

  • Chapter
  • First Online:
Wearable Biosensing in Medicine and Healthcare

Abstract

Non-invasive detection of bio-signals from the human body is a stimulating and exciting challenge in healthcare. Wireless biosensors integrated into smart contact lenses have great potential to transform healthcare by providing non-invasive and real-time monitoring of various health metrics. These biosensors can provide diverse health metrics, such as glucose levels, eye pressure, and body temperature, while simultaneously transmitting the measured data wirelessly to a remote device. Wireless smart contact lenses provide numerous benefits, such as improved patient comfort and a more convenient and efficient way of monitoring health. However, developing wireless biosensors for smart contact lenses presents several technical challenges that must be addressed. These challenges include ensuring the safety and reliability of the biosensors and developing effective wireless transmission systems. Overcoming these technical issues will require implementing innovative designs and engineering solutions. Despite these challenges, the potential of wireless biosensors integrated into smart contact lenses is significant and has sparked an active area of research and development in biotechnology. This chapter starts with an introduction to wireless power transmission and then discusses in detail the principles and advancements of smart contact lenses, specifically focusing on wireless biosensors and their potential applications in healthcare. In the third part of this chapter, we also describe another promising and emerging wireless biosensing technology for healthcare, namely microbial electrochemical devices. Such devices often rely on the bioconversion processes of analytes by microbes, transduced into measurable electrical signals by conductive materials or by the microbes themselves. Thanks to advances in soft and organic conducting materials, flexible hybrid electronics, and fabrication technologies based on printing and electrochemistry, microbial devices can be deployed in thin and lightweight form factors on skin, in the oral cavity, and soon also in the gut to wirelessly perform the early detection of disease markers and monitor health-related (bio)chemical signals.

S. Azhari—equal contributions

G. Méhes—equal contributions

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibrahim, F.N., Jamail, N.A.M., Othman, N.A.: Development of wireless electricity transmission through resonant coupling. In: 4th IET Clean Energy and Technology Conference (CEAT 2016), p. 33-5. Institution of Engineering and Technology (2016)

    Google Scholar 

  2. Maxwell, J.C.: VIII. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865). https://doi.org/10.1098/rstl.1865.0008

  3. Poynting, J.H.: XV. On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 175, 343–361 (1884). https://doi.org/10.1098/rstl.1884.0016

  4. Huurdeman, A.A.: The Worldwide History of Telecommunications. Wiley, Hoboken (2003)

    Book  Google Scholar 

  5. Hutin, M., Leblance, M.: Transformer system for electric railways (1894)

    Google Scholar 

  6. Tesila, N.: System of transmission of electrical energy (1900)

    Google Scholar 

  7. Jawad, A.M., Nordin, R., Gharghan, S.K., Jawad, H.M., Ismail, M.: Opportunities and challenges for near-field wireless power transfer: a review. Energies (Basel) 10, 1022 (2017). https://doi.org/10.3390/en10071022

  8. Zhong, W., Xu, D., Hui, R.S.Y.: Wireless Power Transfer. Springer, Singapore (2020)

    Google Scholar 

  9. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32, 1230–1242 (1984). https://doi.org/10.1109/TMTT.1984.1132833

    Article  Google Scholar 

  10. Park, C., Lee, S., Cho, G.-H., Rim, C.T.: Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans. Power Electron. 30, 817–827 (2015). https://doi.org/10.1109/TPEL.2014.2310232

    Article  Google Scholar 

  11. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science (1979). 317, 83–86 (2007). https://doi.org/10.1126/science.1143254

  12. Garnica, J., Chinga, R.A., Lin, J.: Wireless power transmission: from far field to near field. Proc. IEEE 101, 1321–1331 (2013). https://doi.org/10.1109/JPROC.2013.2251411

    Article  Google Scholar 

  13. Popovic, Z.: Near- and far-field wireless power transfer. In: 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), pp. 3–6. IEEE (2017)

    Google Scholar 

  14. El Rayes, M., Nagib, G., Ali Abdelaal, W.: A review on wireless power transfer. Int. J. Eng. Trends Technol. 40, 272–280 (2016). https://doi.org/10.14445/22315381/IJETT-V40P244

  15. Federal Communication Commission: Specific Absorption Rate (SAR) for Cellular Telephones. https://www.fcc.gov/general/specific-absorption-rate-sar-cellular-telephones

  16. Mahmood, A.I., Gharghan, S.K., Eldosoky, M.A., Soliman, A.M.: Near-field wireless power transfer used in biomedical implants: a comprehensive review. IET Power Electron. 15, 1936–1955 (2022). https://doi.org/10.1049/pel2.12351

    Article  Google Scholar 

  17. Kim, H.-J., Hirayama, H., Kim, S., Han, K.J., Zhang, R., Choi, J.-W.: Review of near-field wireless power and communication for biomedical applications. IEEE Access 5, 21264–21285 (2017). https://doi.org/10.1109/ACCESS.2017.2757267

    Article  Google Scholar 

  18. Takamatsu, T., Chen, Y., Yoshimasu, T., Nishizawa, M., Miyake, T.: Highly efficient, flexible wireless-powered circuit printed on a moist. Soft Contact Lens. Adv Mater Technol. 4, 1800671 (2019). https://doi.org/10.1002/admt.201800671

    Article  Google Scholar 

  19. Okasili, I., Elkhateb, A., Littler, T.: A review of wireless power transfer systems for electric vehicle battery charging with a focus on inductive coupling. Electronics (Basel) 11, 1355 (2022). https://doi.org/10.3390/electronics11091355

  20. Shinohara, N.: The wireless power transmission: inductive coupling, radio wave, and resonance coupling. Wiley Interdiscip. Rev. Energy Environ. 1, 337–346 (2012). https://doi.org/10.1002/wene.43

    Article  Google Scholar 

  21. Maulana, E., Abidin, Z., Djuriatno, W.: Wireless power transfer characterization based on inductive coupling method. In: 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), pp. 164–168. IEEE (2018)

    Google Scholar 

  22. Erel, M.Z., Bayindir, K.C., Aydemir, M.T., Chaudhary, S.K., Guerrero, J.M.: A comprehensive review on wireless capacitive power transfer technology: fundamentals and applications. IEEE Access 10, 3116–3143 (2022). https://doi.org/10.1109/ACCESS.2021.3139761

    Article  Google Scholar 

  23. Federal Register, United States Government Publishing Office: Code of Federal Regulations. https://www.govinfo.gov/app/collection/cfr/2022/

  24. Huang, S., Li, Z., Lu, K.: Frequency splitting suppression method for four-coil wireless power transfer system. IET Power Electron. 9, 2859–2864 (2016). https://doi.org/10.1049/iet-pel.2015.0376

    Article  Google Scholar 

  25. Huang, R., Zhang, B., Qiu, D., Zhang, Y.: Frequency splitting phenomena of magnetic resonant coupling wireless power transfer. IEEE Trans. Magn. 50, 1–4 (2014). https://doi.org/10.1109/TMAG.2014.2331143

    Article  Google Scholar 

  26. Azhari, S., Kimizuka, K., Méhes, G., Usami, Y., Hayashi, Y., Tanaka, H., Miyake, T.: Integration of wireless power transfer technology With hierarchical multiwalled carbon nanotubes-polydimethylsiloxane piezo-responsive pressure sensor for remote force measurement. IEEE Sens. J. 23, 7902–7909 (2023). https://doi.org/10.1109/JSEN.2023.3248021

    Article  CAS  Google Scholar 

  27. U.S. EPA Office of Solid Waste: Batteries. https://guides.library.illinois.edu/battery-recycling

  28. Sun, S.W.: Understanding the capacitive coupling with influence factors and applications. J. Phys. Conf. Ser. 1087, 042011 (2018). https://doi.org/10.1088/1742-6596/1087/4/042011

    Article  CAS  Google Scholar 

  29. Liu, Q., Sun, X.-B.: Indirect electrical injuries from capacitive coupling: a rarely mentioned electrosurgical complication in monopolar laparoscopy. Acta Obstet. Gynecol. Scand. 92, 238–241 (2013). https://doi.org/10.1111/aogs.12049

    Article  Google Scholar 

  30. Consumer Action: The Contact Lens Rule and the Eyeglass Rule. https://www.consumer-action.org/english/articles/contact_lens_rule

  31. Enoch, J.: First known lenses originating in Egypt about 4600 years ago. Doc. Ophthalmol. 99, 303–314 (1999). https://doi.org/10.1023/A:1002747025372

    Article  CAS  Google Scholar 

  32. Enoch, J.M., Lakshminarayanan, V.: Duplication of unique optical effects of ancient Egyptian lenses from the IV/V Dynasties: lenses fabricated ca 2620±2400 BC or roughly 4600 years ago. Ophthalmic Physiol. Opt. 20, 126–130 (2000). https://doi.org/10.1046/j.1475-1313.2000.00496.x

    Article  CAS  Google Scholar 

  33. Wikipédia: Le Scribe accroupi—wikipédia, l’encyclopédie libre. http://fr.wikipedia.org/w/index.php?title=Le_Scribe_accroupi&oldid=202725852

  34. Wikipedia contributors: Nimrud lens—wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Nimrud_lens&oldid=1134659653

  35. Wikipedia contributors: Glasses—wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Glasses&oldid=1165948579

  36. Wikipedia contributors: History of the telescope—wikipedia, the free encyclopedia, https://en.wikipedia.org/w/index.php?title=History_of_the_telescope&oldid=1161734303

  37. Pearson, R.M.: Karl Otto Himmler, manufacturer of the first contact lens. Cont. Lens Anterior Eye 30, 11–16 (2007). https://doi.org/10.1016/j.clae.2006.10.003

    Article  Google Scholar 

  38. Wikipedia contributors: Contact lens—wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Contact_lens&oldid=1163860896

  39. Wikipedia contributors: Rigid gas permeable lens—wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Rigid_gas_permeable_lens&oldid=1150558911

  40. Lingley, A.R., Ali, M., Liao, Y., Mirjalili, R., Klonner, M., Sopanen, M., Suihkonen, S., Shen, T., Otis, B.P., Lipsanen, H., Parviz, B.A.: A single-pixel wireless contact lens display. J. Micromech. Microeng. 21, 125014 (2011). https://doi.org/10.1088/0960-1317/21/12/125014

    Article  CAS  Google Scholar 

  41. Senior, M.: Novartis signs up for Google smart lens. Nat. Biotechnol. 32, 856–856 (2014). https://doi.org/10.1038/nbt0914-856

    Article  CAS  Google Scholar 

  42. Park, J., Kim, J., Kim, S.-Y., Cheong, W.H., Jang, J., Park, Y.-G., Na, K., Kim, Y.-T., Heo, J.H., Lee, C.Y., Lee, J.H., Bien, F., Park, J.-U.: Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4 (2018). https://doi.org/10.1126/sciadv.aap9841

  43. Li, J., Wang, Y., Liu, L., Xu, S., Liu, Y., Leng, J., Cai, S.: A biomimetic soft lens controlled by electrooculographic signal. Adv. Funct. Mater. 29 (2019). https://doi.org/10.1002/adfm.201903762

  44. Guo, S., Wu, K., Li, C., Wang, H., Sun, Z., Xi, D., Zhang, S., Ding, W., Zaghloul, M.E., Wang, C., Castro, F.A., Yang, D., Zhao, Y.: Integrated contact lens sensor system based on multifunctional ultrathin MoS2 transistors. Matter 4, 969–985 (2021). https://doi.org/10.1016/j.matt.2020.12.002

    Article  CAS  Google Scholar 

  45. Cui, Y., Takamatsu, T., Shimizu, K., Miyake, T.: Near-infrared fundus imaging system with light illumination from an electronic contact lens. Appl. Phys. Express 15, 027001 (2022). https://doi.org/10.35848/1882-0786/ac4675

  46. Ilardi, V.: Renaissance Vision from Spectacles to Telescopes. American Philosophical Society (2007)

    Google Scholar 

  47. King, H.C.: The History of the Telescope. Dover Publications Inc. (2003)

    Google Scholar 

  48. Drake, S.: Galileo: Pioneer Scientist. University of Toronto Press (1990)

    Google Scholar 

  49. Hellemans, A., Bunch, B.: The Timetables of Science: A Chronology of the Most Important People and Events in the History of Science. Simon & Schuster (1988)

    Google Scholar 

  50. Butterfield, G.H.: Corneal contact lens (1950)

    Google Scholar 

  51. Tuohy, K.M.: Contact lens (1948)

    Google Scholar 

  52. Musgrave, C.S.A., Fang, F.: Contact lens materials: a materials science perspective. Materials. 12, 261 (2019). https://doi.org/10.3390/ma12020261

    Article  CAS  Google Scholar 

  53. Key, J.E.: Development of contact lenses and their worldwide use. Eye Contact Lens: Sci. Clin. Pract. 33, 343–345 (2007). https://doi.org/10.1097/ICL.0b013e318157c230

    Article  Google Scholar 

  54. Wichterle, O., Lím, D.: Hydrophilic gels for biological use. Nature 185, 117–118 (1960). https://doi.org/10.1038/185117a0

    Article  Google Scholar 

  55. Akerman, D.: Our greatest opportunity. Cont. Lens Anterior Eye 41, 319–320 (2018). https://doi.org/10.1016/j.clae.2018.05.007

    Article  Google Scholar 

  56. Efron, N.: Twenty years of silicone hydrogel contact lenses: a personal perspective. Clin. Exp. Optom. 103, 251–253 (2020). https://doi.org/10.1111/cxo.13062

    Article  Google Scholar 

  57. Ho, H., Saeedi, E., Kim, S.S., Shen, T.T., Parviz, B.A.: Contact lens with integrated inorganic semiconductor devices. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 403–406 (2008)

    Google Scholar 

  58. Pandey, J., Liao, Y.-T., Lingley, A., Mirjalili, R., Parviz, B., Otis, B.P.: A fully integrated RF-powered contact lens with a single element display. IEEE Trans. Biomed. Circuits Syst. 4, 454–461 (2010). https://doi.org/10.1109/TBCAS.2010.2081989

    Article  CAS  Google Scholar 

  59. Pandey, J., Liao, Y.-T., Lingley, A., Parviz, B., Otis, B.: Toward an active contact lens: Integration of a wireless power harvesting IC. In: 2009 IEEE Biomedical Circuits and Systems Conference, pp. 125–128. IEEE (2009)

    Google Scholar 

  60. Otis, B., Parviz, B.: Introducing our smart contact lens project. https://blog.google/alphabet/introducing-our-smart-contact-lens/

  61. Kraft, A.: What a chemistry student should know about the history of Prussian blue. ChemTexts 4, 16 (2018). https://doi.org/10.1007/s40828-018-0071-2

    Article  CAS  Google Scholar 

  62. Granqvist, C.G.: Handbook of Inorganic Electrochromic Materials. Elsevier (1995)

    Google Scholar 

  63. Hjelm, A., Granqvist, C., Wills, J.: Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Phys. Rev. B Condens. Matter 54, 2436–2445 (1996). https://doi.org/10.1103/physrevb.54.2436

    Article  CAS  Google Scholar 

  64. Knittlmayer, C., Muffler, H.-J., Fischer, C.-H., Weppner, W.: Investigation of electrochromic tungsten trioxide thin films prepared by the ILGAR method. Ionics (Kiel) 12, 127–130 (2006). https://doi.org/10.1007/s11581-006-0022-6

    Article  CAS  Google Scholar 

  65. Deb, S.K.: A novel electrophotographic system. Appl Opt. 8, 192 (1969). https://doi.org/10.1364/AO.8.S1.000192

  66. Kim, M., Jung, I.D., Kim, Y., Yun, J., Gao, C., Lee, H.-W., Lee, S.W.: An electrochromic alarm system for smart contact lenses. Sens. Actuators B Chem. 322, 128601 (2020). https://doi.org/10.1016/j.snb.2020.128601

    Article  CAS  Google Scholar 

  67. Hu, L., Chen, L., Du, N., Takamatsu, T., Xiao, T., Miyake, T.: Electrochromic soft contact lenses with built-in non-interfering, high-efficient dual-band wireless power transfer system. Sens. Actuators A Phys. 344, 113766 (2022). https://doi.org/10.1016/j.sna.2022.113766

    Article  CAS  Google Scholar 

  68. Deb, S.K.: Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27, 801–822 (1973). https://doi.org/10.1080/14786437308227562

    Article  CAS  Google Scholar 

  69. Chiou, J.-C., Huang, Y.-C., Yeh, G.-T.: A capacitor-based sensor and a contact lens sensing system for intraocular pressure monitoring. J. Micromech. Microeng. 26, 015001 (2016). https://doi.org/10.1088/0960-1317/26/1/015001

    Article  CAS  Google Scholar 

  70. Chen, G.-Z., Chan, I.-S., Lam, D.C.C.: Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring. Sens. Actuators Phys. 203, 112–118 (2013). https://doi.org/10.1016/j.sna.2013.08.029

    Article  CAS  Google Scholar 

  71. Kim, J., Kim, M., Lee, M.-S., Kim, K., Ji, S., Kim, Y.-T., Park, J., Na, K., Bae, K.-H., Kyun Kim, H., Bien, F., Young Lee, C., Park, J.-U.: Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017). https://doi.org/10.1038/ncomms14997

    Article  Google Scholar 

  72. Keum, D.H., Kim, S.-K., Koo, J., Lee, G.-H., Jeon, C., Mok, J.W., Mun, B.H., Lee, K.J., Kamrani, E., Joo, C.-K., Shin, S., Sim, J.-Y., Myung, D., Yun, S.H., Bao, Z., Hahn, S.K.: Wireless smart contact lens for diabetic diagnosis and therapy. Sci. Adv. 6, eaba3252 (2020). https://doi.org/10.1126/sciadv.aba3252

  73. Kim, J., Cha, E., Park, J.: Recent advances in smart contact lenses. Adv. Mater. Technol. 5, 1900728 (2020). https://doi.org/10.1002/admt.201900728

    Article  CAS  Google Scholar 

  74. Mirzajani, H., Mirlou, F., Istif, E., Singh, R., Beker, L.: Powering smart contact lenses for continuous health monitoring: recent advancements and future challenges. Biosens. Bioelectron. 197, 113761 (2022). https://doi.org/10.1016/j.bios.2021.113761

    Article  CAS  Google Scholar 

  75. Sebbag, L., Mochel, J.P.: An eye on the dog as the scientist’s best friend for translational research in ophthalmology: focus on the ocular surface. Med. Res. Rev. 40, 2566–2604 (2020). https://doi.org/10.1002/med.21716

    Article  CAS  Google Scholar 

  76. Chiou, J.-C., Hsu, S.-H., Huang, Y.-C., Yeh, G.-T., Liou, W.-T., Kuei, C.-K.: A wirelessly powered smart contact lens with reconfigurable wide range and tunable sensitivity sensor readout circuitry. Sensors 17, 108 (2017). https://doi.org/10.3390/s17010108

    Article  Google Scholar 

  77. Song, H., Shin, H., Seo, H., Park, W., Joo, B.J., Kim, J., Kim, J., Kim, H.K., Kim, J., Park, J.: Wireless non-invasive monitoring of cholesterol using a smart contact lens. Adv. Sci. 9, 2203597 (2022). https://doi.org/10.1002/advs.202203597

    Article  Google Scholar 

  78. Takamatsu, T., Sijie, Y., Shujie, F., Xiaohan, L., Miyake, T.: Multifunctional high-power sources for smart contact lenses. Adv. Funct. Mater. 30, 1906225 (2020). https://doi.org/10.1002/adfm.201906225

    Article  CAS  Google Scholar 

  79. Takamatsu, T., Sijie, Y., Miyake, T.: Wearable, implantable, parity‐time symmetric bioresonators for extremely small biological signal monitoring. Adv. Mater. Technol. 2201704 (2023). https://doi.org/10.1002/admt.202201704

  80. Leonardi, M., Pitchon, E.M., Bertsch, A., Renaud, P., Mermoud, A.: Wireless contact lens sensor for intraocular pressure monitoring: assessment on enucleated pig eyes. Acta Ophthalmol. 87, 433–437 (2009). https://doi.org/10.1111/j.1755-3768.2008.01404.x

    Article  Google Scholar 

  81. Høiby, N.: A short history of microbial biofilms and biofilm infections. APMIS 125, 272–275 (2017). https://doi.org/10.1111/APM.12686

    Article  Google Scholar 

  82. Butlin, K.R., Adams, M.E., Thomas, M.: Sulphate-reducing bacteria and internal corrosion of ferrous pipes conveying water. Nature 163(4131), 26–27 (1949). https://doi.org/10.1038/163026a0

  83. Rabaey, K., Verstraete, W.: Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 23, 291–298 (2005). https://doi.org/10.1016/J.TIBTECH.2005.04.008

    Article  CAS  Google Scholar 

  84. Atkinson, J.T., Su, L., Zhang, X., Bennett, G.N., Silberg, J.J., Ajo-Franklin, C.M.: Real-time bioelectronic sensing of environmental contaminants. Nature 611(7936), 548–553 (2022). https://doi.org/10.1038/s41586-022-05356-y

  85. Kuss, S., Amin, H.M.A., Compton, R.G.: Electrochemical detection of pathogenic bacteria—recent strategies. Adv. Challenges. Chem Asian J. 13, 2758–2769 (2018). https://doi.org/10.1002/ASIA.201800798

    Article  CAS  Google Scholar 

  86. de Vos, W.M., Tilg, H., Van Hul, M., Cani, P.D.: Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022). https://doi.org/10.1136/gutjnl-2021-326789

    Article  CAS  Google Scholar 

  87. Kelly, J.R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., Kennedy, P.J., Beers, S., Scott, K., Moloney, G., Hoban, A.E., Scott, L., Fitzgerald, P., Ross, P., Stanton, C., Clarke, G., Cryan, J.F., Dinan, T.G.: Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016). https://doi.org/10.1016/j.jpsychires.2016.07.019

  88. Rutsch, A., Kantsjö, J.B., Ronchi, F.: The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol. 11, 604179 (2020). https://doi.org/10.3389/fimmu.2020.604179

    Article  CAS  Google Scholar 

  89. Miran, W., Naradasu, D., Okamoto, A.: Pathogens electrogenicity as a tool for in-situ metabolic activity monitoring and drug assessment in biofilms. iScience 24, 102068 (2021). https://doi.org/10.1016/j.isci.2021.102068

  90. Chen, M., Zhou, X., Liu, X., Zeng, R.J., Zhang, F., Ye, J., Zhou, S.: Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles. Biosens. Bioelectron. 108, 20–26 (2018). https://doi.org/10.1016/j.bios.2018.02.030

    Article  CAS  Google Scholar 

  91. Song, R.-B., Wu, Y., Lin, Z.-Q., Xie, J., Tan, C.H., Loo, J.S.C., Cao, B., Zhang, J.-R., Zhu, J.-J., Zhang, Q.: Living and conducting: coating individual bacterial cells with in situ formed polypyrrole. Angew. Chem. Int. Ed. 56, 10516–10520 (2017). https://doi.org/10.1002/anie.201704729

    Article  CAS  Google Scholar 

  92. Zajdel, T.J., Baruch, M., Méhes, G., Stavrinidou, E., Berggren, M., Maharbiz, M.M., Simon, D.T., Ajo-Franklin, C.M.: PEDOT:PSS-based multilayer bacterial-composite films for bioelectronics. Sci. Rep. 8, 15293 (2018). https://doi.org/10.1038/s41598-018-33521-9

    Article  CAS  Google Scholar 

  93. Freyman, M.C., Kou, T., Wang, S., Li, Y.: 3D printing of living bacteria electrode. Nano Res. 13, 1318–1323 (2020). https://doi.org/10.1007/s12274-019-2534-1

    Article  CAS  Google Scholar 

  94. Sawa, M., Fantuzzi, A., Bombelli, P., Howe, C.J., Hellgardt, K., Nixon, P.J.: Electricity generation from digitally printed cyanobacteria. Nat. Commun. 8, 1327 (2017). https://doi.org/10.1038/s41467-017-01084-4

    Article  CAS  Google Scholar 

  95. Méhes, G., Roy, A., Strakosas, X., Berggren, M., Stavrinidou, E., Simon, D.T.: Organic microbial electrochemical transistor monitoring extracellular electron transfer. Adv. Sci. 7, 2000641 (2020). https://doi.org/10.1002/advs.202000641

    Article  CAS  Google Scholar 

  96. Gross, B.J., El-Naggar, M.Y.: A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces. Rev. Sci. Instrum. 86, 064301 (2015). https://doi.org/10.1063/1.4922853

    Article  CAS  Google Scholar 

  97. Spyropoulos, G.D., Savarin, J., Gomez, E.F., Simon, D.T., Berggren, M., Gelinas, J.N., Stavrinidou, E., Khodagholy, D.: Transcranial electrical stimulation and recording of brain activity using freestanding plant-based conducting polymer hydrogel composites. Adv. Mater. Technol. 5, 1900652 (2020). https://doi.org/10.1002/admt.201900652

    Article  CAS  Google Scholar 

  98. Diacci, C., Lee, J.W., Janson, P., Dufil, G., Méhes, G., Berggren, M., Simon, D.T., Stavrinidou, E.: Real-time monitoring of glucose export from isolated chloroplasts using an organic electrochemical transistor. Adv. Mater. Technol. 5, 1900262 (2020). https://doi.org/10.1002/admt.201900262

    Article  CAS  Google Scholar 

  99. Gao, Y., Mohammadifar, M., Choi, S.: From microbial fuel cells to biobatteries: moving toward on-demand micropower generation for small-scale single-use applications. Adv. Mater. Technol. 4, 1900079 (2019). https://doi.org/10.1002/admt.201900079

    Article  CAS  Google Scholar 

  100. Mohammadifar, M., Tahernia, M., Yang, J.H., Koh, A., Choi, S.: Biopower-on-Skin: Electricity generation from sweat-eating bacteria for self-powered E-Skins. Nano Energy 75, 104994 (2020). https://doi.org/10.1016/j.nanoen.2020.104994

    Article  CAS  Google Scholar 

  101. Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., Collins, J., McDonnell, S., Swartwout, R., Citorik, R.J., Bulović, V., Langer, R., Traverso, G., Chandrakasan, A.P., Lu, T.K.: An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 1979(360), 915–918 (2018). https://doi.org/10.1126/science.aas9315

    Article  CAS  Google Scholar 

  102. Signore, M.A., De Pascali, C., Giampetruzzi, L., Siciliano, P.A., Francioso, L.: Gut-on-chip microphysiological systems: latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. Sens Biosensing Res. 33, 100443 (2021). https://doi.org/10.1016/j.sbsr.2021.100443

    Article  Google Scholar 

  103. Shah, P., Fritz, J.V., Glaab, E., Desai, M.S., Greenhalgh, K., Frachet, A., Niegowska, M., Estes, M., Jäger, C., Seguin-Devaux, C., Zenhausern, F., Wilmes, P.: A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. Nat. Commun. 7, 11535 (2016). https://doi.org/10.1038/ncomms11535

    Article  CAS  Google Scholar 

  104. Mohammadifar, M., Choi, S.: A papertronic, on-demand and disposable biobattery: saliva-activated electricity generation from lyophilized exoelectrogens preinoculated on paper. Adv. Mater. Technol. 2, 1700127 (2017). https://doi.org/10.1002/admt.201700127

    Article  CAS  Google Scholar 

  105. Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767

    Article  CAS  Google Scholar 

  106. Ling, W., Wang, Y., Lu, B., Shang, X., Wu, Z., Chen, Z., Li, X., Zou, C., Yan, J., Zhou, Y., Liu, J., Li, H., Que, K., Huang, X.: Continuously quantifying oral chemicals based on flexible hybrid electronics for clinical diagnosis and pathogenetic study. Research (2022). https://doi.org/10.34133/2022/9810129

  107. Lee, Y., Howe, C., Mishra, S., Lee, D.S., Mahmood, M., Piper, M., Kim, Y., Tieu, K., Byun, H.-S., Coffey, J.P., Shayan, M., Chun, Y., Costanzo, R.M., Yeo, W.-H.: Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc. Natl. Acad. Sci. 115, 5377–5382 (2018). https://doi.org/10.1073/pnas.1719573115

    Article  CAS  Google Scholar 

  108. Shi, Z., Lu, Y., Shen, S., Xu, Y., Shu, C., Wu, Y., Lv, J., Li, X., Yan, Z., An, Z., Dai, C., Su, L., Zhang, F., Liu, Q.: Wearable battery-free theranostic dental patch for wireless intraoral sensing and drug delivery. npj Flex. Electron. 6, 49 (2022). https://doi.org/10.1038/s41528-022-00185-5

  109. Naradasu, D., Miran, W., Sakamoto, M., Okamoto, A.: Isolation and characterization of human gut bacteria capable of extracellular electron transport by electrochemical techniques. Front Microbiol. 9 (2019). https://doi.org/10.3389/fmicb.2018.03267

  110. Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A.T., Ajo-Franklin, C.M., Portnoy, D.A.: A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140–144 (2018). https://doi.org/10.1038/s41586-018-0498-z

    Article  CAS  Google Scholar 

  111. Tahernia, M., Plotkin-Kaye, E., Mohammadifar, M., Gao, Y., Oefelein, M.R., Cook, L.C., Choi, S.: Characterization of Electrogenic Gut Bacteria. ACS Omega 5, 29439–29446 (2020). https://doi.org/10.1021/acsomega.0c04362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Miyake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azhari, S., Méhes, G., Miyake, T. (2024). Wireless Biosensors for Healthcare: Smart Contact Lenses and Microbial Devices. In: Mitsubayashi, K. (eds) Wearable Biosensing in Medicine and Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-8122-9_8

Download citation

Publish with us

Policies and ethics