Skip to main content

Cooling High-Powered LEDs Using an Innovative Fully Automated Heat Pipe System

  • Conference paper
  • First Online:
Intelligent Manufacturing and Energy Sustainability (ICIMES 2023)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 372))

  • 215 Accesses

Abstract

Independent cooling system consisting of a computer, heat pipe, and fan was introduced as an initial step toward enhanced control over heat dissipation from high-power LEDs. Maintaining the substrate temperatures of the LEDs within an acceptable range has been proved experimentally to increase the performance of high-power LEDs and extend their lifespan. Instead of using light from a single sun, as traditional solar cells do, multijunction concentrator cells harness the power of concentrated solar energy. Therefore, these cells generate more power with less cooling. Concentrated sunlight was used to evaluate output power (in suns) achieved by a multi-junction concentrator solar cell operating between 160 and 250 suns. The extra heat generated by the cells was dissipated using heat pipes in this project. The heat pipe's waste heat was transferred to two thermoelectric generators, which were thermally linked to the condenser. These generators produced the power that was used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takai, I., Ito, S., Yasutomi, K., Kagawa, K., Andoh, M., Kawahito, S.: LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics J. 5(5), 6801418 (2013)

    Article  Google Scholar 

  2. Feezell, D.F., et al.: Semipolar InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J. Display Technol. 9(4), 190–198 (2013)

    Article  Google Scholar 

  3. Cho, J., Schubert, E.F., Kim, J.K.: Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photonics Rev. 7(3), 408–421 (2013)

    Article  Google Scholar 

  4. Hsieh, C.C., Li, Y.H., Hung, C.C.: Modular design of the LED vehicle projector headlamp system. Appl. Opt. 52(21), 5221–5229 (2013)

    Article  Google Scholar 

  5. Yang, K.S., Chung, C.H., Lee, M.T., Chiang, S.B., Wong, C.C., Wang, C.C.: An experimental study on the heat dissipation of LED lighting module using metal/carbon foam. Int. Commun. Heat Mass Transfer 1(48), 73–79 (2013)

    Article  Google Scholar 

  6. Narendran, N., Gu, Y., Freyssinier, J.P., Yu, H., Deng, L.: Solid-state lighting: failure analysis of white LEDs. J. Cryst. Growth 268(3–4), 449–456 (2004)

    Article  Google Scholar 

  7. Narendran, N., Gu, Y.: Life of LED-based white light sources. J. Display Technol. 1(1), 167 (2005)

    Article  Google Scholar 

  8. Tang, Y., Ding, X., Yu, B., Li, Z., Liu, B.: A high-power LED device with chips directly mounted on heat pipes. Appl. Therm. Eng. 66(1–2), 632–639 (2014)

    Article  Google Scholar 

  9. Hsieh, S.S., Hsu, Y.F., Wang, M.L.: A microspray-based cooling system for high powered LEDs. Energ. Convers. Manage. 78, 338–346 (2014)

    Article  Google Scholar 

  10. Liu, S., Yang, J., Gan, Z., Luo, X.: Structural optimization of a microjet based cooling system for high power LEDs. Int. J. Therm. Sci. 47(8), 1086–1095 (2008)

    Article  Google Scholar 

  11. Li, J., Zhang, Y., Yuan, Y., Yu, H.: New applications of an automated system for high-power LEDs. IEEE/ASME Trans. Mechatron. 21(2), 1035–1042 (2015)

    Article  Google Scholar 

  12. Li, J., Ma, B., Wang, R., Han, L.: Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. 51(12), 2210–2215 (2011)

    Article  Google Scholar 

  13. Deng, Y., Liu, J.: A liquid metal cooling system for the thermal management of high-power LEDs. Int. Commun. Heat Mass Transfer 37(7), 788–791 (2010)

    Article  Google Scholar 

  14. Lai, Y., Cordero, N., Barthel, F., Tebbe, F., Kuhn, J., Apfelbeck, R., Würtenberger, D.: Liquid cooling of bright LEDs for automotive applications. Appl. Therm. Eng. 29(5–6), 1239–1244 (2009)

    Article  Google Scholar 

  15. Lu, X.Y., Hua, T.C., Wang, Y.P.: Thermal analysis of high-power LED package with heat pipe heat sink. Microelectron. J. 42(11), 1257–1262 (2011)

    Article  Google Scholar 

  16. Lu, X.Y., Hua, T.C., Liu, M.J., Cheng, Y.X.: Thermal analysis of loop heat pipe used for high-power LED. Thermochim. Acta 493(1–2), 25–29 (2009)

    Article  Google Scholar 

  17. Yang, K.S., Yang, T.Y., Tu, C.W., Yeh, C.T., Lee, M.T.: A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energ. Convers. Manage. 100, 37–44 (2015)

    Article  Google Scholar 

  18. Lu, T.J.: Thermal management of high-power electronics with phase change cooling. Int. J. Heat Mass Transf. 43(13), 2245–2256 (2000)

    Article  MATH  Google Scholar 

  19. Luo, X., Xiong, W., Cheng, T., Liu, S.: Temperature estimation of high-power light emitting diode street lamp by a multi-chip analytical solution. IET Optoelectron. 3(5), 225–232 (2009)

    Article  Google Scholar 

  20. Liu, X., Xiao, Y., Inthavong, K., Tu, J.: Experimental and numerical investigation on a new type of heat exchanger in ground source heat pump system. Energ. Effi. 8, 845–857 (2015)

    Article  Google Scholar 

  21. Xiao, C., Tian, Q., Zhou, C., Li, J., Zhu, W.: A novel cooling system based on heat pipe with fan for thermal management of high-power LEDs. J. Opt. 46, 269–276 (2017)

    Article  Google Scholar 

  22. Routhier, A.F., Honsberg, C.: Using PV and thermal energy storage to decrease carbon dioxide emissions. In: 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC), 2018 Jun 10, pp. 1477–1480. IEEE

    Google Scholar 

  23. Solar PV—Analysis. https://www.iea.org/reports/solar-pv. Accessed on 10 Dec. 2022

  24. Renewable Power Generation Costs in 2020. https://www.irena.org/Publications/2021/Jun/Renewable-Power-Costs-in-2020

  25. Photovoltaic cost reduction—an overview. ScienceDirect. https://www.sciencedirect.com/topics/engineering/photovoltaic-cost-reduction

  26. Mariotti, S., Al Turkestani, M., Hutter, O.S., Papageorgiou, G., Major, J.D., Swallow, J., Nayak, P.K., Snaith, H.J., Dhanak, V.R., Durose, K.: Direct silicon heterostructures with methylammonium lead iodide perovskite for photovoltaic applications. IEEE J. Photovoltaics 10(4), 945–951 (2020)

    Article  Google Scholar 

  27. Zsiborács, H., Hegedűsné Baranyai, N., Vincze, A., Háber, I., Weihs, P., Oswald, S., Gützer, C., Pintér, G.: Changes of photovoltaic performance as a function of positioning relative to the focus points of a concentrator PV module: case study. Appl. Sci. 9(16), 3392 (2019)

    Google Scholar 

  28. Du, B., Hu, E., Kolhe, M.: Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew. Sustain. Energ. Rev. 16(9), 6732–6736 (2012)

    Article  Google Scholar 

  29. Moiz, S.A., Alahmadi, A.N.M., Karimov, K.S.: Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid-State Electron. 163, 107658 (2020)

    Article  Google Scholar 

  30. Moiz, S.A., Alahmadi, A.N., Aljohani, A.J.: Design of silicon nanowire array for PEDOT: PSS-silicon nanowire-based hybrid solar cell. Energies 13(15), 3797 (2020)

    Article  Google Scholar 

  31. Ahmadinejad, M., Moosavi, R.: Energy and exergy evaluation of a baffled-nanofluid-based photovoltaic thermal system (PVT). Int. J. Heat Mass Transf. 1(203), 123775 (2023)

    Article  Google Scholar 

  32. Ahmadinejad, M., Soleimani, A., Gerami, A.: The effects of a novel baffle-based collector on the performance of a photovoltaic/thermal system using SWCNT/water nanofluid. Therm. Sci. Eng. Prog. 34, 101443 (2022)

    Article  Google Scholar 

  33. Sangdot, R., Patel, H., Student, P.G.: A review on photovoltaic panel cooling using heat pipe. IJSDR 1(5), 573–576 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Amin Zargar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zargar, A.A., Tripathi, N. (2024). Cooling High-Powered LEDs Using an Innovative Fully Automated Heat Pipe System. In: Talpa Sai, P.H.V.S., Potnuru, S., Avcar, M., Ranjan Kar, V. (eds) Intelligent Manufacturing and Energy Sustainability. ICIMES 2023. Smart Innovation, Systems and Technologies, vol 372. Springer, Singapore. https://doi.org/10.1007/978-981-99-6774-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6774-2_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6773-5

  • Online ISBN: 978-981-99-6774-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics