Skip to main content

Outsourcing Verifiable Distributed Oblivious Polynomial Evaluation from Threshold Cryptography

  • Conference paper
  • First Online:
Information and Communications Security (ICICS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14252))

Included in the following conference series:

  • 647 Accesses

Abstract

Distributed oblivious polynomial evaluation (DOPE) is a variant of two-party computation where a sender party \(P_1\) has a polynomial f(x) of degree k and the receiver party \(P_2\) holds an input \(\alpha \). They conduct a secure computation with a number of t distributed cloud servers such that \(P_2\) obtains the correct output \(f(\alpha )\) while the privacy of the inputs is preserved. This system is the building block of many cryptographic models and machine learning algorithms.

We propose a lightweight DOPE scheme with two separate phases: setup and computation, which means that the setup phase can be executed at any time before the actual computation phase. The number of the servers (t) does not depend on the polynomial degree (k), and the main expensive computation is securely outsourced to the cloud servers using the idea of threshold cryptography. As a result, any normal user with low computational power devices (e.g., mobile, laptop, etc.) would be able to evaluate and verify the output over a large field while the security conditions are preserved. Our protocol maintains the security against a static active adversary corrupting a coalition of up to \(t-1\) servers and the opposed party. The main two parties commit to their inputs using non-interactive zero-knowledge proof techniques. The communication complexity is linear and bounded to O(t) field elements which means that, unlike the previous studies in this field, it does not depend on the polynomial degree k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 439–450 (2000)

    Google Scholar 

  2. Baudron, O., Fouque, P.A., Pointcheval, D., Stern, J., Poupard, G.: Practical multi-candidate election system. In: Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing, pp. 274–283 (2001)

    Google Scholar 

  3. Baum, C., Damgård, I., Toft, T., Zakarias, R.: Better preprocessing for secure multiparty computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_18

    Chapter  Google Scholar 

  4. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  5. Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_22

    Chapter  Google Scholar 

  6. Cianciullo, L., Ghodosi, H.: Unconditionally secure distributed oblivious polynomial evaluation. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 132–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_9

    Chapter  Google Scholar 

  7. de Cock, M., Dowsley, R., Nascimento, A.C., Newman, S.C.: Fast, privacy preserving linear regression over distributed datasets based on pre-distributed data. In: Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp. 3–14 (2015)

    Google Scholar 

  8. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  9. David, B., Dowsley, R., Katti, R., Nascimento, A.C.A.: Efficient unconditionally secure comparison and privacy preserving machine learning classification protocols. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 354–367. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_20

    Chapter  Google Scholar 

  10. Dowsley, R., van de Graaf, J., Marques, D., Nascimento, A.C.A.: A two-party protocol with trusted initializer for computing the inner product. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 337–350. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17955-6_25

    Chapter  Google Scholar 

  11. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45472-1_7

    Chapter  Google Scholar 

  12. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1

    Chapter  Google Scholar 

  14. Gajera, H., Giraud, M., Gérault, D., Das, M.L., Lafourcade, P.: Verifiable and private oblivious polynomial evaluation. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 49–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4_4

    Chapter  Google Scholar 

  15. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8

    Chapter  Google Scholar 

  16. Hamidi, A., Ghodosi, H.: Verifiable DOPE from somewhat homomorphic encryption, and the extension to DOT. In: Su, C., Sakurai, K., Liu, F. (eds.) SciSec 2022. LNCS, vol. 13580, pp. 105–120. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17551-0_7

    Chapter  Google Scholar 

  17. Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Winter, A.: Information theoretically secure oblivious polynomial evaluation: model, bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_6

    Chapter  MATH  Google Scholar 

  18. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic computations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_15

    Chapter  Google Scholar 

  19. Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private information retrieval from homomorphic encryption. Proc. Priv. Enhancing Technol. 2015(2), 222–243 (2015)

    Article  MATH  Google Scholar 

  20. Li, H.-D., Yang, X., Feng, D.-G., Li, B.: Distributed oblivious function evaluation and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004). https://doi.org/10.1007/BF02973458

    Article  MathSciNet  Google Scholar 

  21. Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 245–254 (1999)

    Google Scholar 

  22. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA, vol. 1, pp. 448–457 (2001)

    Google Scholar 

  23. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5), 1254–1281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Otsuka, A., Imai, H.: Unconditionally secure electronic voting. In: Chaum, D., et al. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 107–123. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3_6

    Chapter  Google Scholar 

  25. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirreza Hamidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamidi, A., Ghodosi, H. (2023). Outsourcing Verifiable Distributed Oblivious Polynomial Evaluation from Threshold Cryptography. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7356-9_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7355-2

  • Online ISBN: 978-981-99-7356-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics