Skip to main content

Blockchain Based Publicly Auditable Multi-party Computation with Cheater Detection

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Abstract

Secure Multi-Party Computation (MPC) allows parties to calculate a joint function using their respective secret inputs in a distributed environment without centralized server and has numerous applications across various fields. However, the presence of cheaters in the MPC protocol can lead to an unfair process. To address this issue, we propose a blockchain-based secure multi-party computation scheme in which the entire computing process is publicly auditable, and cheating parties can be detected. In our scheme, cheaters will be financially punished, while honest parties will be financially compensated, thereby deterring the cheating behaviors. The analysis demonstrates that our scheme ensures public auditability, preserves parties’ privacy, and maintains fairness throughout the MPC process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, A.C.: Protocols for secure computations. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164. IEEE (1982)

    Google Scholar 

  2. Micali, S., Goldreich, O., Wigderson, A.: How to play any mental game. In: Proceedings of the Nineteenth ACM Symposium on the Theory of Computing, STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  3. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boubiche, S., Boubiche, D.E., Bilami, A., et al.: Big data challenges and data aggregation strategies in wireless sensor networks. IEEE Access 6, 20558–20571 (2018)

    Article  Google Scholar 

  5. Zhao, X., Zhu, J., Liang, X., et al.: Lightweight and integrity-protecting oriented data aggregation scheme for wireless sensor networks. IET Inf. Secur. 11(2), 82–88 (2017)

    Article  Google Scholar 

  6. Damgård, I., Pastro, V., Smart, N., et al.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology – CRYPTO 2012. CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

  7. Ma, T., Liu, Y., Zhang, Z.: An energy-efficient reliable trust-based data aggregation protocol for wireless sensor networks. Int. J. Control Autom. 8(3), 305–318 (2015)

    Article  Google Scholar 

  8. Akila, V., Sheela, T.: Preserving data and key privacy in data aggregation for wireless sensor networks. In: 2017 2nd International Conference on Computing and Communications Technologies (ICCCT), pp. 282–287. IEEE (2017)

    Google Scholar 

  9. Wu, D., Yang, B., Wang, R.: Scalable privacy-preserving big data aggregation mechanism. Digit. Commun. Netw. 2(3), 122–129 (2016)

    Article  Google Scholar 

  10. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review, p. 21260 (2008)

    Google Scholar 

  11. Suzuki, S., Murai, J.: Blockchain as an auditable communication channel. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 516–522. IEEE (2017)

    Google Scholar 

  12. Shen, J., Chen, X., Wei, J., et al.: Blockchain-based accountable auditing with multi-ownership transfer. IEEE Trans. Cloud Comput. (01), 1–14 (2022)

    Google Scholar 

  13. Chen, J., Yao, S., Yuan, Q., et al.: Certchain: public and efficient certificate audit based on blockchain for TLS connections. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 2060–2068. IEEE (2018)

    Google Scholar 

  14. Tian, G., Hu, Y., Wei, J., et al.: Blockchain-based secure deduplication and shared auditing in decentralized storage. IEEE Trans. Dependable Secure Comput. 19(6), 3941–3954 (2021)

    Article  Google Scholar 

  15. Ahmad, A., Saad, M., Bassiouni, M., et al.: Towards blockchain-driven, secure and transparent audit logs. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pp. 443–448 (2018)

    Google Scholar 

  16. Faust, S., Hazay, C., Kretzler, D., et al.: Financially backed covert security. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography – PKC 2022. PKC 2022. LNCS, vol. 13178, pp. 99–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97131-1_4

  17. Buterin, V.: A next-generation smart contract and decentralized application platform. White Pap. 3(37), 2–1 (2014)

    Google Scholar 

  18. Yang, Y., Wu, J., Long, C., et al.: Blockchain-Enabled multi-party computation for privacy preserving and public audit in industrial IoT. IEEE Trans. Ind. Inf. 18(12), 9259–9267 (2022)

    Article  Google Scholar 

  19. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, pp. 73–85 (1989)

    Google Scholar 

  20. Seo, M.: Fair and secure multi-party computation with cheater detection. Cryptography 5(3), 19 (2021)

    Article  Google Scholar 

  21. Zhu, R., Ding, C., Huang, Y.: Efficient publicly verifiable 2PC over a blockchain with applications to financially-secure computations. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 633–650 (2019)

    Google Scholar 

  22. Andrychowicz, M., Dziembowski, S., Malinowski, D., et al.: Secure multiparty computations on bitcoin. Commun. ACM 59(4), 76–84 (2016)

    Article  Google Scholar 

  23. Kumaresan, R., Bentov, I.: How to use bitcoin to incentivize correct computations. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 30–41 (2014)

    Google Scholar 

  24. Gao, H., Ma, Z., Luo, S., et al.: BFR-MPC: a blockchain-based fair and robust multi-party computation scheme. IEEE Access 7, 110439–110450 (2019)

    Article  Google Scholar 

  25. Cordi, C., Frank, M.P., Gabert, K., et al.: Auditable, available and resilient private computation on the blockchain via MPC. In: Dolev, S., Katz, J., Meisels, A. (eds.) Cyber Security, Cryptology, and Machine Learning. CSCML 2022. LNCS, vol. 13301, pp. 281–299. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07689-3_22

  26. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (eds.) Advances in Cryptology — CRYPTO’91. CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Berlin, Heidelberg (1991). https://doi.org/10.1007/3-540-46766-1_9

  27. DamgĂĄrd, I., Ganesh, C., Khoshakhlagh, H., et al.: Balancing Privacy and Accountability in Blockchain Transactions, p. 1511. IACR Cryptol. ePrint Arch. (2020)

    Google Scholar 

  28. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 830–842 (2016)

    Google Scholar 

  29. Baum, C., Damgård, I., Orlandi, C.: Publicly auditable secure multi-party computation. In: Abdalla, M., De Prisco, R. (eds.) Security and Cryptography for Networks. SCN 2014. LNCS, vol. 8642, pp. 175–196. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_11

Download references

Acknowledgment

Yong Li’s work is partially supported by research grant from Linklogis. The authors wish to thank the anonymous reviewers for their insightful and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jin, S., Li, Y., Chen, X., Li, R. (2023). Blockchain Based Publicly Auditable Multi-party Computation with Cheater Detection. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics