Skip to main content

Nanomedicines in the Treatment of Nervous System Disorders

  • Chapter
  • First Online:
Nanomedicine in Treatment of Diseases

Abstract

The chapter overviews different diseases of central nervous system (CNS), the problems associated with conventional therapies to CNS and transport mechanisms associated with the delivery of drugs into the CNS. Different signaling pathways are also discussed. CNS disorders like Alzheimer Disease, Parkinson’s disease, Epilepsy, and Schizophrenia are discussed with reference to available nanocarrier-based therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Domínguez A, Álvarez A, Hilario E, Suarez-Merino B, Goñi-de-Cerio F. Central nervous system diseases and the role of the blood-brain barrier in their treatment. Neurosci Discov. 2013;1(1):3.

    Article  Google Scholar 

  2. Menken M, Munsat TL, Toole JF. The global burden of disease study: implications for neurology. Arch Neurol. 2000;57(3):418–20.

    Article  PubMed  CAS  Google Scholar 

  3. Patel V, Chisholm D, Parikh R, Charlson FJ, Degenhardt L, Dua T, et al. Global priorities for addressing the burden of mental, neurological, and substance use disorders; 2016.

    Google Scholar 

  4. Miranda A, Blanco-Prieto M, Sousa J, Pais A, Vitorino C. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm. 2017;531(1):372–88.

    Article  PubMed  CAS  Google Scholar 

  5. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanotechnol Biol Med. 2012;8(2):147–66.

    Article  CAS  Google Scholar 

  6. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, et al. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact. 2019;309:108720.

    Article  PubMed  CAS  Google Scholar 

  7. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  8. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23(1):1–29.

    Article  Google Scholar 

  9. Umut E. Surface modification of nanoparticles used in biomedical applications. Mod Surf Eng Treatments. 2013;20:185–208.

    Google Scholar 

  10. Au K, Meng Y, Suppiah S, Nater A, Jalali R, Zadeh G, et al. Current management of brain metastases: overview and teaching cases. In: New approaches to the management of primary and secondary CNS tumors. London: IntechOpen; 2017.

    Google Scholar 

  11. Alifieris C, Trafalis DT. Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther. 2015;152:63–82.

    Article  PubMed  CAS  Google Scholar 

  12. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  13. Orive G, Ali O, Anitua E, Pedraz J, Emerich DF. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim Biophys Acta. 2010;1806(1):96–107.

    PubMed  CAS  Google Scholar 

  14. Alguacil L, Pérez-García C. Histamine H3 receptor: a potential drug target for the treatment of central nervous system disorders. Curr Drug Targets CNS Neurol Disord. 2003;2(5):303–13.

    Article  PubMed  CAS  Google Scholar 

  15. Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract. 2008;17(2):89–101.

    Article  PubMed  CAS  Google Scholar 

  16. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700.

    Article  PubMed  CAS  Google Scholar 

  17. Dominguez A, Alvarez A, Suarez-Merino B, Goni-de-Cerio F. Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain. Rev Neurol. 2014;58(5):213–24.

    PubMed  Google Scholar 

  18. Halberstadt C, Emerich DF, Gonsalves K. Combining cell therapy and nanotechnology. Expert Opin Biol Ther. 2006;6(10):971–81.

    Article  PubMed  CAS  Google Scholar 

  19. Singh AK, Gothwal A, Rani S, Rana M, Sharma AK, Yadav AK, et al. Dendrimer donepezil conjugates for improved brain delivery and better in vivo pharmacokinetics. ACS Omega. 2019;4(3):4519–29.

    Article  CAS  Google Scholar 

  20. Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, et al. Berberine: a plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent Nerv Syst Agents Med Chem. 2019;19(3):154–70.

    Article  PubMed  CAS  Google Scholar 

  21. Jain KK. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener Dis. 2007;4(4):287–91.

    Article  PubMed  CAS  Google Scholar 

  22. Srikanth M, Kessler JA. Nanotechnology—novel therapeutics for CNS disorders. Nat Rev Neurol. 2012;8(6):307–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ai X-L, Liang R-C, Wang Y-C, Fang F. Stem cells combined with nano materials–novel therapeutics for central nervous system diseases. J Nanosci Nanotechnol. 2016;16(9):8895–908.

    Article  CAS  Google Scholar 

  24. Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Checm Rev. 2016;116(5):3436–86.

    Article  CAS  Google Scholar 

  25. Mirza AZ, Siddiqui FA. Nanomedicine and drug delivery: a mini review. Int Nano Lett. 2014;4(1):1–7.

    Article  Google Scholar 

  26. Palmer AM. The role of the blood–CNS barrier in CNS disorders and their treatment. Neurobiol Dis. 2010;37(1):3–12.

    Article  PubMed  CAS  Google Scholar 

  27. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol Med Rep. 2016;13(4):3391–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Soliman M, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22(9):1241–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev. 2022;182:114115. https://doi.org/10.1016/j.addr.2022.114115.

    Article  PubMed  CAS  Google Scholar 

  30. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL, et al. Limitations of current Parkinson’s disease therapy. Ann Neurol. 2003;53(S3):S3–S15.

    Article  PubMed  CAS  Google Scholar 

  31. Sari SP, Salma SNK, Rianti AJ. Monitoring of anticonvulsant drug side effects in outpatients with epilepsy. Int J Appl Pharm. 2018;10(Special Issue 1):303–6.

    Article  CAS  Google Scholar 

  32. Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin Psychiatry. 2001;3(1):22.

    PubMed  PubMed Central  Google Scholar 

  33. Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci. 2019;12:1019.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Voth B, Nagasawa DT, Pelargos PE, Chung LK, Ung N, Gopen Q, et al. Transferrin receptors and glioblastoma multiforme: current findings and potential for treatment. J Clin Neurosci. 2015;22(7):1071–6.

    Article  PubMed  CAS  Google Scholar 

  35. Galstyan A, Markman JL, Shatalova ES, Chiechi A, Korman AJ, Patil R, et al. Blood–brain barrier permeable nano immunoconjugates induce local immune responses for glioma therapy. Nat Commun. 2019;10(1):1–13.

    Article  Google Scholar 

  36. Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, et al. Imaging of integrin αvβ3 expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. Neuro Oncol. 2009;11(6):861–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, et al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS. 2020;17(1):1–17.

    Article  Google Scholar 

  38. Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL. Nanotherapeutic approaches for brain cancer management. Nanomed Nanotechnol Biol Med. 2014;10(5):e905–e19. https://doi.org/10.1016/j.nano.2013.10.001.

    Article  CAS  Google Scholar 

  39. Fung NH, Grima CA, Widodo SS, Kaye AH, Whitehead CA, Stylli SS, et al. Understanding and exploiting cell signalling convergence nodes and pathway cross-talk in malignant brain cancer. Cell Signal. 2019;57:2–9. https://doi.org/10.1016/j.cellsig.2019.01.011.

    Article  PubMed  CAS  Google Scholar 

  40. Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25(24):5789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B, Reddy DH. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology. 2021;29(6):1–13.

    Google Scholar 

  42. Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci. 2017;127(7):624–33.

    Article  PubMed  CAS  Google Scholar 

  43. Zheng Y, Fang W, Fan S, Liao W, Xiong Y, Liao S, et al. Neurotropin inhibits neuroinflammation via suppressing NF-κB and MAPKs signaling pathways in lipopolysaccharide-stimulated BV2 cells. J Pharmacol Sci. 2018;136(4):242–8.

    Article  PubMed  CAS  Google Scholar 

  44. Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7(1):1–7.

    Article  Google Scholar 

  45. Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A, et al. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol. 2014;31(5):152–67.

    Article  PubMed  CAS  Google Scholar 

  46. Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, et al. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer’s disease: from current to future challenges. J Nanobiotechnol. 2021;19(1):1–30.

    Article  CAS  Google Scholar 

  47. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. https://doi.org/10.1016/j.ejpb.2018.10.017.

    Article  PubMed  CAS  Google Scholar 

  48. Cano A, Espina M, Garcia ML. Recent advances on antitumor agents-loaded polymeric and lipid-based nanocarriers for the treatment of brain cancer. Curr Pharm Des. 2020;26(12):1316–30.

    Article  PubMed  CAS  Google Scholar 

  49. Campani V, Giarra S, De Rosa G. Lipid-based core-shell nanoparticles: evolution and potentialities in drug delivery. OpenNano. 2018;3:5–17.

    Article  Google Scholar 

  50. Kraft JC, Freeling JP, Wang Z, Ho RJJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103(1):29–52.

    Article  PubMed  CAS  Google Scholar 

  51. Cevik B, Solmaz V, Yigitturk G, Cavusoğlu T, Peker G, Erbas O, et al. Neuroprotective effects of erythropoietin on Alzheimer’s dementia model in rats. Adv Clin Exp Med. 2017;26(1):23–9.

    Article  PubMed  Google Scholar 

  52. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91. https://doi.org/10.1016/j.ijpharm.2017.06.052.

    Article  PubMed  CAS  Google Scholar 

  53. Liu S, Qiao S, Li L, Qi G, Lin Y, Qiao Z, et al. Surface charge-conversion polymeric nanoparticles for photodynamic treatment of urinary tract bacterial infections. Nanotechnology. 2015;26(49):495602. https://doi.org/10.1088/0957-4484/26/49/495602.

    Article  PubMed  CAS  Google Scholar 

  54. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.

    Article  PubMed  CAS  Google Scholar 

  55. Klębowski B, Depciuch J, Parlińska-Wojtan M, Baran J. Applications of noble metal-based nanoparticles in medicine. Int J Mol Sci. 2018;19(12):4031.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials (Basel). 2020;10(2):292.

    Article  PubMed  Google Scholar 

  57. Yang L, Yin T, Liu Y, Sun J, Zhou Y, Liu JJAB. Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer’s disease treatment. Acta Biomater. 2016;46:177–90.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang L, Zhao P, Yue C, Jin Z, Liu Q, Du X, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease. Biomaterials. 2019;197:393–404.

    Article  PubMed  CAS  Google Scholar 

  59. Nguyen TT, Dung Nguyen TT, Vo TK, Tran NM, Nguyen MK, Van Vo T, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143:112117. https://doi.org/10.1016/j.biopha.2021.112117.

    Article  PubMed  CAS  Google Scholar 

  60. Okuda M, Hijikuro I, Fujita Y, Teruya T, Kawakami H, Takahashi T, et al. Design and synthesis of curcumin derivatives as tau and amyloid β dual aggregation inhibitors. Bioorg Med Chem Lett. 2016;26(20):5024–8.

    Article  PubMed  CAS  Google Scholar 

  61. Gao C, Chu X, Gong W, Zheng J, Xie X, Wang Y, et al. Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease. J Nanobiotechnology. 2020;18(1):1–23.

    Article  Google Scholar 

  62. Mutlu NB, Değim Z, Yılmaz Ş, Eşsiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm. 2011;37(7):775–89.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang H, Zhao Y, Yu M, Zhao Z, Liu P, Cheng H, et al. Reassembly of native components with donepezil to execute dual-missions in Alzheimer’s disease therapy. J Control Release. 2019;296:14–28.

    Article  PubMed  CAS  Google Scholar 

  64. Raza C, Anjum R. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90.

    Article  PubMed  CAS  Google Scholar 

  65. Shankar J, Geetha K, Wilson B. Technology potential applications of nanomedicine for treating Parkinson’s disease. J Drug Deliv Sci Technol. 2021;66:102793.

    Article  CAS  Google Scholar 

  66. Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S. Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease. J Nanosci Nanotechnol. 2016;16(1):261–9.

    Article  PubMed  CAS  Google Scholar 

  67. Ghazy E, Rahdar A, Barani M, Kyzas GZ. Nanomaterials for Parkinson disease: recent progress. J Mol Struct. 2021;1231:129698.

    Article  CAS  Google Scholar 

  68. Rukmangathen R, Yallamalli IM, Yalavarthi PR. Biopharmaceutical potential of selegiline loaded chitosan nanoparticles in the management of Parkinson's disease. Curr Drug Discov Technol. 2019;16(4):417–25.

    Article  PubMed  CAS  Google Scholar 

  69. Bi C, Wang A, Chu Y, Liu S, Mu H, Liu W, et al. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment. Int J Nanomed. 2016;11:6547.

    Article  CAS  Google Scholar 

  70. Cacciatore I, Ciulla M, Fornasari E, Marinelli L, Di Stefano A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin Drug Deliv. 2016;13(8):1121–31.

    Article  PubMed  CAS  Google Scholar 

  71. Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci. 2016;7(12):1658–70.

    Article  PubMed  CAS  Google Scholar 

  72. Lundstrom KJD. Viral vectors in gene therapy. Diseases. 2018;6(2):42.

    PubMed  Google Scholar 

  73. Axelsen TM, Woldbye DP. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis. 2018;8(2):195–215.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mead BP, Kim N, Miller GW, Hodges D, Mastorakos P, Klibanov AL, et al. Novel focused ultrasound gene therapy approach noninvasively restores dopaminergic neuron function in a rat Parkinson’s disease model. Nano Lett. 2017;17(6):3533–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Yoosefian M, Rahmanifar E, Etminan N. Nanocarrier for levodopa Parkinson therapeutic drug; comprehensive benserazide analysis. Artif Cells Nanomed Biotechnol. 2018;46(sup1):434–46.

    Article  PubMed  CAS  Google Scholar 

  76. Fernandes C, Martins C, Fonseca A, Nunes R, Matos MJ, Silva R, et al. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase B inhibitor. ACS Appl Mater Interfaces. 2018;10(46):39557–69.

    Article  PubMed  CAS  Google Scholar 

  77. Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11(3):118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Guerrini R, Marini C, Mantegazza M. Genetic epilepsy syndromes without structural brain abnormalities: clinical features and experimental models. Neurotherapeutics. 2014;11(2):269–85.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A, et al. Biodegradable nanoparticles for the treatment of epilepsy: from current advances to future challenges. Epilepsia Open. 2022;7:S121–S32.

    Article  PubMed  Google Scholar 

  80. Singh AP, Saraf SK, Saraf SA. SLN approach for nose-to-brain delivery of alprazolam. Drug Deliv Transl Res. 2012;2(6):498–507. https://doi.org/10.1007/s13346-012-0110-2.

    Article  PubMed  CAS  Google Scholar 

  81. Scioli Montoto S, Sbaraglini ML, Talevi A, Couyoupetrou M, Di Ianni M, Pesce GO, et al. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2018;167:73–81. https://doi.org/10.1016/j.colsurfb.2018.03.052.

    Article  PubMed  CAS  Google Scholar 

  82. Ahmad N, Ahmad R, Alrasheed RA, Almatar HMA, Al-Ramadan AS, Amir M, et al. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics. 2020;12(3):203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Abbas H, Refai H, El Sayed N. Superparamagnetic iron oxide–loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J Pharm Sci. 2018;107(8):2119–27.

    Article  PubMed  CAS  Google Scholar 

  84. Huang R, Zhu Y, Lin L, Song S, Cheng L, Zhu R. Solid lipid nanoparticles enhanced the neuroprotective role of curcumin against epilepsy through activation of Bcl-2 family and P38 MAPK pathways. ACS Chem Neurosci. 2020;11(13):1985–95. https://doi.org/10.1021/acschemneuro.0c00242.

    Article  PubMed  CAS  Google Scholar 

  85. Bohrey S, Chourasiya V, Pandey A. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study. Nano Converg. 2016;3(1):3. https://doi.org/10.1186/s40580-016-0061-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Cano A, Ettcheto M, Espina M, Auladell C, Calpena AC, Folch J, et al. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: a new anti-seizure strategy for temporal lobe epilepsy. Nanomed Nanotechnol Biol Med. 2018;14(4):1073–85. https://doi.org/10.1016/j.nano.2018.01.019.

    Article  CAS  Google Scholar 

  87. Alam T, Pandit J, Vohora D, Aqil M, Ali A, Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv. 2015;12(2):181–94. https://doi.org/10.1517/17425247.2014.945416.

    Article  PubMed  CAS  Google Scholar 

  88. Musumeci T, Serapide MF, Pellitteri R, Dalpiaz A, Ferraro L, Dal Magro R, et al. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur J Pharm Biopharm. 2018;133:309–20. https://doi.org/10.1016/j.ejpb.2018.11.002.

    Article  PubMed  CAS  Google Scholar 

  89. Zhu D, Zhang W-g, Nie X-d, Ding S-w, Zhang D-t, Yang L. Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy. J Photochem Photobiol B Biol. 2020;205:111805. https://doi.org/10.1016/j.jphotobiol.2020.111805.

    Article  CAS  Google Scholar 

  90. Kaur S, Manhas P, Swami A, Bhandari R, Sharma KK, Jain R, et al. Bioengineered PLGA-chitosan nanoparticles for brain targeted intranasal delivery of antiepileptic TRH analogues. Chem Eng J. 2018;346:630–9. https://doi.org/10.1016/j.cej.2018.03.176.

    Article  CAS  Google Scholar 

  91. Eskandari S, Varshosaz J, Minaiyan M, Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomed. 2011;6:363–71.

    Google Scholar 

  92. Mendrek A, Mancini-Marïe AJN. Sex/gender differences in the brain and cognition in schizophrenia. Neurosci Biobehav Rev. 2016;67:57–78.

    Article  PubMed  Google Scholar 

  93. Fu Z, Iraji A, Turner JA, Sui J, Miller R, Pearlson GD, et al. Dynamic state with covarying brain activity-connectivity: on the pathophysiology of schizophrenia. Neuroimage. 2021;224:117385.

    Article  PubMed  Google Scholar 

  94. Siever LJ, Davis KL. The pathophysiology of schizophrenia disorders: perspectives from the spectrum. Am J Psychiatry. 2004;161(3):398–413.

    Article  PubMed  Google Scholar 

  95. Rodrigues-Amorim D, Rivera-Baltanás T, Bessa J, Sousa N, de Carmen V-CM, Rodríguez-Jamardo C, et al. The neurobiological hypothesis of neurotrophins in the pathophysiology of schizophrenia: a meta-analysis. J Psychiatr Res. 2018;106:43–53.

    Article  PubMed  Google Scholar 

  96. Ei Thu H, Hussain Z, Shuid AN. New insight in improving therapeutic efficacy of antipsychotic agents: an overview of improved in vitro and in vivo performance, efficacy upgradation and future prospects. Curr Drug Targets. 2018;19(8):865–76.

    Article  PubMed  Google Scholar 

  97. Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res Pharm Sci. 2018;13(4):288.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kumar S, Randhawa JK. Solid lipid nanoparticles of stearic acid for the drug delivery of paliperidone. RSc Adv. 2015;5(84):68743–50.

    Article  CAS  Google Scholar 

  99. Fang C-L, Al-Suwayeh SA, Fang J-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol. 2013;7(1):41–55.

    Article  PubMed  CAS  Google Scholar 

  100. Aldawsari HM, Hosny KM. Utilization of nanotechnology and thioctic acid against the lithium carbonate toxicity in the management of schizophrenia. Int J Pharmacol. 2019;15(5):616–22.

    Article  CAS  Google Scholar 

  101. Mandpe L, Kyadarkunte A, Pokharkar V. Assessment of novel iloperidone-and idebenone-loaded nanostructured lipid carriers: brain targeting efficiency and neuroprotective potential. Ther Deliv. 2013;4(11):1365–83.

    Article  PubMed  CAS  Google Scholar 

  102. Vitorino C, Almeida A, Sousa J, Lamarche I, Gobin P, Marchand S, et al. Passive and active strategies for transdermal delivery using co-encapsulating nanostructured lipid carriers: in vitro vs in vivo studies. Eur J Pharm Biopharm. 2014;86(2):133–44.

    Article  PubMed  CAS  Google Scholar 

  103. Vieira DB, Gamarra LF. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int J Nanomedicine. 2016;11:5381.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Shukr MH, Ahmed Farid OA. Amisulpride–CD-loaded liposomes: optimization and in vivo evaluation. AAPS PharmSciTech. 2018;19(6):2658–71.

    Article  PubMed  CAS  Google Scholar 

  105. Muthu MS, Sahu AK, Sonali AA, Kaklotar D, Rajesh CV, et al. Solubilized delivery of paliperidone palmitate by d-alpha-tocopheryl polyethylene glycol 1000 succinate micelles for improved short-term psychotic management. Drug Deliv. 2016;23(1):230–7.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Bonilla L, Esteruelas G, Ettcheto M, Espina M, García ML, Camins A. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. 2022;7:121–32

    Google Scholar 

  • Mittal KR, Pharasi N, Sarna B, Singh M, Rachana HS, Singh SK, Dua K, Jha SK, Dey A, Ojha S, Mani S, Jha NJ. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl Neurosci. 2022;13(1):527–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quader S, Kataoka K, Cabral H. Nanomedicine for brain cancer. Adv Drug Deliv Rev. 2022;182(114115)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zeb, Z. et al. (2023). Nanomedicines in the Treatment of Nervous System Disorders. In: Akhtar, B., Muhammad, F., Sharif, A. (eds) Nanomedicine in Treatment of Diseases. Learning Materials in Biosciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-7626-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7626-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7625-6

  • Online ISBN: 978-981-99-7626-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics