Skip to main content

Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14252))

Included in the following conference series:

  • 687 Accesses

Abstract

A ring signature scheme allows a group member to generate a signature on behalf of the whole group, while the verifier can not tell who computed this signature. However, most predecessors do not guarantee security from the secret key leakage of signers. In 2002, Anderson proposed forward security mechanism to reduce the effect of such leakage. In this paper, we construct the first lattice-based ring signature scheme with forward security. Our scheme combines the binary tree and lattice basis delegation technique to realize a key evolution mechanism, where secret keys are ephemeral and updated with generating nodes in the binary tree. Thus, adversaries cannot forge the past signature even if the users’ present secret keys are revealed. Moreover, our scheme can offer unforgeability under the standard model. Furthermore, our proposed scheme is expected to realize post-quantum security due to the underlying Short Integer Solution (SIS) problem in lattice-based cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_10

    Chapter  Google Scholar 

  2. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1

    Chapter  Google Scholar 

  3. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS, vol. 3, pp. 75–86 (2009)

    Google Scholar 

  4. Anderson, R.: Two remarks on public key cryptology. Technical report, University of Cambridge, Computer Laboratory (2002)

    Google Scholar 

  5. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28

    Chapter  Google Scholar 

  6. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26

    Chapter  Google Scholar 

  8. Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 245–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_15

    Chapter  Google Scholar 

  9. Canard, S., Georgescu, A., Kaim, G., Roux-Langlois, A., Traoré, J.: Constant-size lattice-based group signature with forward security in the standard model. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS, vol. 12505, pp. 24–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4_2

    Chapter  MATH  Google Scholar 

  10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16

    Chapter  Google Scholar 

  11. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  12. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5

    Chapter  Google Scholar 

  13. Duc, D.N., Cheon, J.H., Kim, K.: A forward-secure blind signature scheme based on the strong RSA assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 11–21. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8_2

    Chapter  Google Scholar 

  14. Feng, H., Liu, J., Wu, Q., Li, Y.-N.: Traceable ring signatures with post-quantum security. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 442–468. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_19

    Chapter  Google Scholar 

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the ACM Symposium on Theory of Computing, pp. 197–206 (2008)

    Google Scholar 

  16. Gritti, C., Susilo, W., Plantard, T.: Logarithmic size ring signatures without random oracles. IET Inf. Secur. 10(1), 1–7 (2016)

    Article  Google Scholar 

  17. Hu, M., Liu, Z.: Lattice-based linkable ring signature in the standard model. IACR Cryptology ePrint Archieve, p. 101 (2022). https://eprint.iacr.org/2022/101

  18. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_20

    Chapter  Google Scholar 

  19. Lai, Y., Chang, C.: A simple forward secure blind signature scheme based on master keys and blind signatures. In: 19th International Conference on Advanced Information Networking and Applications (AINA), pp. 139–144 (2005)

    Google Scholar 

  20. Le, H.Q., et al.: Lattice blind signatures with forward security. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_1

    Chapter  Google Scholar 

  21. Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, ASIACCS, pp. 70–81 (2010)

    Google Scholar 

  22. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 44–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_3

    Chapter  Google Scholar 

  23. Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. Int. J. Netw. Secur. 6(2), 170–180 (2008)

    Google Scholar 

  24. Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 1–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_1

    Chapter  Google Scholar 

  25. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pairings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(11), 2007–2016 (2010)

    Google Scholar 

  28. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  29. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12

    Chapter  Google Scholar 

  30. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  31. Tang, F., Li, H.: Ring signatures of constant size without random oracles. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 93–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16745-9_6

    Chapter  Google Scholar 

  32. Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_2

    Chapter  Google Scholar 

  33. Yu, J., Hao, R., Kong, F., Cheng, X., Fan, J., Chen, Y.: Forward-secure identity-based signature: security notions and construction. Inf. Sci. 181(3), 648–660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, X., Wang, Y.: A lattice-based ring signature scheme secure against key exposure. Cryptology ePrint Archive, Paper 2022/1432 (2022). https://eprint.iacr.org/2022/1432

Download references

Acknowledgment

This work is supported by Fundamental Research Program of Shanxi Province (20210302124273, 20210302123130), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L038), National Natural Science Foundation of China (62072240), China; and JSPS KAKENHI Grant Number JP20K23322, JP21K11751, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuntao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, X., Wang, Y. (2023). Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics