Skip to main content

Rational Construction of Molecular Electron-Conducting Nanowires Encapsulated in Proton-Conducting Matrix in a Charge-Transfer Salt

  • Chapter
  • First Online:
Design of Crystal Structures Using Hydrogen Bonds on Molecular-Layered Cocrystals and Proton–Electron Mixed Conductor

Part of the book series: Springer Theses ((Springer Theses))

  • 33 Accesses

Abstract

Insulated molecular wires have gained significant attention owing to their potential contribution to the fields of nanoelectronics and low-dimensional chemistry/physics. This study demonstrates, for the first time, the rational construction of molecular electron-conducting wires encapsulated in a proton-conducting matrix via the use of a molecular charge-transfer salt, which may pave the way for iono-electronics. As expected from the molecular structure of the newly designed complex anion (a propeller-shaped structure with hydrogen-bonding sites at four edges), a three-dimensional hydrogen-bonded framework was constructed within the crystal, which contained one-dimensional arrays of the electron donor, tetrathiafulvalene (TTF). Single-crystal crystallographic and spectroscopic studies clarified that non-stoichiometric deprotonation of anions and partial oxidation of TTF molecules occurred, whereas the anion was electronically inert. The moderate conductivities of electrons and protons were confirmed by DC- and AC-conductivity measurements. In addition, electronic isolation of the TTF wires was confirmed using magnetic susceptibility data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frampton MJ, Anderson HL (2007) Angew Chem Int Ed 46:1028–1064

    Article  CAS  Google Scholar 

  2. Cardin DJ (2002) Adv Mater 14:553–563

    Article  CAS  Google Scholar 

  3. Yamamoto HM (2014) CrystEngComm 16

    Google Scholar 

  4. Li C, Numata M, Bae AH, Sakurai K, Shinkai S (2005) J Am Chem Soc 127:4548–4549

    Article  CAS  PubMed  Google Scholar 

  5. Taylor PN, O’Connell MJ, McNeill LA, Hall MJ, Aplin RT, Anderson HL (2000) Angew Chem Int Ed 39:3456–3460

    Article  CAS  Google Scholar 

  6. Cacialli F, Wilson JS, Michels JJ, Daniel C, Silva C, Friend RH, Severin N, Samori P, Rabe JP, O’Connell MJ, Taylor PN, Anderson HL (2002) Nat Mater 1:160–164

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen TQ, Wu J, Doan VV, Schwartz BJ, Tolbert SH (2000) Science 288:652–656

    Article  CAS  PubMed  Google Scholar 

  8. MacLean MW, Kitao T, Suga T, Mizuno M, Seki S, Uemura T, Kitagawa S (2016) Angew Chem Int Ed 55:708–713

    Article  CAS  Google Scholar 

  9. Yamamoto HM, Kosaka Y, Maeda R, Yamaura J, Nakao A, Nakamura T, Kato R (2008) ACS Nano 2:143–155

    Article  CAS  PubMed  Google Scholar 

  10. Lehn J-M (1990) Angew Chem Int Ed 29:1304–1319

    Article  Google Scholar 

  11. van Nostrum CF, Picken SJ, Schouten A-J, Nolte RJM (2002) J Am Chem Soc 117:9957–9965

    Article  Google Scholar 

  12. Chen J, Sun Y, Zhao W, Liu J, Fang J, Xu T, Chen D (2021) J Mater Chem C 9:3871–3881

    Article  CAS  Google Scholar 

  13. Akutagawa T, Hasegawa T, Nakamura T, Inabe T, Saito G (2002) Chem Eur J 8:4402–4411

    Article  CAS  PubMed  Google Scholar 

  14. Akutsu-Sato A, Akutsu H, Turner SS, Day P, Probert MR, Howard JAK, Akutagawa T, Takeda S, Nakamura T, Mori T (2005) Angew Chem Int Ed 117:296–299

    Article  Google Scholar 

  15. Kobayashi Y, Yoshioka M, Saigo K, Hashizume D, Ogura T (2009) J Am Chem Soc 131:9995–10002

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi Y, Fujii T, Terasaki I, Kino H, Jin Y, Hibino T, Kobayashi T, Nishibori E, Sawa H, Yoshikawa H, Terauchi T, Sumi S (2013) J Mater Chem A 1:5089–5096

    Article  CAS  Google Scholar 

  17. Ishiguro T, Yamaji K, Saito G (1998) In: Organic superconductors, 2nd ed. Springer, Heidelberg

    Google Scholar 

  18. Steed JW, Turner DR, Wallace K (eds) (2007) In: Core concepts in supramolecular chemistry and nanochemistry, Wiley, West Sussex

    Google Scholar 

  19. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) Chem Rev 116:2478–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  21. Anderson GK, Lin M (1990) Inorg Synth 28:60–63

    Google Scholar 

  22. Wudl F (2002) J Am Chem Soc 97:1962–1963

    Article  Google Scholar 

  23. Matsuzaki S, Moriyama T, Toyoda K (1980) Solid State Commun 34:857–859

    Article  CAS  Google Scholar 

  24. Miles MG, Wilson JD (2002) Inorg Chem 14:2357–2360

    Article  Google Scholar 

  25. Grisley JD (2003) J Org Chem 26:2544–2546

    Article  Google Scholar 

  26. Sheldrick GM (2014) Acta Cryst A70:C1437. SHELXT Version 2014/5

    Google Scholar 

  27. Sheldrick GM (2008) Acta Cryst A64:112–122. SHELXL Version 2014/3

    Google Scholar 

  28. Rigaku (2018) Crystal structure. Version 4.3. Rigaku Corporation, Tokyo, Japan

    Google Scholar 

  29. Mori T, Kobayashi A, Sasaki Y, Kobayashi H, Saito G, Inokuchi H (1984) Bull Chem Soc Jpn 57:627–633

    Article  CAS  Google Scholar 

  30. Johnston DC, Troyer M, Miyahara S, Lidsky D, Ueda K, Azuma M, Hiroi Z, Takano M, Isobe M, Ueda Y, Korotin MA, Anisimov VI, Mahajan AV, Miller LL (2000). arXiv:con-mat/0001147

  31. X-ray structural analysis of a twinned crystal demonstrated that although each crystallite is properly aligned in the a-axis direction (direction of the TTF column), it is misaligned in the b- and c-axis directions (refer to the main text for the crystal structure and crystallographic axes)

    Google Scholar 

  32. Grabowski SJ (ed) (2006) In: Hydrogen bonding—new insights. Springer, Dordrecht

    Google Scholar 

  33. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  34. Torrance JB, Scott BA, Welber B, Kaufman FB, Seiden PE (1979) Phys Rev B 19:730–741

    Article  CAS  Google Scholar 

  35. Mitsumi M, Ueda H, Furukawa K, Ozawa Y, Toriumi K, Kurmoo M (2008) J Am Chem Soc 130:14102–14104

    Article  CAS  PubMed  Google Scholar 

  36. Wudl F, Smith GM, Hufnagel EJ (1970) J Chem Soc Chem Commun 1453–1454

    Google Scholar 

  37. Tanaka H, Kuroda S-I, Yamashita T, Mitsumi M, Toriumi K (2003) J Phys Soc Jpn 72:2169–2172

    Article  CAS  Google Scholar 

  38. Bellitto C, Flamini A, Piovesana O, Zanazzi PF (1980) Inorg Chem 19:3632–3636

    Article  CAS  Google Scholar 

  39. Bellitto C, Dessy G, Fares V, Flamini A (1981) J Chem Soc Chem Commun 409–411

    Google Scholar 

  40. Bellitto C, Bonamico M, Dessy G, Fares V, Flamini A (1986) J Chem Soc Dalton Trans 595–601

    Google Scholar 

  41. Clemente DA, Marzotto A (1996) J Mater Chem 6:941–946

    Article  CAS  Google Scholar 

  42. Sugano T, Yakushi K, Kuroda H (1978) Bull Chem Soc Jpn 51:1041–1046

    Article  CAS  Google Scholar 

  43. Saito G, Yoshida Y (2007) Bull Chem Soc Jpn 80:1–137

    Article  CAS  Google Scholar 

  44. Kimura Y, Yoshida Y, Tanaka Y, Maesato M, Komatsu T, Kitagawa H (2022) Inorg Chem 61:4453–4458

    Article  CAS  PubMed  Google Scholar 

  45. Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, Liu X, Zhao D, Zhang H, Yao Y, Brill JW, Engquist I, Fahlman M, Wagberg L, Crispin X, Berggren M (2016) Adv Sci 3:1500305

    Article  Google Scholar 

  46. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) Nat Mater 10:682–686

    Article  CAS  PubMed  Google Scholar 

  47. Wada H, Amiel O, Sato A (1995) J Alloys Compd 219:55–58

    Article  CAS  Google Scholar 

  48. Koebel M, Ibl N, Freit AM (1974) Electrochim Acta 19:287–295

    Article  CAS  Google Scholar 

  49. Inaguma Y, Liquan C, Itoh M, Nakamura T, Uchida T, Ikuta H, Wakihara M (1993) Solid State Commun 86:689–693

    Article  CAS  Google Scholar 

  50. Clearfield A, Smith GD (1969) Inorg Chem 8:431–436

    Article  CAS  Google Scholar 

  51. Krogh Andersen E, Krogh Andersen IG, Knkkergardård Møller C, Simonsen KE, Skou E (1982) Solid State Ionics 7:301–306

    Google Scholar 

  52. The –OH concentration for (TTF)2(1-H6+δ) was calculated assuming the formula (TTF)2(1-H6) and the cell volume at 298 K (Table 2.1)

    Google Scholar 

  53. The saturation magnetic moment of ferromagnetic component was ~40 emu Oe mol−1, where one mole is defined as a gram-formula weight of (TTF)2(1-H6)

    Google Scholar 

  54. Hall JW, Marsh WE, Weller RR, Hatfield WE (1981) Inorg Chem 20:1033–1037

    Article  CAS  Google Scholar 

  55. A comparison between the fitting results using the alternating chain model and the two-leg ladder model is presented in Section 2.2 (Figs. 2.2 and 2.3)

    Google Scholar 

  56. Mori T (2016) In: Electronic properties of organic conductors, Springer Japan, Tokyo, pp 198–204

    Google Scholar 

  57. Donoshita M, Yoshida Y, Maesato M, Kitagawa H (2022) J Am Chem Soc 144:17149–17155

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Donoshita .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Donoshita, M. (2024). Rational Construction of Molecular Electron-Conducting Nanowires Encapsulated in Proton-Conducting Matrix in a Charge-Transfer Salt. In: Design of Crystal Structures Using Hydrogen Bonds on Molecular-Layered Cocrystals and Proton–Electron Mixed Conductor. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-99-7062-9_2

Download citation

Publish with us

Policies and ethics