Skip to main content

Multi-lineage Differentiation from Hematopoietic Stem Cells

  • Chapter
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1442))

  • 552 Accesses

Abstract

The hematopoietic stem cells (HSCs) have the ability to differentiate and give rise to all mature blood cells. Commitment to differentiation progressively limits the self-renewal potential of the original HSCs by regulating the level of lineage-specific gene expression. In this review, we will summarize the current understanding of the molecular mechanisms underlying HSC differentiation toward erythroid, myeloid, and lymphocyte lineages. Moreover, we will decipher how the single-cell technologies advance the lineage-biased HSC subpopulations and their differentiation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404(6774):193–197

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Dominguez JR, Lodish HF (2017) Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130(18):1965–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS, Gromatzky AA et al (2014) Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 123(4):570–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP, Alvarez-Dominguez JR et al (2016) A Long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165(7):1672–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J et al (1989a) Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci U S A 86(6):2031–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR (1989b) The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci U S A 86(24):10128–10132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Béguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M et al (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23(5):677–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Biasco L, Pellin D, Scala S, Dionisio F, Basso-Ricci L, Leonardelli L et al (2016) In vivo tracking of human hematopoiesis reveals patterns of clonal dynamics during early and steady-state reconstitution phases. Cell Stem Cell 19(1):107–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D et al (2016) The heterogeneity of human CD127(+) innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol 17(4):451–460

    Article  PubMed  Google Scholar 

  • Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P et al (2012) DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell 47(4):633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonizzato A, Gaffo E, Te Kronnie G, Bortoluzzi S (2016) CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J 6(10):e483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bröske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41(11):1207–1215

    Article  PubMed  Google Scholar 

  • Brown RC, Pattison S, van Ree J, Coghill E, Perkins A, Jane SM et al (2002) Distinct domains of erythroid Kruppel-like factor modulate chromatin remodeling and transactivation at the endogenous beta-globin gene promoter. Mol Cell Biol 22(1):161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP et al (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523(7561):486–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Corces MR, Lareau CA, Wu B, Schep AN, Aryee MJ et al (2018) Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation. Cell 173(6):1535–48.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q et al (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15(4):507–522

    Article  CAS  PubMed  Google Scholar 

  • Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB et al (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–23.e19

    Article  CAS  PubMed  Google Scholar 

  • Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL et al (2013) Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 123(12):5009–5022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Gaudet JJ, Mangan JK, Chen MJ, De Obaldia ME, Oo Z et al (2011) Runx1 loss minimally impacts long-term hematopoietic stem cells. PLoS One 6(12):e28430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrelha J, Meng Y, Kettyle LM, Luis TC, Norfo R, Alcolea V et al (2018) Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554(7690):106–111

    Article  CAS  PubMed  Google Scholar 

  • Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al (2011) Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 44(1):23–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B et al (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15(3):350–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Yang CY, Tsan JT, Xia Y, Ragab AH, Peiper SC et al (1990) Coding sequences of the tal-1 gene are disrupted by chromosome translocation in human T cell leukemia. J Exp Med 172(5):1403–1408

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Ray-Gallet D, Zhang P, Hetherington CJ, Gonzalez DA, Zhang DE et al (1995) PU.1 (Spi-1) autoregulates its expression in myeloid cells. Oncogene 11(8):1549–1560

    CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  • Chen MT, Lin HS, Shen C, Ma YN, Wang F, Zhao HL et al (2015) PU.1-regulated long noncoding RNA lnc-MC controls human monocyte/macrophage differentiation through interaction with MicroRNA 199a-5p. Mol Cell Biol 35(18):3212–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR et al (2017) The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 24(2):212–224

    Article  CAS  PubMed  Google Scholar 

  • Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98(25):14541–14546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL et al (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48(10):1193–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crispino JD, Lodish MB, MacKay JP, Orkin SH (1999) Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell 3(2):219–228

    Article  CAS  PubMed  Google Scholar 

  • Cullen SM, Mayle A, Rossi L, Goodell MA (2014) Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol 107:39–75

    Article  CAS  PubMed  Google Scholar 

  • Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S et al (2018) A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in kit mutant mice. Blood 131(21):e1–e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakic A, Metcalf D, Di Rago L, Mifsud S, Wu L, Nutt SL (2005) PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J Exp Med 201(9):1487–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakic A, Wu L, Nutt SL (2007) Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? Trends Immunol 28(3):108–114

    Article  CAS  PubMed  Google Scholar 

  • de Bruijn M, Dzierzak E (2017) Runx transcription factors in the development and function of the definitive hematopoietic system. Blood 129(15):2061–2069

    Article  PubMed  Google Scholar 

  • Del Real MM, Rothenberg EV (2013) Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 140(6):1207–1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Delás MJ, Jackson BT, Kovacevic T, Vangelisti S, Munera Maravilla E, Wild SA et al (2019) lncRNA Spehd regulates hematopoietic stem and progenitor cells and is required for multilineage differentiation. Cell Rep 27(3):719–29.e6

    Article  PubMed  PubMed Central  Google Scholar 

  • Demers C, Chaturvedi CP, Ranish JA, Juban G, Lai P, Morle F et al (2007) Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol Cell 27(4):573–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharampuriya PR, Scapin G, Wong C, John Wagner K, Cillis JL, Shah DI (2017) Tracking the origin, development, and differentiation of hematopoietic stem cells. Curr Opin Cell Biol 49:108–115

    Article  CAS  PubMed  Google Scholar 

  • Dore LC, Amigo JD, Dos Santos CO, Zhang Z, Gai X, Tobias JW et al (2008) A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci U S A 105(9):3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, Dick JE (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11(7):585–593

    Article  CAS  PubMed  Google Scholar 

  • Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A, Giustacchini A et al (2016) Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat Immunol 17(6):666–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K et al (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1(2):218–229

    Article  CAS  PubMed  Google Scholar 

  • Farlik M, Halbritter F, Müller F, Choudry FA, Ebert P, Klughammer J et al (2016) DNA methylation dynamics of human hematopoietic stem cell differentiation. Cell Stem Cell 19(6):808–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira R, Ohneda K, Yamamoto M, Philipsen S (2005) GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 25(4):1215–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al (2007) An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129(3):617–631

    Article  CAS  PubMed  Google Scholar 

  • Gottgens B (2015) Regulatory network control of blood stem cells. Blood 125(17):2614–2620

    Article  CAS  PubMed  Google Scholar 

  • Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR et al (2019) Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol 37(12):1458–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green AR, Lints T, Visvader J, Harvey R, Begley CG (1992) SCL is coexpressed with GATA-1 in hemopoietic cells but is also expressed in developing brain. Oncogene 7(4):653–660

    CAS  PubMed  Google Scholar 

  • Grover A, Sanjuan-Pla A, Thongjuea S, Carrelha J, Giustacchini A, Gambardella A et al (2016) Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun 7:11075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106(2):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Tsukamoto S, Suzuki M, Yamamoto-Mukai H, Yamamoto M, Philipsen S et al (2008) Ablation of Gata1 in adult mice results in aplastic crisis, revealing its essential role in steady-state and stress erythropoiesis. Blood 111(8):4375–4385

    Article  CAS  PubMed  Google Scholar 

  • Haas S, Trumpp A, Milsom MD (2018) Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22(5):627–638

    Article  CAS  PubMed  Google Scholar 

  • Heuston EF, Keller CA, Lichtenberg J, Giardine B, Anderson SM, Hardison RC et al (2018) Establishment of regulatory elements during erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points. Epigenetics Chromatin 11(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, Martinez F et al (2012) Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11(5):649–662

    Article  CAS  PubMed  Google Scholar 

  • Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV et al (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543(7644):205–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Shilatifard A (2016) Epigenetics of hematopoiesis and hematological malignancies. Genes Dev 30(18):2021–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu W, Yuan B, Flygare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25(24):2573–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu G, Cui K, Fang D, Hirose S, Wang X, Wangsa D et al (2018) Transformation of accessible chromatin and 3D Nucleome underlies lineage commitment of early T cells. Immunity 48(2):227–42.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • Isoda T, Moore AJ, He Z, Chandra V, Aida M, Denholtz M et al (2017) Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter communication and T cell fate. Cell 171(1):103–19.e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki H, Somoza C, Shigematsu H, Duprez EA, Iwasaki-Arai J, Mizuno S et al (2005) Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood 106(5):1590–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izzo F, Lee SC, Poran A, Chaligne R, Gaiti F, Gross B et al (2020) DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat Genet 52(4):378–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343(6172):776–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467(7313):338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson TM, Lun ATL, Coughlan HD, Tan T, Smyth GK, Nutt SL et al (2018) Transcription-factor-mediated supervision of global genome architecture maintains B cell identity. Nat Immunol 19(11):1257–1264

    Article  CAS  PubMed  Google Scholar 

  • Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O et al (2008) Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451(7182):1125–1129

    Article  CAS  PubMed  Google Scholar 

  • Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R et al (2017) Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543(7647):714–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallianpur AR, Jordan JE, Brandt SJ (1994) The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83(5):1200–1208

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Igarashi K (2019) To be red or white: lineage commitment and maintenance of the hematopoietic system by the “inner myeloid”. Haematologica 104(10):1919–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumura KR, Bresnick EH (2017) The GATA factor revolution in hematology. Blood 129(15):2092–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushansky K (2006) Lineage-specific hematopoietic growth factors. N Engl J Med 354(19):2034–2045

    Article  CAS  PubMed  Google Scholar 

  • Kelsey G, Stegle O, Reik W (2017) Single-cell epigenomics: recording the past and predicting the future. Science 358(6359):69–75

    Article  CAS  PubMed  Google Scholar 

  • Kerenyi MA, Orkin SH (2010) Networking erythropoiesis. J Exp Med 207(12):2537–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kester L, van Oudenaarden A (2018) Single-cell transcriptomics meets lineage tracing. Cell Stem Cell 23(2):166–179

    Article  CAS  PubMed  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Bresnick EH (2007) Transcriptional control of erythropoiesis: emerging mechanisms and principles. Oncogene 26(47):6777–6794

    Article  CAS  PubMed  Google Scholar 

  • Kim HG, de Guzman CG, Swindle CS, Cotta CV, Gartland L, Scott EW et al (2004) The ETS family transcription factor PU.1 is necessary for the maintenance of fetal liver hematopoietic stem cells. Blood 104(13):3894–3900

    Article  CAS  PubMed  Google Scholar 

  • Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61(1):113–124

    Article  CAS  PubMed  Google Scholar 

  • Kloetgen A, Thandapani P, Tsirigos A, Aifantis I (2019) 3D chromosomal landscapes in hematopoiesis and immunity. Trends Immunol 40(9):809–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodandapani R, Pio F, Ni CZ, Piccialli G, Klemsz M, McKercher S et al (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380(6573):456–460

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ et al (2015) Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res 25(12):1860–1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahlil R, Lecuyer E, Herblot S, Hoang T (2004) SCL assembles a multifactorial complex that determines glycophorin A expression. Mol Cell Biol 24(4):1439–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E et al (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345(6199):943–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C et al (2013) The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol 14(7):756–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SC, Miller S, Hyland C, Kauppi M, Lebois M, Di Rago L et al (2015) Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood 126(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M et al (2018) Population dynamics of normal human blood inferred from somatic mutations. Nature 561(7724):473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liggett LA, Sankaran VG (2020) Unraveling hematopoiesis through the lens of genomics. Cell 182(6):1384–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C et al (2009) Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459(7245):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A et al (2015) Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350(6256):94–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR (2004) Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103(7):2522–2529

    Article  CAS  PubMed  Google Scholar 

  • Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, Li LH et al (2019) Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell 176(6):1325–39.e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Jeong M, Sun D, Park HJ, Rodriguez BA, Xia Z et al (2015) Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16(4):426–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DI, Orkin SH (1990) Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev 4(11):1886–1898

    Article  CAS  PubMed  Google Scholar 

  • Mikkola HK, Orkin SH (2006) The journey of developing hematopoietic stem cells. Development 133(19):3733–3744

    Article  CAS  PubMed  Google Scholar 

  • Moignard V, Macaulay IC, Swiers G, Buettner F, Schutte J, Calero-Nieto FJ et al (2013) Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis. Nat Cell Biol 15(4):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1(8):661–673

    Article  CAS  PubMed  Google Scholar 

  • Mouthon MA, Bernard O, Mitjavila MT, Romeo PH, Vainchenker W, Mathieu-Mahul D (1993) Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 81(3):647–655

    Article  CAS  PubMed  Google Scholar 

  • Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168(3):344–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100(4):1302–1309

    Article  PubMed  Google Scholar 

  • Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103(11):4111–4118

    Article  CAS  PubMed  Google Scholar 

  • Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E et al (2016) A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood 128(8):e20–e31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46(16):8168–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M et al (1999) Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126(11):2563–2575

    Article  CAS  PubMed  Google Scholar 

  • North TE, Stacy T, Matheny CJ, Speck NA, de Bruijn MF (2004) Runx1 is expressed in adult mouse hematopoietic stem cells and differentiating myeloid and lymphoid cells, but not in maturing erythroid cells. Stem Cells 22(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351(6269):aab2116

    Article  PubMed  Google Scholar 

  • Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al (2010) Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 6(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Orkin SH (2000) Diversification of haematopoietic stem cells to specific lineages. Nat Rev Genet 1(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272):242–245

    Article  CAS  PubMed  Google Scholar 

  • Panda AC, Gorospe M (2018) Detection and analysis of circular RNAs by RT-PCR. Bio Protoc 8(6):e2775

    Article  PubMed  PubMed Central  Google Scholar 

  • Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18(1):35–45

    Article  CAS  PubMed  Google Scholar 

  • Paralkar VR, Mishra T, Luan J, Yao Y, Kossenkov AV, Anderson SM et al (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123(12):1927–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163(7):1663–1677

    Article  CAS  PubMed  Google Scholar 

  • Pei W, Shang F, Wang X, Fanti AK, Greco A, Busch K et al (2020) Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by PolyloxExpress barcoding. Cell Stem Cell 27(3):383–95.e8

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D’Agati V et al (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349(6306):257–260

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Lin CS, D’Agati V, Simon MC, Orkin SH, Costantini F (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121(1):163–172

    Article  CAS  PubMed  Google Scholar 

  • Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9(1):171–181

    Article  CAS  PubMed  Google Scholar 

  • Pietras EM, Reynaud D, Kang YA, Carlin D, Calero-Nieto FJ, Leavitt AD et al (2015) Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions. Cell Stem Cell 17(1):35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH (1996) The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Porcher C, Chagraoui H, Kristiansen MS (2017) SCL/TAL1: a multifaceted regulator from blood development to disease. Blood 129(15):2051–2060

    Article  CAS  PubMed  Google Scholar 

  • Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A et al (2018) Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles 7(1):1424473

    Article  PubMed  PubMed Central  Google Scholar 

  • Pronier E, Almire C, Mokrani H, Vasanthakumar A, Simon A, da Costa Reis Monte Mor B et al (2011) Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors. Blood 118(9):2551–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Psaila B, Barkas N, Iskander D, Roy A, Anderson S, Ashley N et al (2016) Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol 17:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Pucella JN, Upadhaya S, Reizis B (2020) The source and dynamics of adult hematopoiesis: insights from lineage tracing. Annu Rev Cell Dev Biol 36:529–550

    Article  CAS  PubMed  Google Scholar 

  • Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP et al (1995) Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A 92(15):7075–7079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, Panero R, Patel SH, Jankovic M et al (2018) Clonal analysis of lineage fate in native haematopoiesis. Nature 553(7687):212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rönnerblad M, Andersson R, Olofsson T, Douagi I, Karimi M, Lehmann S et al (2014) Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood 123(17):e79–e89

    Article  PubMed  Google Scholar 

  • Rothenberg EV, Ungerback J, Champhekar A (2016) Forging T-lymphocyte identity: intersecting networks of transcriptional control. Adv Immunol 129:109–174

    Article  CAS  PubMed  Google Scholar 

  • Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A et al (2013) Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502(7470):232–236

    Article  CAS  PubMed  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265(5178):1573–1577

    Article  CAS  PubMed  Google Scholar 

  • Shema E, Bernstein BE, Buenrostro JD (2019) Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat Genet 51(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH (1995) Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373(6513):432–434

    Article  CAS  PubMed  Google Scholar 

  • Signer RA, Magee JA, Salic A, Morrison SJ (2014) Haematopoietic stem cells require a highly regulated protein synthesis rate. Nature 509(7498):49–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7(3):380–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31(8):318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5(3):516–535

    Article  CAS  PubMed  Google Scholar 

  • Tremblay M, Sanchez-Ferras O, Bouchard M (2018) GATA transcription factors in development and disease. Development 145(20):dev164384

    Article  PubMed  Google Scholar 

  • Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA et al (2015) Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol 16:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C et al (2013) The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 39(5):819–832

    Article  CAS  PubMed  Google Scholar 

  • Tusi BK, Wolock SL, Weinreb C, Hwang Y, Hidalgo D, Zilionis R et al (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555(7694):54–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhaya S, Sawai CM, Papalexi E, Rashidfarrokhi A, Jang G, Chattopadhyay P et al (2018) Kinetics of adult hematopoietic stem cell differentiation in vivo. J Exp Med 215(11):2815–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Wijnen AJ, Stein GS, Gergen JP, Groner Y, Hiebert SW, Ito Y et al (2004) Nomenclature for Runt-related (RUNX) proteins. Oncogene 23(24):4209–4210

    Article  PubMed  Google Scholar 

  • Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP et al (2017) Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 19(4):271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verger A, Duterque-Coquillaud M (2002) When Ets transcription factors meet their partners. BioEssays 24(4):362–370

    Article  CAS  PubMed  Google Scholar 

  • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J et al (2017) Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356(6335):eaah4573

    Article  PubMed  PubMed Central  Google Scholar 

  • Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T, Furukawa Y (2009) Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 284(44):30673–30683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16(11):3145–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L et al (2007) EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 109(12):5191–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XS, Zhang JW (2008) The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia. J Cell Mol Med 12(5a):1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S et al (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344(6181):310–313

    Article  CAS  PubMed  Google Scholar 

  • Watcham S, Kucinski I, Gottgens B (2019) New insights into hematopoietic differentiation landscapes from single-cell RNA sequencing. Blood 133(13):1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinreb C, Rodriguez-Fraticelli A, Camargo FD, Klein AM (2020) Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science 367(6479):eaaw3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MJ, Orkin SH (1995) Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci U S A 92(21):9623–9627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    Article  CAS  PubMed  Google Scholar 

  • Wilson NK, Foster SD, Wang X, Knezevic K, Schutte J, Kaimakis P et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7(4):532–544

    Article  CAS  PubMed  Google Scholar 

  • Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J et al (2010) Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J 29(15):2586–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf FA, Hamey FK, Plass M, Solana J, Dahlin JS, Göttgens B et al (2019) PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol 20(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C et al (2014) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14(1):68–80

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL et al (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Chen D, Long H, Zhu B (2020) The mechanisms of pathological extramedullary hematopoiesis in diseases. Cell Mol Life Sci 77(14):2723–2738

    Article  CAS  PubMed  Google Scholar 

  • Yu VWC, Yusuf RZ, Oki T, Wu J, Saez B, Wang X et al (2016) Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells. Cell 167(5):1310–22.e17

    Article  CAS  PubMed  Google Scholar 

  • Zeuner A, Eramo A, Testa U, Felli N, Pelosi E, Mariani G et al (2003) Control of erythroid cell production via caspase-mediated cleavage of transcription factor SCL/Tal-1. Cell Death Differ 10(8):905–913

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M et al (2009) A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood 113(11):2526–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Xu Z, Yang S, Sun G, Jia L, Zheng Z et al (2020) tagHi-C reveals 3D chromatin architecture dynamics during mouse hematopoiesis. Cell Rep 32(13):108206

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H et al (2013) A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res 41(7):4129–4143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M et al (2017) Comparative analysis of single-cell RNA sequencing methods. Mol Cell 65(4):631–43.e4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoshuang Wang or Jia Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Liu, S., Yu, J. (2023). Multi-lineage Differentiation from Hematopoietic Stem Cells. In: Zhao, M., Qian, P. (eds) Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, vol 1442. Springer, Singapore. https://doi.org/10.1007/978-981-99-7471-9_10

Download citation

Publish with us

Policies and ethics