Skip to main content

Graphene and Graphene-Based Nanocomposites: From Synthesis to Applications

  • Chapter
  • First Online:
Handbook of Materials Science, Volume 1

Part of the book series: Indian Institute of Metals Series ((IIMS))

  • 424 Accesses

Abstract

Graphene has been playing a vital role in the domain of nanoscience and nanotechnology as its physical and chemical properties can be easily tuned as per requirement. Graphene can be used for designing numerous types of nanomaterials including quantum dots, nanoparticles, and nanocomposites useful for various applications. Amongst these, nanocomposites form of graphene, are attracting great attention for a wide range of applications in optoelectronic, catalysis/photocatalysis, imaging, solar cells, sensing, and so on. In this book chapter, different preparation methods for graphene/graphene oxide (GO) like chemical vapor deposition (CVD), mechanical exfoliation, chemical oxidation and reduction methods, epitaxial growth using metals, etc. have been emphasized. Graphene and its derivatives can form nanocomposites with metallic nanoparticles, oxides/hydroxides of transition metals, sulfides/nitrides of transition metals, etc. and are discussed in the next section. The nanocomposites made of graphene, its derivatives, and rare-earth (RE3+)-doped lanthanides oxides (Ln2O3), binary/ternary lanthanide fluorides (LnF3, NaLnF4), alkaline earth metal-based binary fluorides (BaF2), have also been illustrated. Graphene has also shown the potential to form nanocomposites with RE3+-complexes and its lattice can be doped with RE3+ ions too. Finally, applications of the above-mentioned composites in sensing, photocatalysis, photonics, bio-photonics, and solar cells are presented.

H. L. Kewat and R. K. Sharma are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrosi, A., Chua, C.K., Bonanni, A., Pumera, M.: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150–7188 (2014)

    Article  Google Scholar 

  • Bacon, M., Bradley, S.J., Nann, T.: Graphene quantum dots. Part. Part. Syst. Charact. 31, 415–428 (2014)

    Article  Google Scholar 

  • Bai, G., Wang, J., Yang, Z., Wang, H., Wang, Z., Yang, S.: Self-assembly of ceria/graphene oxide composite films with ultra-long antiwear lifetime under a high applied load. Carbon 94, 197–206 (2014)

    Google Scholar 

  • Balaji, M., Mayakrishnan, A., Nithya, P., Muthulakshmi, V., Jegatheeswaran, S., Selvam, S., Sundrarajan, M.: Ornamental morphology of ionic liquid functionalized ternary doped N, P, F and N, B, F-reduced graphene oxide and their prevention activities of bacterial biofilm-associated with orthopedic implantation. Mater. Sci. Eng. C 98, 1122–1132 (2019)

    Article  Google Scholar 

  • Bera, R., Kundu, S., Patra, A.: 2D hybrid nanostructure of reduced graphene oxide-CdS nanosheet for enhanced photocatalysis. ACS Appl. Mater. Interfaces 24, 13251–13259 (2015)

    Article  Google Scholar 

  • Bramhaiah, K., John, N.S.: Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface. RSC Adv. 3, 7765–7773 (2013)

    Article  Google Scholar 

  • Bramhaiah, K., Bhattacharyya, S.: Challenges and future prospects of graphene-based hybrids for solar fuel generation: moving towards next generation photocatalysts. Mater. Adv. 3, 142–172 (2022)

    Article  Google Scholar 

  • Bramhaiah, K., Singh, V.N., Kavitha, C., John, N.S.: Films of reduced graphene oxide with metal oxide nanoparticles formed at a liquid/liquid interface as reusable surface enhanced Raman scattering substrates for dyes. J. Nanosci. Nanotechnol. 17, 2711–2719 (2017)

    Article  Google Scholar 

  • Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. A 249–259 (1859)

    Google Scholar 

  • Cao, Y., Yang, T., Feng, J., Wu, P.: Coating graphene oxide sheets with luminescent rare-earth complexes. Carbon 49, 1502–1507 (2011)

    Article  Google Scholar 

  • Chen, C., Xie, Q., Yang, D., Xiao, H., Fu, Y., Tan, Y., Yao, S.: Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013a)

    Article  Google Scholar 

  • Chen, Y., Ge, H., Wei, L., Li, Z., Yuan, R., Liu, P., Fu, X.: Reduction degree of reduced graphene oxide (RGO) dependence of photocatalytic hydrogen evolution performance over RGO/ZnIn2S4 nanocomposites. Catal. Sci. Technol. 3, 1712–1717 (2013b)

    Article  Google Scholar 

  • Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    Article  Google Scholar 

  • Clark, L.C., Lyons, C.: Electrode system for continuous monitoring in cardiovascular surgery. N. Y. Acad. Sci. 102, 29–45 (1962)

    Article  Google Scholar 

  • Cong, X., Cheng, C., Liao, Y., Ye, Y., Dong, C., Sun, H., Ji, X., Zhang, W., Fang, P., Miao, L., Jiang, J.: Intrinsic charge storage capability of transition metal dichalcogenides as pseudocapacitor electrode. Phys. Chem. C 119, 20864–20870 (2015)

    Article  Google Scholar 

  • Deng, D., Chen, N., Xiao, X., Du, S., Wang, Y.: Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics 23, 121–129 (2017)

    Article  Google Scholar 

  • Dong, H., Dai, W., Ju, H., Lu, H., Wang, S., Xu, L., Zhou, S.-F., Zhang, Y., Zhang, X.: Multifunctional PLA-PEG-grafted graphene quantum dots for intracellular microRNA imaging and combined specific-gene-targeting agents delivery for improved therapeutics. ACS Appl. Mater. Interfaces 7, 11015–11023 (2015)

    Article  Google Scholar 

  • Dong, Y., Li, Y., Shi, H., Qin, J., Zheng, S., He, R., Wu, Z.-S.: Graphene encapsulated iron nitrides confined in 3D carbon nanosheet frameworks for high-rate lithium-ion batteries. Carbon 159, 213–220 (2020)

    Article  Google Scholar 

  • El-Maghrabi, N., El-Borady, O.M., Hosny, M., Fawzy, M.: Catalytic and medical potential of a phyto-functionalized reduced graphene oxide–gold nanocomposite using willow-leaved knotgrass. ACS Omega 6, 34954−34966 (2021)

    Google Scholar 

  • Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)

    Article  Google Scholar 

  • Fan, Z., Li, Y., Li, X., Fan, L., Zhou, S., Fang, D., Yang, S.: Surrounding media sensitive photoluminescence of boron-doped graphene quantum dots for highly fluorescent dyed crystals, chemical sensing and bioimaging. Carbon 70, 149–165 (2014)

    Article  Google Scholar 

  • Ferrer-Ugalde, A., Sandoval, S., Pulagam, K.R., Muñoz-Juan, A., Laromaine, A., Llop, J., Tobias, G., Nunez, R.: Radiolabeled cobaltabis (dicarbollide) anion–graphene oxide nanocomposites for in vivo bioimaging and boron delivery. ACS Appl. Nano Mater. 4, 1613−1625 (2021)

    Google Scholar 

  • Geim, A.K., Kim, P.: Carbon wonderland. Sci. Am. 298, 90–97 (2008)

    Article  Google Scholar 

  • Gu, H., Tang, H., Xiong, P., Zhou, Z.: Biomarkers-based biosensing and bioimaging with graphene for cancer diagnosis. Nanomaterials 9, 130 (2019)

    Article  Google Scholar 

  • Gupta, S., Subramanian, V.R.: Encapsulating Bi2Ti2O7 (BTO) with reduced graphene oxide (RGO): an effective strategy to enhance photocatalytic and photo electrocatalytic activity of BTO. ACS Appl. Mater. Interfaces 6, 18597–18608 (2014)

    Article  Google Scholar 

  • Gupta, B.K., Thanikaivelan, P., Narayanan, T.N., Song, L., Gao, W., Hayashi, T., Reddy, A.L.M., Saha, A., Shanker, V., Endo, M., Martí, A.A., Ajayan, P.M.: Optical bifunctionality of europium-complexed luminescent graphene nanosheets. Nano Lett. 11, 5227–5233 (2011)

    Article  Google Scholar 

  • Hang, P., Cong, J., Li, G., Zuo, L., Kan, C., Li, B., Xie, J., Yao, Y., Wang, Y., Chen, H., Yang, D., Yu, X.: Technoeconomically competitive four-terminal perovskite/graphene-silicon tandem solar cells with over 20% efficiency. J. Energy Chem. 63, 477–483 (2021)

    Article  Google Scholar 

  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., Mcgovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008)

    Google Scholar 

  • Hofmann, U.V., König, E.: Untersuchungen uber graphitoxyd. Z. Anorg. Allg. Chem. 234, 311 (1937)

    Google Scholar 

  • Hollins, R.C.: Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999)

