Skip to main content

Pixel-Wise Reconstruction of Private Data in Split Federated Learning

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14252))

Included in the following conference series:

  • 665 Accesses

Abstract

This study investigates the security of split federated learning (SFL), a collaborative deep learning scheme that provides similar peak performance to federated learning while significantly reducing its computation time for multiple clients. We find that the basic security assumptions of SFL are flawed, in which the honest-but-curious server can easily conspire with a motivated client to break the security of SFL. More prominently, we show that the server can train an inversion model (DecodeNet) and perform an inference attack on clients’ private data. To support DecodeNet training, we implement a data-free training scheme to provide train data in the absence of the original training dataset. The experimental results demonstrate that our attack can reconstruct pixel-wise private images from clients on four different datasets and overcome the differential privacy protection mechanism in SFL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR (2020)

    Google Scholar 

  3. Chen, H., et al.: Data-free learning of student networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3514–3522 (2019)

    Google Scholar 

  4. Gupta, O., Raskar, R.: Distributed learning of deep neural network over multiple agents. J. Netw. Comput. Appl. 116, 1–8 (2018)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the GAN: information leakage from collaborative deep learning. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, pp. 603–618 (2017)

    Google Scholar 

  7. Kariyappa, S., Qureshi, M.K.: Gradient inversion attack: leaking private labels in two-party split learning. arXiv preprint arXiv:2112.01299 (2021)

  8. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  9. LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

  10. Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., Jana, S.: Certified robustness to adversarial examples with differential privacy. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 656–672. IEEE (2019)

    Google Scholar 

  11. Li, O., et al.: Label leakage and protection in two-party split learning. arXiv preprint arXiv:2102.08504 (2021)

  12. Liu, Y., et al.: Defending label inference and backdoor attacks in vertical federated learning. arXiv preprint arXiv:2112.05409 (2021)

  13. Liu, Y., Li, X.: Source identification from In-Vehicle CAN-FD signaling: what can we expect? In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 204–223. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86890-1_12

    Chapter  Google Scholar 

  14. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  15. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  16. Melis, L., Song, C., De Cristofaro, E., Shmatikov, V.: Exploiting unintended feature leakage in collaborative learning. In: IEEE Symposium on Security and Privacy, pp. 691–706. IEEE (2019)

    Google Scholar 

  17. Pasquini, D., Ateniese, G., Bernaschi, M.: Unleashing the tiger: inference attacks on split learning. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 2113–2129 (2021)

    Google Scholar 

  18. Paverd, A., Martin, A., Brown, I.: Modelling and automatically analysing privacy properties for honest-but-curious adversaries. Technical report (2014)

    Google Scholar 

  19. Thapa, C., Arachchige, P.C.M., Camtepe, S., Sun, L.: Splitfed: when federated learning meets split learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8485–8493 (2022)

    Google Scholar 

  20. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Article  Google Scholar 

  21. Vepakomma, P., Gupta, O., Swedish, T., Raskar, R.: Split learning for health: distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564 (2018)

  22. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond inferring class representatives: user-level privacy leakage from federated learning. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2512–2520. IEEE (2019)

    Google Scholar 

  23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  24. Zhao, B., Mopuri, K.R., Bilen, H.: iDLG: improved deep leakage from gradients. arXiv preprint arXiv:2001.02610 (2020)

  25. Zhou, C., Jing, H., He, X., Wang, L., Chen, K., Ma, D.: Disappeared face: a physical adversarial attack method on black-box face detection models. In: Gao, D., Li, Q., Guan, X., Liao, X. (eds.) ICICS 2021. LNCS, vol. 12918, pp. 119–135. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86890-1_7

    Chapter  Google Scholar 

  26. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, H., Li, X., He, W. (2023). Pixel-Wise Reconstruction of Private Data in Split Federated Learning. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics