Skip to main content

AFLOW: Developing Adversarial Examples Under Extremely Noise-Limited Settings

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Abstract

Extensive studies have demonstrated that deep neural networks (DNNs) are vulnerable to adversarial attacks. Despite the significant progress in the attack success rate that has been made recently, the adversarial noise generated by most of the existing attack methods is still too conspicuous to the human eyes and proved to be easily detected by defense mechanisms. Resulting that these malicious examples cannot contribute to exploring the vulnerabilities of existing DNNs sufficiently. Thus, to better reveal the defects of DNNs and further help enhance their robustness under noise-limited situations, a new inconspicuous adversarial examples generation method is exactly needed to be proposed. To bridge this gap, we propose a novel Normalize Flow-based end-to-end attack framework, called AFLOW, to synthesize imperceptible adversarial examples under strict constraints. Specifically, rather than the noise-adding manner, AFLOW directly perturbs the hidden representation of the corresponding image to craft the desired adversarial examples. Compared with existing methods, extensive experiments on three benchmark datasets show that the adversarial examples built by AFLOW exhibit superiority in imperceptibility, image quality and attack capability. Even on robust models, AFLOW can still achieve higher attack results than previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.caltech.edu/records/nyy15-4j048.

  2. 2.

    https://image-net.org/.

  3. 3.

    http://places2.csail.mit.edu/index.html.

  4. 4.

    https://github.com/RobustBench/robustbench.

  5. 5.

    https://github.com/Harry24k/adversarial-attacks-pytorch.

  6. 6.

    https://github.com/pokaxpoka/deep_Mahalanobis_detector.

  7. 7.

    https://github.com/EvZissel/Residual-Flow.

  8. 8.

    https://www.cnpython.com/pypi/iqa-pytorch.

  9. 9.

    https://github.com/andrewekhalel/sewar.

References

  1. Aydin, A., Sen, D., Karli, B.T., Hanoglu, O., Temizel, A.: Imperceptible adversarial examples by spatial chroma-shift. In: ADVM, pp. 8–14 (2021)

    Google Scholar 

  2. Carlini, N., Wagner, D.A.: Towards evaluating the robustness of neural networks. In: S &P (2017)

    Google Scholar 

  3. Chen, K., Guo, S., Zhang, T., Li, S., Liu, Y.: Temporal watermarks for deep reinforcement learning models. In: AAMAS, pp. 314–322 (2021)

    Google Scholar 

  4. Chen, K., et al.: BADPRE: task-agnostic backdoor attacks to pre-trained NLP foundation models. In: ICLR (2022)

    Google Scholar 

  5. Croce, F., et al.: Robustbench: a standardized adversarial robustness benchmark. In: NeurIPS (2021)

    Google Scholar 

  6. Croce, F., Hein, M.: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In: ICML, vol. 119, pp. 2206–2216 (2020)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  8. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell. 44(5), 2567–2581 (2022)

    Google Scholar 

  9. Dolatabadi, H.M., Erfani, S.M., Leckie, C.: AdvFlow: inconspicuous black-box adversarial attacks using normalizing flows. In: NeurIPS (2020)

    Google Scholar 

  10. Dong, Y., et al.: Boosting adversarial attacks with momentum. In: CVPR (2018)

    Google Scholar 

  11. Dong, Y., Pang, T., Su, H., Zhu, J.: Evading defenses to transferable adversarial examples by translation-invariant attacks. In: CVPR, pp. 4312–4321 (2019)

    Google Scholar 

  12. Duan, R., Ma, X., Wang, Y., Bailey, J., Qin, A.K., Yang, Y.: Adversarial camouflage: hiding physical-world attacks with natural styles. In: CVPR (2020)

    Google Scholar 

  13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. In: ICLR (2015)

    Google Scholar 

  14. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset (2007)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  16. He, S., et al.: Type-I generative adversarial attack. IEEE Trans. Dependable Secure Comput. 20(3), 2593–2606 (2023)

    Article  Google Scholar 

  17. Ilyas, A., Engstrom, L., Madry, A.: Prior convictions: black-box adversarial attacks with bandits and priors. In: ICLR (2019)

    Google Scholar 

  18. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23(6), 4909–4926 (2022)

    Article  Google Scholar 

  19. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical world. In: ICLR (2017)

    Google Scholar 

  20. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. In: NeurIPS, pp. 7167–7177 (2018)

    Google Scholar 

  21. Li, G., Ding, S., Luo, J., Liu, C.: Enhancing intrinsic adversarial robustness via feature pyramid decoder. In: CVPR, pp. 797–805 (2020)

    Google Scholar 

  22. Li, G., Xu, G., Qiu, H., He, R., Li, J., Zhang, T.: Improving adversarial robustness of 3D point cloud classification models. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13664, pp. 672–689. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19772-7_39

  23. Li, J.: Spatial quality evaluation of fusion of different resolution images. Int. Arch. Photogramm. Remote Sens. 33 (2000)

    Google Scholar 

  24. Ling, X., et al.: DEEPSEC: a uniform platform for security analysis of deep learning model. In: S &P, pp. 673–690 (2019)

    Google Scholar 

  25. Luo, C., Lin, Q., Xie, W., Wu, B., Xie, J., Shen, L.: Frequency-driven imperceptible adversarial attack on semantic similarity. In: CVPR, pp. 15294–15303 (2022)

    Google Scholar 

  26. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  27. Ma, X., et al.: Characterizing adversarial subspaces using local intrinsic dimensionality. In: ICLR (2018)

    Google Scholar 

  28. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: ICLR (2018)

    Google Scholar 

  29. Peng, W., et al.: EnsembleFool: a method to generate adversarial examples based on model fusion strategy. Comput. Secur. 107, 102317 (2021)

    Article  Google Scholar 

  30. Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., Madry, A.: Do adversarially robust imagenet models transfer better? In: NeurIPS (2020)

    Google Scholar 

  31. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. CoRR abs/1801.04381 (2018)

    Google Scholar 

  32. Schwinn, L., Raab, R., Nguyen, A., Zanca, D., Eskofier, B.M.: Exploring misclassifications of robust neural networks to enhance adversarial attacks. CoRR abs/2105.10304 (2021)

    Google Scholar 

  33. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. In: ICASSP, pp. 709–712 (2004)

    Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  35. Szegedy, C., et al.: Intriguing properties of neural networks. In: ICLR (2014)

    Google Scholar 

  36. Wang, B., Li, Y., Wu, X., Ma, Y., Song, Z., Wu, M.: Face forgery detection based on the improved siamese network. Secur. Commun. Netw. 2022, 5169873:1–5169873:13 (2022)

    Google Scholar 

  37. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  38. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  39. Wong, E., Rice, L., Kolter, J.Z.: Fast is better than free: revisiting adversarial training. In: ICLR (2020)

    Google Scholar 

  40. Wu, S., Wang, M., Li, Y., Zhang, D., Wu, Z.: Improving the applicability of knowledge-enhanced dialogue generation systems by using heterogeneous knowledge from multiple sources. In: WSDM, pp. 1149–1157 (2022)

    Google Scholar 

  41. Xiao, C., Zhu, J., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples. In: ICLR (2018)

    Google Scholar 

  42. Xie, C., et al.: Improving transferability of adversarial examples with input diversity. In: CVPR (2019)

    Google Scholar 

  43. Xu, H., et al.: Adversarial attacks and defenses in images, graphs and text: a review. Int. J. Autom. Comput. 17(2), 151–178 (2020)

    Article  Google Scholar 

  44. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

    Google Scholar 

  45. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  46. Zisselman, E., Tamar, A.: Deep residual flow for out of distribution detection. In: CVPR, pp. 13991–14000 (2020)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by Yunnan Province Education Department Foundation under Grant No.2022j0008, in part by the National Natural Science Foundation of China under Grant 62162067 and 62101480, Research and Application of Object Detection based on Artificial Intelligence, in part by the Yunnan Province expert workstations under Grant 202205AF150145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, R., Zhang, J., Li, H., Zhang, J., Wang, Y., Zhou, W. (2023). AFLOW: Developing Adversarial Examples Under Extremely Noise-Limited Settings. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics