Skip to main content
  • 88 Accesses

Abstract

The interfacial assemblies are developed for the preparation of different mesoporous membrane devices. In the following context, diverse assembly strategies are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao AR, Huang J, Yang P (2008) Langmuir−blodgettry of nanocrystals and nanowires. Acc Chem Res 41:1662–1673

    Article  CAS  Google Scholar 

  2. Acharya S, Hill JP, Ariga K (2009) Soft langmuir–blodgett technique for hard nanomaterials. Adv Mater 21:2959–2981

    Article  CAS  Google Scholar 

  3. Bourikas K, Kordulis C, Lycourghiotis A (2007) The role of the liquid—solid interface in the preparation of supported catalysts. Catal Rev 48:363–444

    Article  Google Scholar 

  4. Cao W-T, Chen F-F, Zhu Y-J et al (2018) Binary strengthening and toughening of mxene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12:4583–4593

    Article  CAS  Google Scholar 

  5. Song H, Lin H, Antonietti M et al (2016) From filter paper to functional actuator by poly(ionic liquid)-modified graphene oxide. Adv Mater Interfaces 3:1500743

    Article  Google Scholar 

  6. Lin D, Liu Y, Liang Z et al (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 11:626–632

    Article  CAS  Google Scholar 

  7. Zhu X, Zhou Y, Hao J et al (2017) A charge-density-tunable three/two-dimensional polymer/graphene oxide heterogeneous nanoporous membrane for ion transport. ACS Nano 11:10816–10824

    Article  CAS  Google Scholar 

  8. Li Y, Lu Q, Liu H et al (2015) Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv Mater 27:6848–6854

    Article  CAS  Google Scholar 

  9. Liu H, Wang H, Zhang X (2015) Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv Mater 27:249–254

    Article  Google Scholar 

  10. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  11. Li D, Müller MB, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  12. Lv Z, Luo Y, Tang Y et al (2018) Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Adv Mater 30:1704531

    Article  Google Scholar 

  13. Cheng W (2017) Free-standing nanoparticle superlattice sheets: from design to applications. EPL (Eur Lett) 119:48004

    Article  Google Scholar 

  14. Meder F, Thomas SS, Bollhorst T et al (2018) Ordered surface structuring of spherical colloids with binary nanoparticle superlattices. Nano Lett 18:2511–2518

    Article  CAS  Google Scholar 

  15. Lin Q-Y, Mason JA, Li Z et al (2018) Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 359:669–672

    Article  CAS  Google Scholar 

  16. Cheng W, Campolongo MJ, Cha JJ et al (2009) Free-standing nanoparticle superlattice sheets controlled by DNA. Nat Mater 8:519–525

    Article  CAS  Google Scholar 

  17. Trotochaud L, Ranney JK, Williams KN et al (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261

    Article  CAS  Google Scholar 

  18. Xiao Y, Xu Z, Liu Y et al (2017) Sheet collapsing approach for rubber-like graphene papers. ACS Nano 11:8092–8102

    Article  CAS  Google Scholar 

  19. Zhao J, Zhou GM, Yan K et al (2017) Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nat Nanotechnol 12:993–999

    Article  CAS  Google Scholar 

  20. Yang H, Coombs N, Sokolov I et al (1996) Free-standing and oriented mesoporous silica films grown at the air–water interface. Nature 381:589–592

    Article  CAS  Google Scholar 

  21. Xue C, Tu B, Zhao D (2008) Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams. Adv Func Mater 18:3914–3921

    Article  CAS  Google Scholar 

  22. Brinker CJ (2004) Evaporation-induced self-assembly: functional nanostructures made easy. MRS Bull 29:631–640

    Article  CAS  Google Scholar 

  23. Zhu Y, Zhao Y, Ma J et al (2017) Mesoporous tungsten oxides with crystalline framework for highly sensitive and selective detection of foodborne pathogens. J Am Chem Soc 139:10365–10373

    Article  CAS  Google Scholar 

  24. Zhang R, Shen D, Xu M et al (2014) Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv Energy Mater 4:1301725

    Article  Google Scholar 

  25. Feng D, Luo W, Zhang J et al (2013) Multi-layered mesoporous tio2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. J Mater Chem A 1:1591–1599

    Article  CAS  Google Scholar 

  26. Kong B, Tang J, Zhang Y et al (2016) Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nat Chem 8:171–178

    Article  CAS  Google Scholar 

  27. Lee D, Rubner MF, Cohen RE (2006) All-nanoparticle thin-film coatings. Nano Lett 6:2305–2312

    Article  CAS  Google Scholar 

  28. Guo CX, Ng SR, Khoo SY et al (2012) Rgd-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944–6951

    Article  CAS  Google Scholar 

  29. Ma X, Hu W, Guo C et al (2014) DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells.

    Google Scholar 

  30. Fang Y, Lv Y, Tang J et al (2015) Growth of single-layered two-dimensional mesoporous polymer/carbon films by self-assembly of monomicelles at the interfaces of various substrates. Angew Chem Int Ed 54:8425–8429

    Article  CAS  Google Scholar 

  31. Fang Y, Lv Y, Che R et al (2013) Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. J Am Chem Soc 135:1524–1530

    Article  CAS  Google Scholar 

  32. Zhao M, Yuan W, Li CM (2017) Controlled self-assembly of ni foam supported poly(ethyleneimine)/reduced graphene oxide three-dimensional composite electrodes with remarkable synergistic effects for efficient oxygen evolution. J Mater Chem A 5:1201–1210

    Article  CAS  Google Scholar 

  33. Kotsuki K, Tanaka H, Obata S et al (2014) The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility. Appl Phys Lett 104:233306

    Article  Google Scholar 

  34. Cho J, Char K, Hong JD et al (2001) Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv Mater 13:1076–1078

    Article  CAS  Google Scholar 

  35. Si M, Feng D, Qiu L et al (2013) Free-standing highly ordered mesoporous carbon–silica composite thin films. J Mater Chem A 1:13490–13495

    Article  CAS  Google Scholar 

  36. Feng D, Lv Y, Wu Z et al (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15156

    Article  CAS  Google Scholar 

  37. Gong S, Schwalb W, Wang Y et al (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:3132

    Article  Google Scholar 

  38. Lee W, Lee J, Yun H et al (2017) High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv Mater 29:1702902

    Article  Google Scholar 

  39. Hashizume M, Kunitake T (2003) Preparation of self-supporting ultrathin films of titania by spin coating. Langmuir 19:10172–10178

    Article  CAS  Google Scholar 

  40. Vendamme R, Onoue S-Y, Nakao A et al (2006) Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat Mater 5:494–501

    Article  CAS  Google Scholar 

  41. Wang S, Xu J, Wang W et al (2018) Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555:83–88

    Article  CAS  Google Scholar 

  42. Zhao J, Li Y, Sheng J et al (2017) Environmentally friendly and breathable fluorinated polyurethane fibrous membranes exhibiting robust waterproof performance. ACS Appl Mater Interfaces 9:29302–29310

    Article  CAS  Google Scholar 

  43. Bagheri H, Aghakhani A (2011) Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Anal Methods 3:1284–1289

    Article  CAS  Google Scholar 

  44. Destaye AG, Lin C-K, Lee C-K (2013) Glutaraldehyde vapor cross-linked nanofibrous pva mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces 5:4745–4752

    Article  CAS  Google Scholar 

  45. Xu T, Yang H, Yang D et al (2017) Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces 9:21094–21104

    Article  CAS  Google Scholar 

  46. Mo J, Xu N, Xiao C et al (2014) Structure and property of electrospun fibrous mat based on polymethacrylate. J Mater Sci 49:4816–4824

    Article  CAS  Google Scholar 

  47. Freitag KM, Walke P, Nilges T et al (2018) Electrospun-sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J Power Sources 378:610–617

    Article  CAS  Google Scholar 

  48. Zhang J, Li Z, Lou XW (2017) A freestanding selenium disulfide cathode based on cobalt disulfide-decorated multichannel carbon fibers with enhanced lithium storage performance. Angew Chem Int Ed 56:14107–14112

    Article  CAS  Google Scholar 

  49. Koo JY, Hwang S, Ahn M et al (2016) Controlling the diameter of electrospun yttria-stabilized zirconia nanofibers. J Am Ceram Soc 99:3146–3150

    Article  CAS  Google Scholar 

  50. Li L, Peng S, Lee JKY et al (2017) Electrospun hollow nanofibers for advanced secondary batteries. Nano Energy 39:111–139

    Article  CAS  Google Scholar 

  51. Shi Q, Hou J, Zhao C et al (2016) A smart core–sheath nanofiber that captures and releases red blood cells from the blood. Nanoscale 8:2022–2029

    Article  CAS  Google Scholar 

  52. Wang H, Zhang C, Chen Z et al (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium–sulfur batteries. Carbon 81:782–787

    Article  CAS  Google Scholar 

  53. Li Z, Zhang JT, Chen YM et al (2015) Pie-like electrode design for high-energy density lithium–sulfur batteries. Nat Commun 6:8850

    Article  CAS  Google Scholar 

  54. Xu J, Liu C, Hsu P-C et al (2016) Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett 16:1270–1275

    Article  CAS  Google Scholar 

  55. Khalid B, Bai X, Wei H et al (2017) Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett 17:1140–1148

    Article  CAS  Google Scholar 

  56. Li Z, Zhang JT, Chen YM et al (2015) Pie-like electrode design for high-energy density lithium-sulfur batteries. Nat Commun 6:8850

    Article  CAS  Google Scholar 

  57. Liu Y, Zhang B, Xu Q et al (2018) Supercapacitors: development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing (adv. Funct. Mater. 21/2018). Adv Funct Mater 28:1870142

    Google Scholar 

  58. Ding Y, Cai M, Cui Z et al (2018) Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew Chem Int Ed 57:1053–1056

    Article  CAS  Google Scholar 

  59. Guo CX, Zheng XT, Lu ZS et al (2010) Biointerface by cell growth on layered graphene–artificial peroxidase–protein nanostructure for in situ quantitative molecular detection. Adv Mater 22:5164–5167

    Article  CAS  Google Scholar 

  60. Peng Y, Chen J, Song AY et al (2018) Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 1:105–112

    Article  Google Scholar 

  61. Zhang Z, Kong X-Y, Xiao K et al (2016) A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Adv Mater 28:144–150

    Article  CAS  Google Scholar 

  62. Bao B, Hao J, Bian X et al (2017) 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-modulated ionic rectification. Adv Mater 29:1702926

    Article  Google Scholar 

  63. Brown AS, Holt SA, Dam T et al (1997) Mesoporous silicate film growth at the air−water interface direct observation by X-ray reflectivity. Langmuir 13:6363–6365

    Article  CAS  Google Scholar 

  64. Edler KJ, Goldar A, Hughes AV et al (2001) Structural studies on surfactant-templated silica films grown at the air/water interface. Microporous Mesoporous Mater 44–45:661–670

    Article  Google Scholar 

  65. Brennan T, Hughes AV, Roser SJ et al (2002) Concentration-dependent formation mechanisms in mesophase silica−surfactant films. Langmuir 18:9838–9844

    Article  CAS  Google Scholar 

  66. Edler KJ, Brennan T, Roser SJ et al (2003) Formation of CTAB-templated mesophase silicate films from acidic solutions. Microporous Mesoporous Mater 62:165–175

    Article  CAS  Google Scholar 

  67. Edler KJ, Brennan T, Roser SJ (2006) Formation of mesostructured thin films at the air/water interface. Thin Solid Films 495:2−10

    Google Scholar 

  68. Park SS, Ha C-S (2004) High-quality free-standing and oriented periodic mesoporous organosilica films grown without a solid substrate at the air–water interface. Chem Commun 1986–1987

    Google Scholar 

  69. Park SS, Ha C-S (2005) Free-standing and oriented periodic mesoporous organosilica films with variable pore size at the air−water interface. Chem Mater 17:3519−3523

    Google Scholar 

  70. Yang B, Edler KJ (2009) Free-standing ordered mesoporous silica films synthesized with surfactant−polyelectrolyte complexes at the air/water interface. Chem Mater 21:1221−1231

    Google Scholar 

  71. Henderson MJ, King D, White JW (2004) Time-dependent changes in the formation of titania-based films at the air−water interface. Langmuir 20:2305−2308

    Google Scholar 

  72. Ji H, Liu X, Wang X et al (2011) Influence of counter-ions on the self-assembly of ZrO2 nanodisks. J Colloid Interface Sci 353:356–362

    Article  CAS  Google Scholar 

  73. Kan C, Liu X, Duan G et al (2007) Synthesis and characterization of the air–water interfacial TiO2/ZrO2 binary oxide film. J Colloid Interface Sci 310:643–647

    Article  CAS  Google Scholar 

  74. Edler KJ, Yang B (2013) Formation of mesostructured thin films at the air–liquid interface. Chem Soc Rev 42:3765−3776

    Google Scholar 

  75. Buesser B, Gröhn AJ (2012) Multiscale aspects of modeling gas-phase nanoparticle synthesis. Chem Eng Technol 35:1133−1143

    Google Scholar 

  76. Lu Y, Fan H, Stump A et al (1999) Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398:223–226

    Article  CAS  Google Scholar 

  77. Brinker CJ, Lu Y, Sellinger A et al (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  CAS  Google Scholar 

  78. Yan Y, Zhang F, Meng Y et al (2007) One-step synthesis of ordered mesoporous carbonaceous spheres by an aerosol-assisted self-assembly. Chem Commun 2867–2869

    Google Scholar 

  79. Tsung C-K, Fan J, Zheng N et al (2008) A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks. Angew Chem Int Ed 47:8682–8686

    Article  CAS  Google Scholar 

  80. Jiang X, Brinker CJ (2006) Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules. J Am Chem Soc 128:4512−4513

    Google Scholar 

  81. Julián-López B, Boissière C, Chanéac C et al (2007) Mesoporous maghemite–organosilica microspheres: a promising route towards multifunctional platforms for smart diagnosis and therapy. J Mater Chem 17:1563–1569

    Article  Google Scholar 

  82. Li L, Tsung C-K, Ming T et al (2008) Multifunctional mesostructured silica microspheres from an ultrasonic aerosol spray. Adv Funct Mater 18:2956–2962

    Article  CAS  Google Scholar 

  83. Bore MT, Marzke RF, Ward TL et al (2005) Aerosol synthesized mesoporous silica containing high loading of alumina and zirconia. J Mater Chem 15:5022–5028

    Article  CAS  Google Scholar 

  84. Jin Z, Wang F, Wang F et al (2013) Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv Funct Mater 23:2137–2144

    Article  CAS  Google Scholar 

  85. Wang W-N, Kim S-G, Wuled Lenggoro I et al (2007) Polymer-assisted annealing of spray-pyrolyzed powders for formation of luminescent particles with submicrometer and nanometer sizes. J Am Chem Soc 90:425–432

    CAS  Google Scholar 

  86. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22:1182−1195

    Google Scholar 

  87. Holmberg K (2003) Organic reactions in microemulsions. Curr Opin Colloid Interface Sci 8:187–196

    Article  CAS  Google Scholar 

  88. Schacht S, Huo Q, Voigt-Martin IG et al (1996) Oil-water interface templating of mesoporous macroscale structures. Science 273:768

    Article  CAS  Google Scholar 

  89. Faget L, Berman A, Regev O (2001) Synthesis of unsupported mesoporous silica interphasic films at the oil–water boundary. Thin Solid Films 386:6−13

    Google Scholar 

  90. Zhou G, Chen Y, Yang J et al (2007) From cylindrical-channel mesoporous silica to vesicle-like silica with well-defined multilamella shells and large inter-shell mesopores. J Mater Chem 17:2839–2844

    Article  CAS  Google Scholar 

  91. Schmidt-Winkel P, Glinka CJ, Stucky GD (2000) Microemulsion templates for mesoporous silica. Langmuir 16:356−361

    Google Scholar 

  92. Gu D, Bongard H, Deng Y et al (2010) An aqueous emulsion route to synthesize mesoporous carbon vesicles and their nanocomposites. Adv Mater 22:833–837

    Article  CAS  Google Scholar 

  93. Wei J, Wang H, Deng Y et al (2011) Solvent evaporation induced aggregating assembly approach to three-dimensional ordered mesoporous silica with ultralarge accessible mesopores. J Am Chem Soc 133:20369–20377

    Article  CAS  Google Scholar 

  94. Wei J, Yue Q, Sun Z et al (2012) Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew Chem Int Ed 51:6149–6153

    Article  CAS  Google Scholar 

  95. Yue Q, Wang M, Wei J et al (2012) A template carbonization strategy to synthesize ordered mesoporous silica microspheres with trapped sulfonated carbon nanoparticles for efficient catalysis. Angew Chem Int Ed 51:10368–10372

    Article  CAS  Google Scholar 

  96. Sanchez C, Boissière C, Grosso D et al (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737

    Article  CAS  Google Scholar 

  97. Tanaka S, Nishiyama N, Oku Y et al (2004) Nano-architectural silica thin films with two-dimensionally connected cagelike pores synthesized from vapor phase. J Am Chem Soc 126:4854–4858

    Article  CAS  Google Scholar 

  98. Li X, Song L, Vogt BD (2008) Tuning mechanical properties of mesoporous silicas using associating homopolymers/block copolymer blends as templates. J Phys Chem C 112:53−60

    Google Scholar 

  99. Tanaka S, Tate MP, Nishiyama N et al (2006) Structure of mesoporous silica thin films prepared by contacting PEO106−PPO70−PEO106 films with vaporized TEOS. Chem Mater 18:5461–5466

    Article  CAS  Google Scholar 

  100. Li X, Vogt BD (2008) Carbon dioxide mediated synthesis of mesoporous silica films: tuning properties using pressure. Chem Mater 20:3229−3238

    Google Scholar 

  101. Tanaka S, Maruo T, Nishiyama N et al (2005) Formation of ordered mesostructured silica by vapor infiltration of tetraethoxysilane into hexagonally arranged surfactant-catalyst nanocomposites. Chem Lett 34:1148–1149

    Article  CAS  Google Scholar 

  102. Nishiyama N, Kaihara J, Nishiyama Y et al (2007) Vapor-phase synthesis of mesoporous SiO2−P2O5 thin films. Langmuir 23:4746–4748

    Article  CAS  Google Scholar 

  103. Zhang Z, Wang L, Wang J et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423

    Article  CAS  Google Scholar 

  104. Lee KJ, Min SH, Jang J (2008) Vapor-phase synthesis of mesostructured silica nanofibers inside porous alumina membranes. Small 4:1945−1949

    Google Scholar 

  105. Yang Z, Xia Y, Mokaya R (2007) Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc 129:1673−1679

    Google Scholar 

  106. Kaneda M, Tsubakiyama T, Carlsson A et al (2002) Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography. J Phys Chem B 106:1256–1266

    Article  CAS  Google Scholar 

  107. Zhang WH, Liang C, Sun H et al (2002) Synthesis of ordered mesoporous carbons composed of nanotubes via catalytic chemical vapor deposition. Adv Mater 14:1776–1778

    Article  CAS  Google Scholar 

  108. Vix-Guterl C, Boulard S, Parmentier J et al (2002) Formation of ordered mesoporous carbon material from a silica template by a one-step chemical vapour infiltration process. Chem Lett 31:1062–1063

    Article  Google Scholar 

  109. Wang X, Bozhilov KN, Feng P (2006) Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chem Mater 18:6373−6381

    Google Scholar 

  110. Wu Z, Li W, Xia Y et al (2012) Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. J Mater Chem 22:8835–8845

    Article  CAS  Google Scholar 

  111. Xia YD, Mokaya R (2004) Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv Mater 16:886−891

    Google Scholar 

  112. Xia Y, Yang Z, Mokaya R (2006) Simultaneous control of morphology and porosity in nanoporous carbon: graphitic mesoporous carbon nanorods and nanotubules with tunable pore size. Chem Mater 18:140−148

    Google Scholar 

  113. Xia Y, Mokaya R (2008) Mesoporous MCM-48 aluminosilica oxynitrides: synthesis and characterization of bifunctional solid acid−base materials. J Phys Chem C 112:1455−1462

    Google Scholar 

  114. Su F, Zeng J, Bao X et al (2005) Preparation and characterization of highly ordered graphitic mesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem Mater 17:3960–3967

    Article  CAS  Google Scholar 

  115. Xia Y, Mokaya R (2005) Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater 17:1553−1560

    Google Scholar 

  116. Wang B, Ang TP, Borgna A (2012) A rapid hard template method for the synthesis of N-doped mesoporous carbon replicated from TUD-1. Microporous Mesoporous Mater 158:99−107

    Google Scholar 

  117. Xia Y, Mokaya R (2004) Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method. Adv Mater 16:1553−1558

    Google Scholar 

  118. Asefa T, Kruk M, Coombs N et al (2003) Novel route to periodic mesoporous aminosilicas, PMAs: ammonolysis of periodic mesoporous organosilicas. J Am Chem Soc 125:11662–11673

    Article  CAS  Google Scholar 

  119. Masuda H, Asoh H, Watanabe M et al (2001) Square and triangular nanohole array architectures in anodic alumina. Adv Mater 13:189–192

    Article  CAS  Google Scholar 

  120. Vinu A, Terrones M, Golberg D et al (2005) Synthesis of mesoporous BN and BCN exhibiting large surface areas via templating methods. Chem Mater 17:5887–5890

    Article  CAS  Google Scholar 

  121. Shi Y, Wan Y, Zhao D (2011) Ordered mesoporous non-oxide materials. Chem Soc Rev 40:3854−3878

    Google Scholar 

  122. Winkler H, Birkner A, Hagen V et al (1999) Quantum-confined gallium nitride in MCM-41. Adv Mater 11:1444–1448

    Article  CAS  Google Scholar 

  123. Fischer A, Antonietti M, Thomas A (2007) Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv Mater 19:264−267

    Google Scholar 

  124. Shi Y, Wan Y, Zhang R et al (2008) Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides. Adv Funct Mater 18:2436–2443

    Article  CAS  Google Scholar 

  125. Jiao F, Jumas J-C, Womes M et al (2006) Synthesis of ordered mesoporous Fe3O4 and γ-Fe2O3 with crystalline walls using post-template reduction/oxidation. J Am Chem Soc 128:12905–12909

    Article  CAS  Google Scholar 

  126. Jiao F, Harrison A, Hill AH et al (2007) Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Adv Mater 19:4063–4066

    Article  CAS  Google Scholar 

  127. Tüysüz H, Liu Y, Weidenthaler C et al (2008) Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol. J Am Chem Soc 130:14108–14110

    Article  Google Scholar 

  128. Hisatomi T, Otani M, Nakajima K et al (2010) Preparation of crystallized mesoporous Ta3N5 assisted by chemical vapor deposition of tetramethyl orthosilicate. Chem Mater 22:3854–3861

    Article  CAS  Google Scholar 

  129. Jin G-Q, Guo X-Y (2003) Synthesis and characterization of mesoporous silicon carbide. Microporous Mesoporous Mater 60:207−212

    Google Scholar 

  130. Parmentier J, Patarin J, Dentzer J et al (2002) Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase: a new route to produce high surface area SiC. Ceram Int 28:1–7

    Article  CAS  Google Scholar 

  131. Yang Z, Xia Y, Mokaya R (2004) High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chem Mater 16:3877−3884

    Google Scholar 

  132. Yao J, Wang H, Zhang X et al (2007) Role of pores in the carbothermal reduction of carbon−silica nanocomposites into Silicon carbide nanostructures. J Phys Chem C 111:636–641

    Article  CAS  Google Scholar 

  133. Shi Y, Zhang F, Hu Y-S et al (2010) Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. J Am Chem Soc 132:5552–5553

    Article  CAS  Google Scholar 

  134. Richman EK, Kang CB, Brezesinski T et al (2008) Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett 8:3075–3079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Shanghai Jiao Tong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kong, B., Xu, H., Xie, L., Zhou, S. (2024). Interfacial Assemblies for Film Devices. In: Functional Mesoporous Carbon-Based Film Devices for Energy Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-7498-6_5

Download citation

Publish with us

Policies and ethics