Skip to main content

Design and Fabrication of Wearable Biosensors: Materials, Methods, and Prospects

  • Chapter
  • First Online:
Wearable Biosensing in Medicine and Healthcare

Abstract

“Objects and their manufacture are inseparable. You understand a product if you understand how it’s made.” – Jonathan Ive.

Objects and their manufacture are inseparable. You understand a product if you understand how it´s made.

—Jonathan Ive

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.vitsoe.com/gb/about/good-design.

  2. 2.

    https://www.iec.ch/ip-ratings.

References

  1. Land, K.J., Boeras, D.I., Chen, X.-S., Ramsay, A.R., Peeling, R.W.: REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 4, 46–54 (2019). https://doi.org/10.1038/s41564-018-0295-3

    Article  CAS  Google Scholar 

  2. Mabey, D., Peeling, R.W., Ustianowski, A., Perkins, M.D.: Diagnostics for the developing world. Nat. Rev. Microbiol. 2, 231–240 (2004). https://doi.org/10.1038/nrmicro841

    Article  CAS  Google Scholar 

  3. Tierney, M.J., Tamada, J.A., Potts, R.O., Jovanovic, L., Garg, S.: Clinical evaluation of the GlucoWatch® biographer: a continual, non-invasive glucose monitor for patients with diabetes. Biosens. Bioelectron. 16, 621–629 (2001). https://doi.org/10.1016/S0956-5663(01)00189-0

    Article  CAS  Google Scholar 

  4. Tierney, M.J., Tamada, J.A., Potts, R.O., Eastman, R.C., Pitzer, K., Ackerman, N.R., Fermi, S.J.: The GlucoWatch ® biographer: a frequent, automatic and noninvasive glucose monitor. Ann. Med. 32, 632–641 (2000). https://doi.org/10.3109/07853890009002034

    Article  CAS  Google Scholar 

  5. Ellis, S., Naik, R., Gemperline, K., Garg, S.: Use of Continuous Glucose Monitoring in Patients with Type 1 Diabetes. Curr. Diabetes Rev. 4, 207–217 (2008). https://doi.org/10.2174/157339908785294370

    Article  CAS  Google Scholar 

  6. Christiansen, M., Bailey, T., Watkins, E., Liljenquist, D., Price, D., Nakamura, K., Boock, R., Peyser, T.: A New-Generation Continuous Glucose Monitoring System: Improved Accuracy and Reliability Compared with a Previous-Generation System. Diabetes Technol. Ther. 15, 881–888 (2013). https://doi.org/10.1089/dia.2013.0077

    Article  CAS  Google Scholar 

  7. Garcia, A., Rack-Gomer, A.L., Bhavaraju, N.C., Hampapuram, H., Kamath, A., Peyser, T., Facchinetti, A., Zecchin, C., Sparacino, G., Cobelli, C.: Dexcom G4AP: An Advanced Continuous Glucose Monitor for the Artificial Pancreas. J. Diabetes Sci. Technol. 7, 1436–1445 (2013). https://doi.org/10.1177/193229681300700604

    Article  Google Scholar 

  8. Kropff, J., Choudhary, P., Neupane, S., Barnard, K., Bain, S.C., Kapitza, C., Forst, T., Link, M., Dehennis, A., DeVries, J.H.: Accuracy and Longevity of an Implantable Continuous Glucose Sensor in the PRECISE Study: A 180-Day, Prospective, Multicenter. Pivotal Trial. Diabetes Care. 40, 63–68 (2017). https://doi.org/10.2337/dc16-1525

    Article  Google Scholar 

  9. Laffel, L.M., Aleppo, G., Buckingham, B.A., Forlenza, G.P., Rasbach, L.E., Tsalikian, E., Weinzimer, S.A., Harris, D.R.: A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System to Manage Children and Adolescents With Diabetes. J. Endocr. Soc. 1, 1461–1476 (2017). https://doi.org/10.1210/js.2017-00389

    Article  Google Scholar 

  10. Aleppo, G., Laffel, L.M., Ahmann, A.J., Hirsch, I.B., Kruger, D.F., Peters, A., Weinstock, R.S., Harris, D.R.: A Practical Approach to Using Trend Arrows on the Dexcom G5 CGM System for the Management of Adults With Diabetes. J. Endocr. Soc. 1, 1445–1460 (2017). https://doi.org/10.1210/js.2017-00388

    Article  Google Scholar 

  11. Yeoh, E., Png, D., Khoo, J., Chee, Y.J., Sharda, P., Low, S., Lim, S.C., Subramaniam, T.: A head‐to‐head comparison between Guardian Connect and FreeStyle Libre systems and an evaluation of user acceptability of sensors in patients with type 1 diabetes. Diabetes Metab. Res. Rev. 38, (2022). https://doi.org/10.1002/dmrr.3560

  12. Guillot, F.H., Jacobs, P.G., Wilson, L.M., Youssef, J.E., Gabo, V.B., Branigan, D.L., Tyler, N.S., Ramsey, K., Riddell, M.C., Castle, J.R.: Accuracy of the Dexcom G6 Glucose Sensor during Aerobic, Resistance, and Interval Exercise in Adults with Type 1 Diabetes. Biosensors 10, 138 (2020). https://doi.org/10.3390/bios10100138

    Article  CAS  Google Scholar 

  13. Davis, G.M., Spanakis, E.K., Migdal, A.L., Singh, L.G., Albury, B., Urrutia, M.A., Zamudio-Coronado, K.W., Scott, W.H., Doerfler, R., Lizama, S., Satyarengga, M., Munir, K., Galindo, R.J., Vellanki, P., Cardona, S., Pasquel, F.J., Peng, L., Umpierrez, G.E.: Accuracy of Dexcom G6 Continuous Glucose Monitoring in Non-Critically Ill Hospitalized Patients With Diabetes. Diabetes Care 44, 1641–1646 (2021). https://doi.org/10.2337/dc20-2856

    Article  Google Scholar 

  14. Joseph, J.I.: Review of the Long-Term Implantable Senseonics Continuous Glucose Monitoring System and Other Continuous Glucose Monitoring Systems. J. Diabetes Sci. Technol. 15, 167–173 (2021). https://doi.org/10.1177/1932296820911919

    Article  Google Scholar 

  15. Abbot: Perform Stronger and Recover Faster with CGM, https://www.supersapiens.com

  16. Brady, S., Dunne, L.E.E., Lynch, A., Smyth, B., Diamond, D.: Wearable sensors? what is there to sense? IOS Press, Adaptive Information Cluster, National Centre for Sensor Research, Dublin City University, Ireland (2005)

    Google Scholar 

  17. Coyle, S., Morris, D., Lau, K.-T., Diamond, D., Moyna, N.: Textile-based wearable sensors for assisting sports performance. Presented at the , Clarity: The Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland (2009)

    Google Scholar 

  18. Coyle, S., Diamond, D.: Medical applications of smart textiles. In: Multidisciplinary Know-How for Smart-Textiles Developers. pp. 420–443. Elsevier Ltd, CLARITY: Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland (2013)

    Google Scholar 

  19. Morris, D., Coyle, S., Wu, Y., Lau, K.T., Wallace, G., Diamond, D.: Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 139, 231–236 (2009). https://doi.org/10.1016/j.snb.2009.02.032

    Article  CAS  Google Scholar 

  20. Glennon, T., O’Quigley, C., McCaul, M., Matzeu, G., Beirne, S., Wallace, G.G.G., Stroiescu, F., O’Mahoney, N., White, P., Diamond, D.: ‘SWEATCH’: A Wearable Platform for Harvesting and Analysing Sweat Sodium Content. Electroanalysis 28, 1283–1289 (2016). https://doi.org/10.1002/elan.201600106

    Article  CAS  Google Scholar 

  21. Windmiller, J.R., Bandodkar, A.J., Valdés-Ramírez, G., Parkhomovsky, S., Martinez, A.G., Wang, J.: Electrochemical sensing based on printable temporary transfer tattoos. Chem. Commun. 48, 6794 (2012). https://doi.org/10.1039/c2cc32839a

    Article  CAS  Google Scholar 

  22. Bandodkar, A.J., Jia, W., Wang, J.: Tattoo-Based Wearable Electrochemical Devices: A Review. Electroanalysis 27, 562–572 (2015). https://doi.org/10.1002/elan.201400537

    Article  CAS  Google Scholar 

  23. Wang, J., Windmiller, J.R., Jia, W.: Printed biofuel cells, (2012)

    Google Scholar 

  24. Jia, W., Valdés-Ramírez, G., Bandodkar, A.J., Windmiller, J.R., Wang, J.: Epidermal biofuel cells: Energy harvesting from human perspiration. Angew. Chem. - Int. Ed. 52, 7233–7236 (2013). https://doi.org/10.1002/anie.201302922

    Article  CAS  Google Scholar 

  25. Kim, J., Valdés-Ramírez, G., Bandodkar, A.J., Jia, W., Martinez, A.G., Ramírez, J., Mercier, P., Wang, J.: Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites. Analyst 139, 1632–1636 (2014). https://doi.org/10.1039/c3an02359a

    Article  CAS  Google Scholar 

  26. Rose, D., Ratterman, M., Griffin, D., Hou, L., Kelley-Loughnane, N., Naik, R., Hagen, J., Papautsky, I., Heikenfeld, J.: Adhesive RFID Sensor Patch for Monitoring of Sweat Electrolytes. IEEE Trans. Biomed. Eng. 9294, 1–1 (2014). https://doi.org/10.1109/TBME.2014.2369991

    Article  Google Scholar 

  27. Hou, L., Hagen, J., Wang, X., Papautsky, I., Naik, R., Kelley-Loughnane, N., Heikenfeld, J.: Artificial microfluidic skin for in vitro perspiration simulation and testing. Lab Chip 13, 1868 (2013). https://doi.org/10.1039/c3lc41231h

    Article  CAS  Google Scholar 

  28. La Count, T.D., Jajack, A., Heikenfeld, J., Kasting, G.B.: Modeling Glucose Transport From Systemic Circulation to Sweat. J. Pharm. Sci. 108, 364–371 (2019). https://doi.org/10.1016/j.xphs.2018.09.026

    Article  CAS  Google Scholar 

  29. Zhao, F.J.J., Bonmarin, M., Chen, Z.C.C., Larson, M., Fay, D., Runnoe, D., Heikenfeld, J.: Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2020). https://doi.org/10.1039/c9lc00911f

    Article  CAS  Google Scholar 

  30. Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islam, A., Yu, K.J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F.G., Huang, Y., Coleman, T., Rogers, J.A.: Epidermal Electronics. Science 333, 838–843 (2011). https://doi.org/10.1126/science.1206157

    Article  CAS  Google Scholar 

  31. Kim, J.U., Seo, S.G., Rogers, J.A.: Compound semiconductor devices for the skin. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01441-9

    Article  Google Scholar 

  32. Reeder, J.T., Choi, J., Xue, Y., Gutruf, P., Hanson, J., Liu, M., Ray, T., Bandodkar, A.J., Avila, R., Xia, W., Krishnan, S., Xu, S., Barnes, K., Pahnke, M., Ghaffari, R., Huang, Y., Rogers, J.A.: Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 5, eaau6356 (2019). https://doi.org/10.1126/sciadv.aau6356

  33. Bandodkar, A.J.J., Lee, S.P.P., Huang, I., Li, W., Wang, S., Su, C.-J., Jeang, W.J.J., Hang, T., Mehta, S., Nyberg, N., Gutruf, P., Choi, J., Koo, J., Reeder, J.T., Tseng, R., Ghaffari, R., Rogers, J.A.A.: Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nat. Electron. 3, 554–562 (2020). https://doi.org/10.1038/s41928-020-0443-7

    Article  CAS  Google Scholar 

  34. Baker, L.B., Model, J.B., Barnes, K.A., Anderson, M.L., Lee, S.P., Lee, K.A., Brown, S.D., Reimel, A.J., Roberts, T.J., Nuccio, R.P., Bonsignore, J.L., Ungaro, C.T., Carter, J.M., Li, W., Seib, M.S., Reeder, J.T., Aranyosi, A.J., Rogers, J.A., Ghaffari, R.: Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020). https://doi.org/10.1126/sciadv.abe3929

  35. Liu, S., Yang, D.S., Wang, S., Luan, H., Sekine, Y., Model, J.B., Aranyosi, A.J., Ghaffari, R., Rogers, J.A.: Soft, environmentally degradable microfluidic devices for measurement of sweat rate and total sweat loss and for colorimetric analysis of sweat biomarkers. EcoMat. 5, (2023). https://doi.org/10.1002/eom2.12270

  36. Kwon, K., Kim, J.U., Deng, Y., Krishnan, S.R., Choi, J., Jang, H., Lee, K., Su, C.-J., Yoo, I., Wu, Y., Lipschultz, L., Kim, J.-H., Chung, T.S., Wu, D., Park, Y., Kim, T., Ghaffari, R., Lee, S., Huang, Y., Rogers, J.A.: An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021). https://doi.org/10.1038/s41928-021-00556-2

    Article  Google Scholar 

  37. Drucker, P.F.: Innovation and entrepreneurship: practice and principles. HarperBusiness, New York, NY (2006)

    Google Scholar 

  38. Christensen, C.M.: The innovator’s dilemma: the revolutionary book that will change the way you do business ; [with a new preface]. Harper Business, New York, NY (2011)

    Google Scholar 

  39. Porter, M.E.: Competitive strategy: techniques for analyzing industries and competitors. Free Press, New York London Toronto Sydney (2004)

    Google Scholar 

  40. Porter, M.E.: Competitive advantage: creating and sustaining superior performance. Free Press, New York, NY (2004)

    Google Scholar 

  41. Norman, D.A.: The design of everyday things. Tantor Media Inc., Old Saybrook, Ct (2011)

    Google Scholar 

  42. Lefteri, C.: Making It: Manufacturing techniques for product design. Laurence King Publishing, London (2019)

    Google Scholar 

  43. Sui, X., Downing, J.R., Hersam, M.C., Chen, J.: Additive manufacturing and applications of nanomaterial-based sensors. Mater. Today 48, 135–154 (2021). https://doi.org/10.1016/j.mattod.2021.02.001

    Article  CAS  Google Scholar 

  44. Santiago-Malagón, S., Río-Colín, D., Azizkhani, H., Aller-Pellitero, M., Guirado, G., del Campo, F.J.: A self-powered skin-patch electrochromic biosensor. Biosens. Bioelectron. 175, 112879 (2021). https://doi.org/10.1016/j.bios.2020.112879

    Article  CAS  Google Scholar 

  45. Wang, Z., Gui, M., Asif, M., Yu, Y., Dong, S., Wang, H., Wang, W., Wang, F., Xiao, F., Liu, H.: A facile modular approach to the 2D oriented assembly MOF electrode for non-enzymatic sweat biosensors. Nanoscale 10, 6629–6638 (2018). https://doi.org/10.1039/C8NR00798E

    Article  CAS  Google Scholar 

  46. Cheng, Y.-T., Chen, L.-C., Wang, W.-C.: Development of a fiber shape polymeric humidity sensor. Presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring , Portland, Oregon, United States April 17 (2017)

    Google Scholar 

  47. Veeralingam, S., Khandelwal, S., Badhulika, S.: AI/ML-Enabled 2-D - RuS 2 Nanomaterial-Based Multifunctional, Low Cost, Wearable Sensor Platform for Non-Invasive Point of Care Diagnostics. IEEE Sens. J. 20, 8437–8444 (2020). https://doi.org/10.1109/JSEN.2020.2984807

    Article  CAS  Google Scholar 

  48. Jiang, D., Xu, C., Zhang, Q., Ye, Y., Cai, Y., Li, K., Li, Y., Huang, X., Wang, Y.: In-situ preparation of lactate-sensing membrane for the noninvasive and wearable analysis of sweat. Biosens. Bioelectron. 210, 114303 (2022). https://doi.org/10.1016/j.bios.2022.114303

    Article  CAS  Google Scholar 

  49. Asaduzzaman, M., Zahed, M.A., Sharifuzzaman, M., Reza, M.S., Hui, X., Sharma, S., Shin, Y.D., Park, J.Y.: A hybridized nano-porous carbon reinforced 3D graphene-based epidermal patch for precise sweat glucose and lactate analysis. Biosens. Bioelectron. 219, 114846 (2023). https://doi.org/10.1016/j.bios.2022.114846

    Article  CAS  Google Scholar 

  50. Zahid, M., Papadopoulou, E.L., Athanassiou, A., Bayer, I.S.: Strain-responsive mercerized conductive cotton fabrics based on PEDOT:PSS/graphene. Mater. Des. 135, 213–222 (2017). https://doi.org/10.1016/j.matdes.2017.09.026

    Article  CAS  Google Scholar 

  51. Fisher, C., Skolrood, L.N., Li, K., Joshi, P.C., Aytug, T.: Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Adv. Mater. Technol. n/a, 2300030. https://doi.org/10.1002/admt.202300030

  52. Veenuttranon, K., Kaewpradub, K., Jeerapan, I.: Screen-Printable Functional Nanomaterials for Flexible and Wearable Single-Enzyme-Based Energy-Harvesting and Self-Powered Biosensing Devices. Nano-Micro Lett. 15, 85 (2023). https://doi.org/10.1007/s40820-023-01045-1

    Article  CAS  Google Scholar 

  53. Smith, A.A., Li, R., Tse, Z.T.H.: Reshaping healthcare with wearable biosensors. Sci. Rep. 13, 4998 (2023). https://doi.org/10.1038/s41598-022-26951-z

    Article  CAS  Google Scholar 

  54. Kalkal, A., Kumar, S., Kumar, P., Pradhan, R., Willander, M., Packirisamy, G., Kumar, S., Malhotra, B.D.: Recent advances in 3D printing technologies for wearable (bio)sensors. Addit. Manuf. 46, 102088 (2021). https://doi.org/10.1016/j.addma.2021.102088

    Article  CAS  Google Scholar 

  55. Muth, J.T., Vogt, D.M., Truby, R.L., Mengüç, Y., Kolesky, D.B., Wood, R.J., Lewis, J.A.: Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Adv. Mater. 26, 6307–6312 (2014). https://doi.org/10.1002/adma.201400334

    Article  CAS  Google Scholar 

  56. Yi, Q., Najafikhoshnoo, S., Das, P., Noh, S., Hoang, E., Kim, T., Esfandyarpour, R.: All-3D-Printed, Flexible, and Hybrid Wearable Bioelectronic Tactile Sensors Using Biocompatible Nanocomposites for Health Monitoring. Adv. Mater. Technol. 7, 2101034 (2022). https://doi.org/10.1002/admt.202101034

    Article  CAS  Google Scholar 

  57. Zhou, L., Gao, Q., Fu, J., Chen, Q., Zhu, J., Sun, Y., He, Y.: Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. ACS Appl. Mater. Interfaces 11, 23573–23583 (2019). https://doi.org/10.1021/acsami.9b04873

    Article  CAS  Google Scholar 

  58. Kim, T., Yi, Q., Hoang, E., Esfandyarpour, R.: A 3D Printed Wearable Bioelectronic Patch for Multi-Sensing and In Situ Sweat Electrolyte Monitoring. Adv. Mater. Technol. 6, 2001021 (2021). https://doi.org/10.1002/admt.202001021

    Article  CAS  Google Scholar 

  59. Xin, M., Li, J., Ma, Z., Pan, L., Shi, Y.: MXenes and Their Applications in Wearable Sensors. Front. Chem. 8, 297 (2020). https://doi.org/10.3389/fchem.2020.00297

    Article  CAS  Google Scholar 

  60. Bhardwaj, S.K., Singh, H., Khatri, M., Kim, K.-H., Bhardwaj, N.: Advances in MXenes-based optical biosensors: A review. Biosens. Bioelectron. 202, 113995 (2022). https://doi.org/10.1016/j.bios.2022.113995

    Article  CAS  Google Scholar 

  61. Hondred, J.A., Johnson, Z.T., Claussen, J.C.: Nanoporous gold peel-and-stick biosensors created with etching inkjet maskless lithography for electrochemical pesticide monitoring with microfluidics. J. Mater. Chem. C. 8, 11376–11388 (2020). https://doi.org/10.1039/D0TC01423K

    Article  CAS  Google Scholar 

  62. Wang, C., Zhu, S., Liang, Y., Cui, Z., Wu, S., Qin, C., Luo, S., Inoue, A.: Understanding the macroscopical flexibility/fragility of nanoporous Ag: Depending on network connectivity and micro-defects. J. Mater. Sci. Technol. 53, 91–101 (2020). https://doi.org/10.1016/j.jmst.2020.04.010

    Article  CAS  Google Scholar 

  63. Sánchez-Molas, D., Esquivel, J.P., Sabaté, N., Muñoz, F.X., del Campo, F.J., Esquivel, J.P.: High Aspect-Ratio, Fully Conducting Gold Micropillar Array Electrodes: Silicon Micromachining and Electrochemical Characterization. J. Phys. Chem. C 116, 18831–18846 (2012). https://doi.org/10.1021/jp305339k

    Article  CAS  Google Scholar 

  64. Chyan, Y., Ye, R., Li, Y., Singh, S.P., Arnusch, C.J., Tour, J.M.: Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 12, 2176–2183 (2018). https://doi.org/10.1021/acsnano.7b08539

    Article  CAS  Google Scholar 

  65. Fruncillo, S., Su, X., Liu, H., Wong, L.S.: Lithographic Processes for the Scalable Fabrication of Micro- and Nanostructures for Biochips and Biosensors. ACS Sens. 6, 2002–2024 (2021). https://doi.org/10.1021/acssensors.0c02704

    Article  CAS  Google Scholar 

  66. Cao, R., Pu, X., Du, X., Yang, W., Wang, J., Guo, H., Zhao, S., Yuan, Z., Zhang, C., Li, C., Lin Wang, Z.: Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human−Machine Interaction Article. ACS Nano 12, 38 (2018). https://doi.org/10.1021/acsnano.8b02477

    Article  CAS  Google Scholar 

  67. Ma, D., Chon, S., Cho, S., Lee, Y., Yoo, M., Kim, D., Lee, D.Y., Lim, J.K.: A novel photolithographic method for fabrication of flexible micro-patterned glucose sensors. J. Electroanal. Chem. 876, 114720 (2020). https://doi.org/10.1016/j.jelechem.2020.114720

    Article  CAS  Google Scholar 

  68. Oppel, E., Högg, C., Oschmann, A., Summer, B., Kamann, S.: Contact allergy to the Dexcom G6 glucose monitoring system—Role of 2,2′-methylenebis(6-tert-butyl-4-methylphenol) monoacrylate in the new adhesive. Contact Dermatitis 87, 258–264 (2022). https://doi.org/10.1111/cod.14141

    Article  CAS  Google Scholar 

  69. Jones, P., Wynn, M., Hillier, D., Comfort, D.: The Sustainable Development Goals and Information and Communication Technologies. Indones. J. Sustain. Account. Manag. 1, 1 (2017). https://doi.org/10.28992/ijsam.v1i1.22

  70. Poitout, V., Moatti-Sirat, D., Reach, G., Zhang, Y., Wilson, G.S., Lemonnier, F., Klein, J.C.: A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36, 658–663 (1993). https://doi.org/10.1007/BF00404077

    Article  CAS  Google Scholar 

  71. Kudo, H., Sawada, T., Kazawa, E., Yoshida, H., Iwasaki, Y., Mitsubayashi, K.: A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens. Bioelectron. 22, 558–562 (2006). https://doi.org/10.1016/j.bios.2006.05.006

    Article  CAS  Google Scholar 

  72. Mannoor, M.S., Tao, H., Clayton, J.D., Sengupta, A., Kaplan, D.L., Naik, R.R., Verma, N., Omenetto, F.G., McAlpine, M.C.: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012). https://doi.org/10.1038/ncomms1767

    Article  CAS  Google Scholar 

  73. Gao, W., Emaminejad, S., Nyein, H.Y.Y., Challa, S., Chen, K., Peck, A., Fahad, H.M., Ota, H., Shiraki, H., Kiriya, D., Lien, D.-H., Brooks, G.A., Davis, R.W., Javey, A.: Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521

    Article  CAS  Google Scholar 

  74. Huang, X., Liu, Y., Zhou, J., Nejad, S.K., Wong, T.H., Huang, Y., Li, H., Yiu, C.K., Park, W., Li, J., Su, J., Zhao, L., Yao, K., Wu, M., Gao, Z., Li, D., Li, J., Shi, R., Yu, X.: Garment embedded sweat-activated batteries in wearable electronics for continuous sweat monitoring. Npj Flex. Electron. 6, 10 (2022). https://doi.org/10.1038/s41528-022-00144-0

    Article  CAS  Google Scholar 

  75. Rasitanon, N., Ittisoponpisan, S., Kaewpradub, K., Jeerapan, I.: Wearable Electrodes for Lactate: Applications in Enzyme-Based Sensors and Energy Biodevices. Anal. Sens. (2023). https://doi.org/10.1002/anse.202200066

    Article  Google Scholar 

  76. Sadani, K., Nag, P., Thian, X.Y., Mukherji, S.: Enzymatic optical biosensors for healthcare applications. Biosens. Bioelectron. X. 12, 100278 (2022). https://doi.org/10.1016/j.biosx.2022.100278

    Article  CAS  Google Scholar 

  77. Heikenfeld, J., Jajack, A., Feldman, B., Granger, S.W., Gaitonde, S., Begtrup, G., Katchman, B.A.: Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3

    Article  CAS  Google Scholar 

  78. Zafar, H., Channa, A., Jeoti, V., Stojanović, G.M.: Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors. 22, 638 (2022). https://doi.org/10.3390/s22020638

    Article  CAS  Google Scholar 

  79. Chung, M., Fortunato, G., Radacsi, N.: Wearable flexible sweat sensors for healthcare monitoring: a review. J. R. Soc. Interface. 16, 20190217 (2019). https://doi.org/10.1098/rsif.2019.0217

    Article  CAS  Google Scholar 

  80. Bucur, B., Purcarea, C., Andreescu, S., Vasilescu, A.: Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. Sensors. 21, 3038 (2021). https://doi.org/10.3390/s21093038

    Article  CAS  Google Scholar 

  81. Lipińska, W., Grochowska, K., Siuzdak, K.: Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials 11, 1156 (2021). https://doi.org/10.3390/nano11051156

    Article  CAS  Google Scholar 

  82. Cabaj, J., Sołoducho, J.: Nano-Sized Elements in Electrochemical Biosensors. Mater. Sci. Appl. 05, 752–766 (2014). https://doi.org/10.4236/msa.2014.510076

    Article  CAS  Google Scholar 

  83. Skaria, E., Patel, B.A., Flint, M.S., Ng, K.W.: Poly(lactic acid)/Carbon Nanotube Composite Microneedle Arrays for Dermal Biosensing. Anal. Chem. 91, 4436–4443 (2019). https://doi.org/10.1021/acs.analchem.8b04980

    Article  CAS  Google Scholar 

  84. Lawal, A.T.: Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater. Res. Bull. 73, 308–350 (2016). https://doi.org/10.1016/j.materresbull.2015.08.037

    Article  CAS  Google Scholar 

  85. Niu, Y., Liu, J., Chen, W., Yin, C., Weng, W., Li, X., Wang, X., Li, G., Sun, W.: A direct electron transfer biosensor based on a horseradish peroxidase and gold nanotriangle modified electrode and electrocatalysis. Anal. Methods 10, 5297–5304 (2018). https://doi.org/10.1039/C8AY01980K

    Article  CAS  Google Scholar 

  86. Fang, L., Liu, B., Liu, L., Li, Y., Huang, K., Zhang, Q.: Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators B Chem. 222, 1096–1102 (2016). https://doi.org/10.1016/j.snb.2015.08.032

    Article  CAS  Google Scholar 

  87. Holzinger, M., Baur, J., Haddad, R., Wang, X., Cosnier, S.: Multiple functionalization of single-walled carbon nanotubes by dip coating. Chem. Commun. 47, 2450–2452 (2011). https://doi.org/10.1039/C0CC03928D

    Article  CAS  Google Scholar 

  88. Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic, Martinkova, P.: Main streams in the Construction of Biosensors and Their Applications. Int. J. Electrochem. Sci. 7386–7403 (2017). https://doi.org/10.20964/2017.08.02

  89. Nguyen, H.H., Lee, S.H., Lee, U.J., Fermin, C.D., Kim, M.: Immobilized Enzymes in Biosensor Applications. Materials. 12, 121 (2019). https://doi.org/10.3390/ma12010121

    Article  CAS  Google Scholar 

  90. Sassolas, A., Blum, L.J., Leca-Bouvier, B.D.: Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 30, 489–511 (2012). https://doi.org/10.1016/j.biotechadv.2011.09.003

    Article  CAS  Google Scholar 

  91. Salazar, P., Martín, M., O’Neill, R.D., González-Mora, J.L.: Glutamate microbiosensors based on Prussian Blue modified carbon fiber electrodes for neuroscience applications: In-vitro characterization. Sens. Actuators B Chem. 235, 117–125 (2016). https://doi.org/10.1016/j.snb.2016.05.057

    Article  CAS  Google Scholar 

  92. Kim, J., Imani, S., de Araujo, W.R., Warchall, J., Valdés-Ramírez, G., Paixão, T.R.L.C., Mercier, P.P., Wang, J.: Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 74, 1061–1068 (2015). https://doi.org/10.1016/j.bios.2015.07.039

    Article  CAS  Google Scholar 

  93. Tur-García, E.L., Davis, F., Collyer, S.D., Holmes, J.L., Barr, H., Higson, S.P.J.: Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sens. Actuators B Chem. 242, 502–510 (2017). https://doi.org/10.1016/j.snb.2016.11.040

    Article  CAS  Google Scholar 

  94. Clark, L.C., Lyons, C.: ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Ann. N. Y. Acad. Sci. 102, 29–45 (2006). https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

    Article  Google Scholar 

  95. Jiang, Y., Yang, Y., Shen, L., Ma, J., Ma, H., Zhu, N.: Recent Advances of Prussian Blue-Based Wearable Biosensors for Healthcare. Anal. Chem. 94, 297–311 (2022). https://doi.org/10.1021/acs.analchem.1c04420

    Article  CAS  Google Scholar 

  96. Herrmann, A., Haag, R., Schedler, U.: Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 10, 2100062 (2021). https://doi.org/10.1002/adhm.202100062

    Article  CAS  Google Scholar 

  97. Lipińska, W., Siuzdak, K., Karczewski, J., Dołęga, A., Grochowska, K.: Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens. Actuators B Chem. 330, 129409 (2021). https://doi.org/10.1016/j.snb.2020.129409

    Article  CAS  Google Scholar 

  98. Updike, S.J., Hicks, G.P.: The Enzyme Electrode. Nature 214, 986–988 (1967). https://doi.org/10.1038/214986a0

    Article  CAS  Google Scholar 

  99. Kim, G.J., Kim, K.O.: Novel glucose-responsive of the transparent nanofiber hydrogel patches as a wearable biosensor via electrospinning. Sci. Rep. 10, 18858 (2020). https://doi.org/10.1038/s41598-020-75906-9

    Article  CAS  Google Scholar 

  100. Kim, J., Jeerapan, I., Imani, S., Cho, T.N., Bandodkar, A., Cinti, S., Mercier, P.P., Wang, J.: Noninvasive Alcohol Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System. ACS Sens. 1, 1011–1019 (2016). https://doi.org/10.1021/acssensors.6b00356

    Article  CAS  Google Scholar 

  101. Kemp, E., Palomäki, T., Ruuth, I.A., Boeva, Z.A., Nurminen, T.A., Vänskä, R.T., Zschaechner, L.K., Pérez, A.G., Hakala, T.A., Wardale, M., Haeggström, E., Bobacka, J.: Influence of enzyme immobilization and skin-sensor interface on non-invasive glucose determination from interstitial fluid obtained by magnetohydrodynamic extraction. Biosens. Bioelectron. 206, 114123 (2022). https://doi.org/10.1016/j.bios.2022.114123

    Article  CAS  Google Scholar 

  102. Nagamine, K., Mano, T., Nomura, A., Ichimura, Y., Izawa, R., Furusawa, H., Matsui, H., Kumaki, D., Tokito, S.: Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad. Sci. Rep. 9, 10102 (2019). https://doi.org/10.1038/s41598-019-46611-z

    Article  CAS  Google Scholar 

  103. Liu, J., Zhang, L., Fu, C.: Os-complex-based amperometric bienzyme biosensor for continuous determination of lactate in saliva. Anal. Methods 7, 6158–6164 (2015). https://doi.org/10.1039/C5AY01110H

    Article  CAS  Google Scholar 

  104. Mollarasouli, K.: Ozkan: The Role of Electrochemical Immunosensors in Clinical Analysis. Biosensors 9, 86 (2019). https://doi.org/10.3390/bios9030086

    Article  CAS  Google Scholar 

  105. Ruiz, G., Tripathi, K., Okyem, S., Driskell, J.D.: PH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug. Chem. 30, 1182–1191 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00123

    Article  CAS  Google Scholar 

  106. Wei, J., Zhang, X., Mugo, S.M., Zhang, Q.: A Portable Sweat Sensor Based on Carbon Quantum Dots for Multiplex Detection of Cardiovascular Health Biomarkers. Anal. Chem. 94, 12772–12780 (2022). https://doi.org/10.1021/acs.analchem.2c02587

    Article  CAS  Google Scholar 

  107. Haji-Hashemi, H., Norouzi, P., Safarnejad, M.R., Ganjali, M.R.: Label-free electrochemical immunosensor for direct detection of Citrus tristeza virus using modified gold electrode. Sens. Actuators B Chem. 244, 211–216 (2017). https://doi.org/10.1016/j.snb.2016.12.135

    Article  CAS  Google Scholar 

  108. Lee, H.-B., Meeseepong, M., Trung, T.Q., Kim, B.-Y., Lee, N.-E.: A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat. Biosens. Bioelectron. 156, 112133 (2020). https://doi.org/10.1016/j.bios.2020.112133

    Article  CAS  Google Scholar 

  109. Bagni, G., Osella, D., Sturchio, E., Mascini, M.: Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Instrum. Methods Anal. -IMA 2005(573–574), 81–89 (2006). https://doi.org/10.1016/j.aca.2006.03.085

    Article  CAS  Google Scholar 

  110. Lymperopoulos, K., Crawford, R., Torella, J.P., Heilemann, M., Hwang, L.C., Holden, S.J., Kapanidis, A.N.: Single-Molecule DNA Biosensors for Protein and Ligand Detection. Angew. Chem. Int. Ed. 49, 1316–1320 (2010). https://doi.org/10.1002/anie.200904597

    Article  CAS  Google Scholar 

  111. Choi, J.-H., Lim, J., Shin, M., Paek, S.-H., Choi, J.-W.: CRISPR-Cas12a-Based Nucleic Acid Amplification-Free DNA Biosensor via Au Nanoparticle-Assisted Metal-Enhanced Fluorescence and Colorimetric Analysis. Nano Lett. 21, 693–699 (2021). https://doi.org/10.1021/acs.nanolett.0c04303

    Article  CAS  Google Scholar 

  112. Mukherjee, M., Gajjala, R.K.R., Gade, P.S., Bhatt, P.: 3.42 - Aptasensors: Paradigm Shift for Detection of Food Toxins. In: Knoerzer, K. and Muthukumarappan, K. (eds.) Innovative Food Processing Technologies. pp. 712–730. Elsevier, Oxford (2021)

    Google Scholar 

  113. Gao, Y., Nguyen, D.T., Yeo, T., Lim, S.B., Tan, W.X., Madden, L.E., Jin, L., Long, J.Y.K., Aloweni, F.A.B., Liew, Y.J.A., Tan, M.L.L., Ang, S.Y., Maniya, S.D., Abdelwahab, I., Loh, K.P., Chen, C.-H., Becker, D.L., Leavesley, D., Ho, J.S., Lim, C.T.: A flexible multiplexed immunosensor for point-of-care in situ wound monitoring. Sci. Adv. 7, eabg9614. https://doi.org/10.1126/sciadv.abg9614

  114. Ferguson, B.S., Hoggarth, D.A., Maliniak, D., Ploense, K., White, R.J., Woodward, N., Hsieh, K., Bonham, A.J., Eisenstein, M., Kippin, T.E., Plaxco, K.W., Soh, H.T.: Real-Time, Aptamer-Based Tracking of Circulating Therapeutic Agents in Living Animals. Sci. Transl. Med. 5, 213ra165–213ra165 (2013). https://doi.org/10.1126/scitranslmed.3007095

  115. Raju, K.S.R., Taneja, I., Singh, S.P.: Wahajuddin: Utility of noninvasive biomatrices in pharmacokinetic studies. Biomed. Chromatogr. 27, 1354–1366 (2013). https://doi.org/10.1002/bmc.2996

    Article  CAS  Google Scholar 

  116. Tsunoda, M., Hirayama, M., Tsuda, T., Ohno, K.: Noninvasive monitoring of plasma l-dopa concentrations using sweat samples in Parkinson’s disease. Clin. Chim. Acta 442, 52–55 (2015). https://doi.org/10.1016/j.cca.2014.12.032

    Article  CAS  Google Scholar 

  117. Tai, L.-C., Gao, W., Chao, M., Bariya, M., Ngo, Q.P., Shahpar, Z., Nyein, H.Y.Y., Park, H., Sun, J., Jung, Y., Wu, E., Fahad, H.M., Lien, D.-H., Ota, H., Cho, G., Javey, A.: Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Adv. Mater. 30, 1707442 (2018). https://doi.org/10.1002/adma.201707442

    Article  CAS  Google Scholar 

  118. Gal, P.: Caffeine Therapeutic Drug Monitoring Is Necessary and Cost-effective. J. Pediatr. Pharmacol. Ther. 12, 212–215 (2007). https://doi.org/10.5863/1551-6776-12.4.212

    Article  Google Scholar 

  119. Tai, L.-C., Liaw, T.S., Lin, Y., Nyein, H.Y.Y., Bariya, M., Ji, W., Hettick, M., Zhao, C., Zhao, J., Hou, L., Yuan, Z., Fan, Z., Javey, A.: Wearable Sweat Band for Noninvasive Levodopa Monitoring. Nano Lett. 19, 6346–6351 (2019). https://doi.org/10.1021/acs.nanolett.9b02478

    Article  CAS  Google Scholar 

  120. Wu, Y., Tehrani, F., Teymourian, H., Mack, J., Shaver, A., Reynoso, M., Kavner, J., Huang, N., Furmidge, A., Duvvuri, A., Nie, Y., Laffel, L.M., Doyle, F.J.I., Patti, M.-E., Dassau, E., Wang, J., Arroyo-Currás, N.: Microneedle Aptamer-Based Sensors for Continuous, Real-Time Therapeutic Drug Monitoring. Anal. Chem. 94, 8335–8345 (2022). https://doi.org/10.1021/acs.analchem.2c00829

    Article  CAS  Google Scholar 

  121. Mousavisani, S.Z., Raoof, J.B., Ojani, R., Bagheryan, Z.: An impedimetric biosensor for DNA damage detection and study of the protective effect of deferoxamine against DNA damage. Bioelectrochemistry 122, 142–148 (2018). https://doi.org/10.1016/j.bioelechem.2018.03.012

    Article  CAS  Google Scholar 

  122. Parab, H.J., Jung, C., Lee, J.-H., Park, H.G.: A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens. Bioelectron. 26, 667–673 (2010). https://doi.org/10.1016/j.bios.2010.06.067

    Article  CAS  Google Scholar 

  123. Zhang, H., Wang, R., Tan, H., Nie, L., Yao, S.: Bovine serum albumin as a means to immobilize DNA on a silver-plated bulk acoustic wave DNA biosensor. Talanta 46, 171–178 (1998). https://doi.org/10.1016/S0039-9140(97)00271-3

    Article  CAS  Google Scholar 

  124. Afzal, A., Mujahid, A., Schirhagl, R., Bajwa, S.Z., Latif, U., Feroz, S.: Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors. 5, 7 (2017)

    Article  Google Scholar 

  125. Hu, L., Hu, S., Guo, L., Shen, C., Yang, M., Rasooly, A.: DNA Generated Electric Current Biosensor. Anal. Chem. 89, 2547–2552 (2017). https://doi.org/10.1021/acs.analchem.6b04756

    Article  CAS  Google Scholar 

  126. Han, S., Liu, W., Zheng, M., Wang, R.: Label-Free and Ultrasensitive Electrochemical DNA Biosensor Based on Urchinlike Carbon Nanotube-Gold Nanoparticle Nanoclusters. Anal. Chem. 92, 4780–4787 (2020). https://doi.org/10.1021/acs.analchem.9b03520

    Article  CAS  Google Scholar 

  127. Kim, E.R., Joe, C., Mitchell, R.J., Gu, M.B.: Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. (2022)

    Google Scholar 

  128. Yang, B., Kong, J., Fang, X.: Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204, 685–692 (2019). https://doi.org/10.1016/j.talanta.2019.06.031

    Article  CAS  Google Scholar 

  129. Galandová, J., Ovádeková, R., Ferancová, A., Labuda, J.: Disposable DNA biosensor with the carbon nanotubes–polyethyleneimine interface at a screen-printed carbon electrode for tests of DNA layer damage by quinazolines. Anal. Bioanal. Chem. 394, 855–861 (2009). https://doi.org/10.1007/s00216-009-2740-x

    Article  CAS  Google Scholar 

  130. Suginta, W., Khunkaewla, P., Schulte, A.: Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem. Rev. 113, 5458–5479 (2013). https://doi.org/10.1021/cr300325r

    Article  CAS  Google Scholar 

  131. Di Iorio, D., Marti, A., Koeman, S., Huskens, J.: Clickable poly-l-lysine for the formation of biorecognition surfaces. RSC Adv. 9, 35608–35613 (2019). https://doi.org/10.1039/C9RA08714A

    Article  Google Scholar 

  132. Zhang, P., Lu, C., Niu, C., Wang, X., Li, Z., Liu, J.: Binding Studies of Cationic Conjugated Polymers and DNA for Label-Free Fluorescent Biosensors. ACS Appl. Polym. Mater. 4, 6211–6218 (2022). https://doi.org/10.1021/acsapm.2c00986

    Article  CAS  Google Scholar 

  133. Stillman, B.A., Tonkinson, J.L.: FASTTM Slides: A Novel Surface for Microarrays. Biotechniques 29, 630–635 (2000). https://doi.org/10.2144/00293pf01

    Article  CAS  Google Scholar 

  134. Sassolas, A., Leca-Bouvier, B.D., Blum, L.J.: DNA Biosensors and Microarrays. Chem. Rev. 108, 109–139 (2008). https://doi.org/10.1021/cr0684467

    Article  CAS  Google Scholar 

  135. Zhang, F., Wang, S., Liu, J.: Gold Nanoparticles Adsorb DNA and Aptamer Probes Too Strongly and a Comparison with Graphene Oxide for Biosensing. Anal. Chem. 91, 14743–14750 (2019). https://doi.org/10.1021/acs.analchem.9b04142

    Article  CAS  Google Scholar 

  136. Wang, S., McGuirk, C.M., Ross, M.B., Wang, S., Chen, P., Xing, H., Liu, Y., Mirkin, C.A.: General and Direct Method for Preparing Oligonucleotide-Functionalized Metal-Organic Framework Nanoparticles. J. Am. Chem. Soc. 139, 9827–9830 (2017). https://doi.org/10.1021/jacs.7b05633

    Article  CAS  Google Scholar 

  137. Sun, Z., Wu, S., Ma, J., Shi, H., Wang, L., Sheng, A., Yin, T., Sun, L., Li, G.: Colorimetric Sensor Array for Human Semen Identification Designed by Coupling Zirconium Metal-Organic Frameworks with DNA-Modified Gold Nanoparticles. ACS Appl. Mater. Interfaces 11, 36316–36323 (2019). https://doi.org/10.1021/acsami.9b10729

    Article  CAS  Google Scholar 

  138. Xiong, D., Cheng, J., Ai, F., Wang, X., Xiao, J., Zhu, F., Zeng, K., Wang, K., Zhang, Z.: Insight into the Sensing Behavior of DNA Probes Based on MOF–Nucleic Acid Interaction for Bioanalysis. Anal. Chem. 95, 5470–5478 (2023). https://doi.org/10.1021/acs.analchem.3c00832

    Article  CAS  Google Scholar 

  139. Weizmann, Y., Chenoweth, D.M., Swager, T.M.: Addressable Terminally Linked DNA−CNT Nanowires. J. Am. Chem. Soc. 132, 14009–14011 (2010). https://doi.org/10.1021/ja106352y

    Article  CAS  Google Scholar 

  140. Vittala, S.K., Han, D.: DNA-Guided Assemblies toward Nanoelectronic Applications. ACS Appl. Bio Mater. 3, 2702–2722 (2020). https://doi.org/10.1021/acsabm.9b01178

    Article  CAS  Google Scholar 

  141. Rashid, J.I.A., Yusof, N.A.: The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sens. Bio-Sens. Res. 16, 19–31 (2017). https://doi.org/10.1016/j.sbsr.2017.09.001

    Article  Google Scholar 

  142. Papadopoulou, E., Gale, N., Thompson, J.F., Fleming, T.A., Brown, T., Bartlett, P.N.: Specifically horizontally tethered DNA probes on Au surfaces allow labelled and label-free DNA detection using SERS and electrochemically driven melting. Chem. Sci. 7, 386–393 (2016). https://doi.org/10.1039/C5SC03185K

    Article  CAS  Google Scholar 

  143. Goodrich, G.P., Helfrich, M.R., Overberg, J.J., Keating, C.D.: Effect of Macromolecular Crowding on DNA: Au Nanoparticle Bioconjugate Assembly. Langmuir 20, 10246–10251 (2004). https://doi.org/10.1021/la048434l

    Article  CAS  Google Scholar 

  144. Ahmadi, S., Kamaladini, H., Haddadi, F., Sharifmoghadam, M.R.: Thiol-Capped Gold Nanoparticle Biosensors for Rapid and Sensitive Visual Colorimetric Detection of Klebsiella pneumoniae. J. Fluoresc. 28, 987–998 (2018). https://doi.org/10.1007/s10895-018-2262-z

    Article  CAS  Google Scholar 

  145. Mobed, A., Hasanzadeh, M., Babaie, P., Agazadeh, M., Mokhtarzadeh, A., Rezaee, M.A.: DNA-based bioassay of legionella pneumonia pathogen using gold nanostructure: A new platform for diagnosis of legionellosis. Int. J. Biol. Macromol. 128, 692–699 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.125

    Article  CAS  Google Scholar 

  146. Tour, J.M., Jones, L.I., Pearson, D.L., Lamba, J.J.S., Burgin, T.P., Whitesides, G.M., Allara, D.L., Parikh, A.N., Atre, S.: Self-Assembled Monolayers and Multilayers of Conjugated Thiols, .alpha.,.omega.-Dithiols, and Thioacetyl-Containing Adsorbates. Understanding Attachments between Potential Molecular Wires and Gold Surfaces. J. Am. Chem. Soc. 117, 9529–9534 (1995). https://doi.org/10.1021/ja00142a021

  147. Reddy Gajjala, R.K., Gade, P.S., Bhatt, P., Vishwakarma, N., Singh, S.: Enzyme decorated dendritic bimetallic nanocomposite biosensor for detection of HCHO. Talanta 238, 123054 (2022). https://doi.org/10.1016/j.talanta.2021.123054

    Article  CAS  Google Scholar 

  148. Yang, B., Kong, J., Fang, X.: Programmable CRISPR-Cas9 microneedle patch for long-term capture and real-time monitoring of universal cell-free DNA. Nat. Commun. 13, 3999 (2022). https://doi.org/10.1038/s41467-022-31740-3

    Article  CAS  Google Scholar 

  149. Kuscu, M., Ramezani, H., Dinc, E., Akhavan, S., Akan, O.B.: Fabrication and microfluidic analysis of graphene-based molecular communication receiver for Internet of Nano Things (IoNT). Sci. Rep. 11, 19600 (2021). https://doi.org/10.1038/s41598-021-98609-1

    Article  CAS  Google Scholar 

  150. Guo, Y., Shen, G., Sun, X., Wang, X.: Electrochemical Aptasensor Based on Multiwalled Carbon Nanotubes and Graphene for Tetracycline Detection. IEEE Sens. J. 15, 1951–1958 (2015). https://doi.org/10.1109/JSEN.2014.2370051

    Article  CAS  Google Scholar 

  151. Pan, T.-M., Liao, P.-Y.: High sensitivity and rapid detection of KRAS and BRAF gene mutations in colorectal cancer using YbTixOy electrolyte-insulator-semiconductor biosensors. Mater. Today Chem. 25, 100979 (2022). https://doi.org/10.1016/j.mtchem.2022.100979

    Article  CAS  Google Scholar 

  152. Rodríguez-Montelongo, S.A., Moreno-Gutiérrez, D.S., Terán-Figueroa, Y., Gómez-Durán, C.F.A., Bañuelos-Frías, A., Palestino, G.: Porous Silicon-Based DNA Biosensor for Human Papillomavirus Detection: Towards the Design of Fast and Portable Test. SILICON 15, 2371–2383 (2023). https://doi.org/10.1007/s12633-022-02179-4

    Article  CAS  Google Scholar 

  153. Capo, C., Bongrand, P., Benoliel, A., Depieds, R.: Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages. Immunology 36, 501 (1979)

    CAS  Google Scholar 

  154. Chung, D.-J., Kim, K.-C., Choi, S.-H.: Electrochemical DNA biosensor based on avidin–biotin conjugation for influenza virus (type A) detection. Appl. Surf. Sci. 257, 9390–9396 (2011). https://doi.org/10.1016/j.apsusc.2011.06.015

    Article  CAS  Google Scholar 

  155. Liu, G., Wan, Y., Gau, V., Zhang, J., Wang, L., Song, S., Fan, C.: An Enzyme-Based E-DNA Sensor for Sequence-Specific Detection of Femtomolar DNA Targets. J. Am. Chem. Soc. 130, 6820–6825 (2008). https://doi.org/10.1021/ja800554t

    Article  CAS  Google Scholar 

  156. Pan, S., Rothberg, L.: Chemical Control of Electrode Functionalization for Detection of DNA Hybridization by Electrochemical Impedance Spectroscopy. Langmuir 21, 1022–1027 (2005). https://doi.org/10.1021/la048083a

    Article  CAS  Google Scholar 

  157. Deng, C., Xia, Y., Xiao, C., Nie, Z., Yang, M., Si, S.: Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens. Bioelectron. 31, 469–474 (2012). https://doi.org/10.1016/j.bios.2011.11.018

    Article  CAS  Google Scholar 

  158. Jalit, Y., Moreno, M., Gutierrez, F.A., Sanchez Arribas, A., Chicharro, M., Bermejo, E., Zapardiel, A., Parrado, C., Rivas, G.A., Rodríguez, M.C.: Adsorption and Electrooxidation of Nucleic Acids at Glassy Carbon Electrodes Modified with Multiwalled Carbon Nanotubes Dispersed In Polylysine. Electroanalysis 25, 1116–1121 (2013). https://doi.org/10.1002/elan.201200622

    Article  CAS  Google Scholar 

  159. Zhang, S., Ding, Y., Wei, H.: Ruthenium Polypyridine Complexes Combined with Oligonucleotides for Bioanalysis: A Review. Molecules 19, 11933–11987 (2014). https://doi.org/10.3390/molecules190811933

    Article  CAS  Google Scholar 

  160. Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003). https://doi.org/10.1038/nbt873

    Article  CAS  Google Scholar 

  161. Wu, N., Gao, W., He, X., Chang, Z., Xu, M.: Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry. Biosens. Bioelectron. 39, 210–214 (2013). https://doi.org/10.1016/j.bios.2012.07.038

    Article  CAS  Google Scholar 

  162. Yu, H.-Z., Luo, C.-Y., Sankar, C.G., Sen, D.: Voltammetric Procedure for Examining DNA-Modified Surfaces: Quantitation, Cationic Binding Activity, and Electron-Transfer Kinetics. Anal. Chem. 75, 3902–3907 (2003). https://doi.org/10.1021/ac034318w

    Article  CAS  Google Scholar 

  163. Ilkhani, H., Hughes, T., Li, J., Zhong, C.J., Hepel, M.: Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens. Bioelectron. 80, 257–264 (2016). https://doi.org/10.1016/j.bios.2016.01.068

    Article  CAS  Google Scholar 

  164. Ribeiro Teles, F.R., França dos Prazeres, D.M., De Lima-Filho, J.L.: Electrochemical Detection of a Dengue-related Oligonucleotide Sequence Using Ferrocenium as a Hybridization Indicator. Sensors. 7, 2510–2518 (2007). https://doi.org/10.3390/s7112510

  165. Huang, J., Wu, J., Li, Z.: Biosensing using hairpin DNA probes. 34, 1–27 (2015). https://doi.org/10.1515/revac-2015-0010

    Article  CAS  Google Scholar 

  166. Farjami, E., Clima, L., Gothelf, K., Ferapontova, E.E.: “Off−On” Electrochemical Hairpin-DNA-Based Genosensor for Cancer Diagnostics. Anal. Chem. 83, 1594–1602 (2011). https://doi.org/10.1021/ac1032929

    Article  CAS  Google Scholar 

  167. Fu, L., Zhuang, J., Tang, D., Que, X., Lai, W., Chen, G.: DNA pseudoknot-functionalized sensing platform for chemoselective analysis of mercury ions. Analyst 137, 4425–4427 (2012). https://doi.org/10.1039/C2AN35662G

    Article  CAS  Google Scholar 

  168. Xiao, Y., Qu, X., Plaxco, K.W., Heeger, A.J.: Label-Free Electrochemical Detection of DNA in Blood Serum via Target-Induced Resolution of an Electrode-Bound DNA Pseudoknot. J. Am. Chem. Soc. 129, 11896–11897 (2007). https://doi.org/10.1021/ja074218y

    Article  CAS  Google Scholar 

  169. Singh, N.K., Chung, S., Chang, A.-Y., Wang, J., Hall, D.A.: A non-invasive wearable stress patch for real-time cortisol monitoring using a pseudoknot-assisted aptamer. Biosens. Bioelectron. 227, 115097 (2023). https://doi.org/10.1016/j.bios.2023.115097

    Article  CAS  Google Scholar 

  170. Majee, P., Kumar Mishra, S., Pandya, N., Shankar, U., Pasadi, S., Muniyappa, K., Nayak, D., Kumar, A.: Sci. Rep. 10, 1477 (2020). https://doi.org/10.1038/s41598-020-58406-8

    Article  CAS  Google Scholar 

  171. Zhao, Y., Kan, Z., Zeng, Z., Hao, Y., Chen, H., Tan, Z.: Determining the Folding and Unfolding Rate Constants of Nucleic Acids by Biosensor. Application to Telomere G-Quadruplex. J. Am. Chem. Soc. 126, 13255–13264 (2004). https://doi.org/10.1021/ja048398c

  172. Bahreyni, A., Ramezani, M., Alibolandi, M., Hassanzadeh, P., Abnous, K., Taghdisi, S.M.: High affinity of AS1411 toward copper; its application in a sensitive aptasensor for copper detection. Anal. Biochem. 575, 1–9 (2019). https://doi.org/10.1016/j.ab.2019.03.016

    Article  CAS  Google Scholar 

  173. Hao, Z., Wang, Z., Li, Y., Zhu, Y., Wang, X., De Moraes, C.G., Pan, Y., Zhao, X., Lin, Q.: Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018). https://doi.org/10.1039/C8NR04315A

    Article  CAS  Google Scholar 

  174. Travascio, P., Witting, P.K., Mauk, A.G., Sen, D.: The Peroxidase Activity of a Hemin−DNA Oligonucleotide Complex: Free Radical Damage to Specific Guanine Bases of the DNA. J. Am. Chem. Soc. 123, 1337–1348 (2001). https://doi.org/10.1021/ja0023534

    Article  CAS  Google Scholar 

  175. Wang, Z., Zhao, J., Bao, J., Dai, Z.: Construction of Metal-Ion-Free G-quadruplex-Hemin DNAzyme and Its Application in S1 Nuclease Detection. ACS Appl. Mater. Interfaces 8, 827–833 (2016). https://doi.org/10.1021/acsami.5b10165

    Article  CAS  Google Scholar 

  176. Cheng, X., Liu, X., Bing, T., Cao, Z., Shangguan, D.: General Peroxidase Activity of G-Quadruplex−Hemin Complexes and Its Application in Ligand Screening. Biochemistry 48, 7817–7823 (2009). https://doi.org/10.1021/bi9006786

    Article  CAS  Google Scholar 

  177. Xu, J., Yan, C., Wang, X., Yao, B., Lu, J., Liu, G., Chen, W.: Ingenious Design of DNA Concatamers and G-Quadruplex Wires Assisted Assembly of Multibranched DNA Nanoarchitectures for Ultrasensitive Biosensing of miRNA. Anal. Chem. 91, 9747–9753 (2019). https://doi.org/10.1021/acs.analchem.9b01353

    Article  CAS  Google Scholar 

  178. Owens, E.A., Huynh, H.T., Stroeva, E.M., Barman, A., Ziabrev, K., Paul, A., Nguyen, S.V., Laramie, M., Hamelberg, D., Germann, M.W., Wilson, W.D., Henary, M.: Second Generation G-Quadruplex Stabilizing Trimethine Cyanines. Bioconjug. Chem. 30, 2647–2663 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00571

    Article  CAS  Google Scholar 

  179. Tello, A., Cao, R., Marchant, M.J., Gomez, H.: Conformational Changes of Enzymes and Aptamers Immobilized on Electrodes. Bioconjug. Chem. 27, 2581–2591 (2016). https://doi.org/10.1021/acs.bioconjchem.6b00553

    Article  CAS  Google Scholar 

  180. Sorek, R., Lawrence, C.M., Wiedenheft, B.: CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annu. Rev. Biochem. 82, 237–266 (2013). https://doi.org/10.1146/annurev-biochem-072911-172315

    Article  CAS  Google Scholar 

  181. Wan, Y., Zong, C., Li, X., Wang, A., Li, Y., Yang, T., Bao, Q., Dubow, M., Yang, M., Rodrigo, L.-A., Mao, C.: New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem. Rev. 122, 8126–8180 (2022). https://doi.org/10.1021/acs.chemrev.1c01063

    Article  CAS  Google Scholar 

  182. Nguyen, P.Q., Soenksen, L.R., Donghia, N.M., Angenent-Mari, N.M., de Puig, H., Huang, A., Lee, R., Slomovic, S., Galbersanini, T., Lansberry, G., Sallum, H.M., Zhao, E.M., Niemi, J.B., Collins, J.J.: Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021). https://doi.org/10.1038/s41587-021-00950-3

    Article  CAS  Google Scholar 

  183. Lu, M., Zhang, X., Xu, D., Li, N., Zhao, Y.: Encoded Structural Color Microneedle Patches for Multiple Screening of Wound Small Molecules. Adv. Mater. n/a, 2211330 (2023). https://doi.org/10.1002/adma.202211330

  184. Lin, S., Cheng, X., Zhu, J., Wang, B., Jelinek, D., Zhao, Y., Wu, T.-Y., Horrillo, A., Tan, J., Yeung, J., Yan, W., Forman, S., Coller, H.A., Milla, C., Emaminejad, S.: Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539. https://doi.org/10.1126/sciadv.abq4539

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier del Campo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy Gajjala, R.K., Muñana-González, S., Núñez-Marinero, P., Totoricaguena-Gorriño, J., Ruiz-Rubio, L., Javier del Campo, F. (2024). Design and Fabrication of Wearable Biosensors: Materials, Methods, and Prospects. In: Mitsubayashi, K. (eds) Wearable Biosensing in Medicine and Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-8122-9_15

Download citation

Publish with us

Policies and ethics