    Article  Google Scholar 

  • Hu, C.-C., Chang, K.-H., Lin, M.-C., Wu, Y.-T.: Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next-generation supercapacitors. Nano Lett. 6, 2690–2695 (2006)

    Article  Google Scholar 

  • Huang, J., Tang, X., Li, Z., Liu, L.: Metal-organic frameworks derived cobalt sulfide/reduced graphene oxide composites with fast reaction kinetic and excellent structural stability for sodium storage. J. Colloid Interface Sci. 532, 407–415 (2018)

    Article  Google Scholar 

  • Hummers, B.W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1139 (1958)

    Article  Google Scholar 

  • Jafari, H., Ganjali, M.R., Dezfuli, A.S., Kohan, E.: A platform for electrochemical sensing of biomolecules based on Europia/reduced graphene oxide nanocomposite. J. Mater. Sci. Mater. Electron. 29, 20639–20649 (2018)

    Article  Google Scholar 

  • Jariwala, D., Srivastava, A., Ajayan, P.M.: Graphene synthesis and band gap opening. J. Nanosci. Nanotechnol. 11, 6621–6641 (2011)

    Article  Google Scholar 

  • Ju, B., Wang, X., Wu, C., Yang, X., Shu, H., Bai, Y., Wen, W., Yi, X.: Electrochemical performance of the graphene/Y2O3/LiMn2O4 hybrid as cathode for lithium-ion battery. J. Alloys Compd. 584, 454–460 (2014)

    Article  Google Scholar 

  • Kalluru, P., Vankayala, R., Chiang, C.-S., Hwang, K.C.: Nano-graphene oxide-mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials 95, 1–10 (2016)

    Google Scholar 

  • Kim, J., Park, S.-J., Min, D.-H.: Emerging approaches for graphene oxide biosensor. Anal. Chem. 89, 232–248 (2017)

    Article  Google Scholar 

  • Krishnan, S.K., Singh, E., Singh, P., Meyyappan, M., Nalwa, H.S.: A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9, 8778 (2019)

    Article  Google Scholar 

  • Lee, J.S., You, K.H., Park, C.B.: Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012)

    Article  Google Scholar 

  • Lertthanaphol, N., Pienutsa, N., Chusri, K., Sornsuchat, T., Chanthara, P., Seeharaj, P., Lohsoontorn, P.K., Srinives, S.: One-step hydrothermal synthesis of precious metal-doped titanium dioxide−graphene oxide composites for photocatalytic conversion of CO2 to ethanol. ACS Omega 6, 35769–35779 (2021)

    Article  Google Scholar 

  • Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  • Li, Q., Guo, B., Yu, J., Ran, J., Zhang, B., Yan, H., Gong, J.R.: Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133, 10878–10884 (2011)

    Article  Google Scholar 

  • Li, Y., Wang, G., Pan, K., Jiang, B., Tian, C., Zhou, W., Fu, H.: NaYF4:Er3+/Yb3+ graphene composites: preparation, upconversion luminescence, and application in dye-sensitized solar cells. J. Mater. Chem. 22, 20381–20386 (2012)

    Article  Google Scholar 

  • Li, Z., Johnson, O., Huang, J., Feng, T., Yang, C., Liu, Z., Chen, W.: Enhancing the photothermal conversion efficiency of graphene oxide by doping with NaYF4: Yb, Er upconverting luminescent nanocomposites. Mater. Res. Bull. 106, 365–370 (2018)

    Article  Google Scholar 

  • Lingamdinne, L.P., Koduru, J.R., Chang, Y.-Y., Kang, S.-H., Yang, J.-K.: Facile synthesis of flowered mesoporous graphene oxide-lanthanum fluoride nanocomposite for adsorptive removal of arsenic. J. Mol. Liq. 279, 32–42 (2019)

    Article  Google Scholar 

  • Liu, J.-W., Zhang, Y., Chen, X.-W., Wang, J.-H.: Graphene oxide–rare earth metal–organic framework composites for the selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 6, 10196–10204 (2014)

    Article  Google Scholar 

  • Liu, J., Ma, Q., Huang, Z., Liu, G., Zhang, H.: Recent progress in graphene-based noble-metal nanocomposites for electrocatalytic applications. Adv. Mater. 31, 1800696 (2018)

    Article  Google Scholar 

  • Liu, Z., Wang, Q., Huang, X., Qian, X.: Surface functionalization of graphene oxide with hyperbranched polyamide-amine and microcrystalline cellulose for efficient adsorption of heavy metal ions. ACS Omega 7, 10944–10954 (2022)

    Article  Google Scholar 

  • Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G., Coleman, J.N.: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Am. Chem. Soc. 131, 3611–3620 (2009)

    Article  Google Scholar 

  • Lu, X., Liu, T., Zhai, T., Wang, G., Yu, M., Xie, S., Ling, Y., Liang, C., Tong, Y., Li, Y.: Improving the cycling stability of metal–nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014)

    Article  Google Scholar 

  • Luo, J., Jiang, S., Zhang, H., Jiang, J., Liu, X.: A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal. Chim. Acta 709, 47–53 (2012)

    Article  Google Scholar 

  • Marković ZM, Labudova M, Danko M, Matijasevic D, Micusík M, Nadazdy V, Kovacova M, Kleinova A, Spitalsky Z, Pavlovic V, Milivojevic DD, Medic M, Markovic BMT, 2020 Marković, Z.M., Labudova, M., Danko, M., Matijasevic, D., Micusík, M., Nadazdy, V., Kovacova, M., Kleinova, A., Spitalsky, Z., Pavlovic, V., Milivojevic, D.D., Medic, M., Markovic, B.M.T.: Highly efficient antioxidant F- and Cl-doped carbon quantum dots for bioimaging. ACS Sustain. Chem. Eng. 8(43), 16327–16338 (2020)

    Google Scholar 

  • Mo, Z., Zhao, Y., Guo, R., Liu, P., Xie, T.: Preparation and characterization of graphene/europium oxide composites. Mater. Manuf. Processes 27, 494–498 (2012)

    Article  Google Scholar 

  • Mondal, A., Prabhakaran, A., Gupta, S., Subramanian, V.R.: Boosting photocatalytic activity using reduced graphene oxide (RGO)/semiconductor nanocomposites: issues and future scope. ACS Omega 6, 8734–8743 (2021)

    Article  Google Scholar 

  • Muchuweni, E., Martincigh, B.S., Nyamori, V.O.: Recent advances in graphene-based materials for dye-sensitized solar cell fabrication. RSC Adv. 10, 44453–44469 (2020)

    Article  Google Scholar 

  • Mukherji, A., Seger, B., Lu, G.Q.M., Wang, L.: Nitrogen doped Sr2Ta2O7 coupled with graphene sheets as photocatalysts for increased photocatalytic hydrogen production. ACS Nano 5, 3483–3492 (2011)

    Google Scholar 

  • Nandi, D.K., Sen, U.K., Choudhury, D., Mitra, S., Sarkar, S.K.: Atomic layer deposited molybdenum nitride thin film: a promising anode material for Li-ion batteries. ACS Appl. Mater. Interfaces 6, 6606–6615 (2014)

    Article  Google Scholar 

  • Nguyen, B.V.T., Ha, L.Q., Nguyen, T.D.L., Ly, P.H., Nguyen, D.M., Hoang, D.-Q.: Nanocellulose and graphene oxide aerogels for adsorption and removal methylene blue from an aqueous environment. ACS Omega 7, 1003–1013 (2022)

    Article  Google Scholar 

  • Nia, X., Zhanga, J., Honga, L., Yanga, C., Li, Y.: Reduced graphene oxide @ceria nanocomposite-coated polymer microspheres as a highly active photocatalyst. Colloids Surf. A 567, 161–170 (2019)

    Article  Google Scholar 

  • Obraztsov, A.N., Obraztsova, E.A., Tyurnina, A.V., Zolotukhin, A.A.: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021 (2007)

    Article  Google Scholar 

  • Pashaei-Fakhri, S., Peighambardoust, S.J., Foroutan, R., Arsalani, N., Ramavandi, B.: Crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere 270, 129419 (2021)

    Google Scholar 

  • Pradhan, G.K., Padhi, D., Parida, K.: Fabrication of Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl. Mater. Interfaces 5, 9101–9110 (2013)

    Article  Google Scholar 

  • Rafighi, P., Tavahodi, M., Haghighi, B.: Fabrication of a third-generation glucose biosensor using graphene polyethyleneimine-gold nanoparticles hybrid. Sens. Actuators B Chem. 03, 1–31 (2016)

    Google Scholar 

  • Robinson, J.T., Tabakman, S.M., Liang, Y., Wang, H., Casalongue, H.S., Vinh, D., Dai, H.: Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011)

    Article  Google Scholar 

  • Sharma, R.K., Chouryal, Y.N., Chaudhari, S., Saravanakumar, J., Dey, S.R., Ghosh, P.: Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids. ACS Appl. Mater. Interfaces 9, 11651–11661 (2017)

    Article  Google Scholar 

  • Sharma, R.K., Ghora, M., Chouryal, Y.N., Ganguly, T., Acharjee, D., Mondal, D.J., Konar, S., Nigam, S., Ghosh, P.: Multifunctional lanthanide-doped binary fluorides and graphene oxide nanocomposites via a task-specific ionic liquid. ACS Omega 7, 16906–16916 (2022)

    Article  Google Scholar 

  • Shi, W., Zhu, J., Sim, D.H., Tay, Y.Y., Lu, Z., Zhang, X., Sharma, Y., Srinivasan, M., Zhang, H., Hoon, H.H., Yan, Q.: Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J. Mater. Chem. 21, 3422–3427 (2011)

    Article  Google Scholar 

  • Soren, S., Mohaptra, B.D., Mishra, S., Debnath, A.K., Aswal, D.K., Varadwaj, K.S.K., Parhi, P.: Nano ceria supported nitrogen doped graphene as highly stable and methanol tolerant electrocatalyst for oxygen reduction. RSC Adv. 6, 77100–77104 (2016)

    Article  Google Scholar 

  • Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Lleinhammes, A., Jia, Y., Wu, Y.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  • Staudenmaier, B.L.: Verfahren zur darstellung der graphitslure. Dtsch. Chem. Ges. 31, 1481 (1898)

    Article  Google Scholar 

  • Sun, J., Song, L., Fan, Y., Tian, L., Luan, S., Niu, S., Ren, L., Ming, W., Zhao, J.: Synergistic photodynamic and photothermal antibacterial nanocomposite membrane triggered by single NIR light source. ACS Appl. Mater. Interfaces 11, 26581–26589 (2019)

    Article  Google Scholar 

  • Tsujimura, S., Murata, K., Akatsuka, W.: Exceptionally high glucose current on a hierarchically structured porous carbon electrode with “wired” flavin adenine dinucleotide-dependent glucose dehydrogenase. J. Am. Chem. Soc. 136, 14432–14437 (2014)

    Article  Google Scholar 

  • Viculis, L.M., Mack, J.J., Kaner, R.B.: A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)

    Article  Google Scholar 

  • Wang, W.-S., Wang, D.-H., Qu, W.-G., Lu, L.-Q., Xu, A.-W.: Large ultrathin anatase TiO2 nanosheets with exposed 001 facets on graphene for enhanced visible light photocatalytic activity. J. Phys. Chem. C 116, 19893–19901 (2012)

    Article  Google Scholar 

  • Wang, W., Huang, W., Ni, Y., Lu, C., Tan, L., Xu, Z.: Graphene supported NaYF4:Yb3+, Tm3+ and N doped P25 nanocomposite as an advanced NIR and sunlight driven upconversion photocatalyst. Appl. Surf. Sci. 282, 832–837 (2013a)

    Article  Google Scholar 

  • Wang, S.-J., Hu, J.-B., Wang, Y.-Y., Luo, F.: Coating graphene oxide sheets with luminescent rare-earth complexes. J. Mater. Sci. 48, 805–811 (2013b)

    Article  Google Scholar 

  • Wang, Y., Chen, J.-T., Yan, X.-P.: Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals. Anal. Chem. 85, 2529–2535 (2013c)

    Article  Google Scholar 

  • Wang, W., Li, Y., Kang, Z., Wang, F., Yu, J.C.: A NIR-driven photocatalyst based on α-NaYF4:Yb, Tm@TiO2 core-shell structure supported on reduced graphene oxide. Appl. Catal. B: Environ. 182, 184–192 (2015)

    Article  Google Scholar 

  • Wang, F.H., Bae, K., Huang, Z.W., Xue, J.M.: Two-photon graphene quantum dots modified Gd2O3 nanocomposites for dual-mode MRI contrast agent and cell labelling agent. Nanoscale 10, 5642–5649 (2018)

    Article  Google Scholar 

  • Wei, W., Cui, X., Chen, W., Ivey, D.G.: Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 40, 1697–1721 (2011)

    Article  Google Scholar 

  • Wei, W., He, T., Teng, X., Wu, S., Ma, L., Zhang, H., Ma, J., Yang, Y., Chen, H., Han, Y., Sun, H., Huang, L.: Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. Small 8, 2271–2276 (2012)

    Article  Google Scholar 

  • Williams, G., Seger, B., Kamat, P.V.: TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  Google Scholar 

  • Wooten, M., Karra, S., Zhang, M., Gorski, W.: On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal. Chem. 86, 752–757 (2014)

    Article  Google Scholar 

  • Xia, X., Tu, J., Mai, Y., Chen, R., Wang, X., Gu, C., Zhao, X.: Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem. Eur. J. 17, 10898–10905 (2011)

    Article  Google Scholar 

  • Xiang, Q., Yu, J., Jaroniec, M.: Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets. Nanoscale 3, 3670–3678 (2011)

    Article  Google Scholar 

  • Xiong, P., Xu, S., Yang, T., Jing, K.: Novel silanized graphene oxide/TiO2 multifunctional nanocomposite photocatalysts: simultaneous removal of Cd2+ and photodegradation of phenols under visible light irradiation. ACS Omega 6, 28813–28827 (2021)

    Article  Google Scholar 

  • Xu, Y.-F., Yang, M.-Z., Chen, B.-X., Wang, X.-D., Chen, H.-Y., Kuang, D.-B., Su, C.-Y.: CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 139, 5660−5663 (2017)

    Google Scholar 

  • Xuan, X., Kim, J.Y., Hui, X., Das, P.S., Yoon, H.S., Park, J.-Y.: A highly stretchable and conductive 3D porous graphene metal nanocomposite-based electrochemical-physiological hybrid biosensor. Biosens. Bioelectron. 120, 160–167 (2018)

    Article  Google Scholar 

  • Yang, X., Li, Z., Ju, E., Ren, J., Qu, X.: Reduced graphene oxide functionalized with a luminescent rare-earth complex for the tracking and photothermal killing of drug-resistant bacteria. Chem. Eur. J. 20, 394–398 (2014)

    Article  Google Scholar 

  • Yazdi, R.G., Iakimov, T., Yakimova, R.: Epitaxial graphene on SiC: a review of growth and characterization. Crystals 6, 53 (2016)

    Article  Google Scholar 

  • Yi, M., Shen, Z.: A review on mechanical exfoliation for the scalable production of graphene. Mater. Chem. A 3, 11700–11715 (2015)

    Article  Google Scholar 

  • Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J.: TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2 graphene truly different from other TiO2 carbon composite materials. ACS Nano 4, 7303–7314 (2010)

    Article  Google Scholar 

  • Zhang, X.-L., Zhao, X., Liu, Z.-B., Shi, S., Zhou, W.-Y., Tian, J.-G., Xu, Y.-F., Chen, Y.-S.: Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4 hybrid material. J. Opt. 13, 075202 (2011)

    Article  Google Scholar 

  • Zhao, M., Gao, Y., Sun, J., Gao, F.: Mediatorless glucose biosensor and direct electron transfer-type glucose/air biofuel cell enabled with carbon nanodots. Anal. Chem. 87, 2615–2622 (2015)

    Article  Google Scholar 

  • Zheng, L., Zheng, H., Huo, D., Wu, F., Shao, L., Zheng, P., Jiang, Y., Zheng, X., Qiu, X., Liu, Y., Zhang, Y.: N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity. Sci. Rep. 8, 9248 (2018)

    Article  Google Scholar 

  • Zhou, W., Liu, J., Chen, T., Tan, S., Jia, X., Luo, Z., Cong, C., Yang, H., Li, C.M., Yu, T.: Fabrication of Co3O4-reduced graphene oxide scrolls for high-performance supercapacitor electrodes. Phys. Chem. Chem. Phys. 13, 14462–14465 (2011)

    Article  Google Scholar 

  • Zhou, Q., Liu, L., Guo, G., Yan, Z., Tan, J., Huang, Z., Chen, X., Wang, X.: Sandwich-like cobalt sulfide-graphene composite—an anode material of excellent electrochemical performance for sodium ion battery. RSC Adv. 5, 71644–71651 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

PG acknowledges Science and Engineering Research Board (SERB), Govt of India [Grant No. CRG/2018/003751], Board of Research in Nuclear Sciences (BRNS) [Grant No. 58/14/22/2022-BRNS/37094] for funding. HLK is grateful to Dr. H. S. Gour University for providing a graduate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Pushpal Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kewat, H.L., Sharma, R.K., Sidiqi, U., Ghosh, P. (2024). Graphene and Graphene-Based Nanocomposites: From Synthesis to Applications. In: Ningthoujam, R.S., Tyagi, A.K. (eds) Handbook of Materials Science, Volume 1. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-99-7145-9_18

Download citation

Publish with us

Policies and ethics