Skip to main content

Quality Management of Intracytoplasmic Sperm Injection

  • Chapter
  • First Online:
Quality Management in the Assisted Reproduction Laboratory
  • 113 Accesses

Abstract

Intracytoplasmic sperm injection (ICSI) is assisted reproduction laboratories’ most routine microscopic procedure. It includes a set of equipment and a technique and solves most infertility caused by male factors, such as severe oligospermia, malformed sperm, and sometimes azoospermia. This chapter will provide a comprehensive overview of the ICSI technique and its risks and management during manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordon JW, Grunfeld L, Garrisi GJ, et al. Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil Steril. 1988;50(1):68–73.

    Article  PubMed  Google Scholar 

  2. Cohen J, Malter H, Fehilly C, et al. Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. Lancet. 1988;2(8603):162.

    Article  PubMed  Google Scholar 

  3. Lanzendorf SE, Maloney MK, Veeck LL, et al. A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertil Steril. 1988;49(5):835–42.

    Article  PubMed  Google Scholar 

  4. Palermo G, Joris H, Devroey P, et al. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet. 1992;340(8810):17–8.

    Article  PubMed  Google Scholar 

  5. Practice Committees of the American Society for Reproductive Medicine, Society for Assisted Reproductive Technology. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: a committee opinion. Fertil Steril. 2012;98(6):1395–9.

    Article  Google Scholar 

  6. Li M, Ma SY, Yang HJ, et al. Pregnancy with oocytes characterized by narrow perivitelline space and heterogeneous zona pellucida: is intracytoplasmic sperm injection necessary? J Assist Reprod Genet. 2014;31(3):285–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tannus S, Son WY, Gilman A, et al. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum Reprod. 2017;32(1):119–24.

    PubMed  Google Scholar 

  8. Guo N, Hua X, Li YF, et al. Role of ICSI in non-male factor cycles as the number of oocytes retrieved decreases from four to one. Curr Med Sci. 2018;38(1):131–6.

    Article  PubMed  Google Scholar 

  9. Liu H, Zhao H, Yu G, et al. Conventional in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI): which is preferred for advanced age patients with five or fewer oocytes retrieved? Arch Gynecol Obstet. 2018;297(5):1301–6.

    Article  PubMed  Google Scholar 

  10. Drakopoulos P, Garcia-Velasco J, Bosch E, et al. ICSI does not offer any benefit over conventional IVF across different ovarian response categories in non-male factor infertility: a European multicenter analysis. J Assist Reprod Genet. 2019;36(10):2067–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Catford SR, McLachlan RI, O’Bryan MK, et al. Long-term follow-up of intra-cytoplasmic sperm injection-conceived offspring compared with in vitro fertilization-conceived offspring: a systematic review of health outcomes beyond the neonatal period. Andrology. 2017;5(4):610–21.

    Article  PubMed  Google Scholar 

  12. Esteves SC, Roque M, Bedoschi G, et al. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat Rev Urol. 2018;15(9):535–62.

    Article  PubMed  Google Scholar 

  13. Cairo 2018 Consensus Group. ‘There is only one thing that is truly important in an IVF laboratory: everything’ Cairo Consensus Guidelines on IVF Culture Conditions. Reprod Biomed Online. 2020;40(1):33–60.

    Article  Google Scholar 

  14. Butler JM, Johnson JE, Boone WR, et al. The heat is on: room temperature affects laboratory equipment-an observational study. J Assist Reprod Genet. 2013;30(10):1389–93.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang WH, Meng L, Hackett RJ, et al. Rigorous thermal control during intracytoplasmic sperm injection stabilizes the meiotic spindle and improves fertilization and pregnancy rates. Fertil Steril. 2002;77(6):1274–7.

    Article  PubMed  Google Scholar 

  16. Rubino P, Viganò P, Luddi A, et al. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum Reprod Update. 2016;22(2):194–227.

    PubMed  Google Scholar 

  17. Davidson LM, Liu Y, Griffiths T, et al. Laser technology in the ART laboratory: a narrative review. Reprod Biomed Online. 2019;38(5):725–39.

    Article  PubMed  Google Scholar 

  18. Ebner T, Moser M, Tews G, et al. Possible applications of a non-contact 1.48 microm wavelength diode laser in assisted reproduction technologies. Hum Reprod Update. 2005;11(4):425–35.

    Article  PubMed  Google Scholar 

  19. Swearman H, Koustas G, Knight E, et al. pH: the silent variable significantly impacting meiotic spindle assembly in mouse oocytes. Reprod Biomed Online. 2018;37(3):279–90.

    Article  PubMed  Google Scholar 

  20. Will MA, Clark NA, Swain JE, et al. Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet. 2011;28(8):711–24.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wale PL, Gardner DK. The effects of chemical and physical factors on mammalian embryo culture and their importance for the practice of assisted human reproduction. Hum Reprod Update. 2016;22(1):02–22.

    Article  Google Scholar 

  22. Simopoulou M, Gkoles L, Bakas P, et al. Improving ICSI: a review from the spermatozoon perspective. Syst Biol Reprod Med. 2016;62(6):359–71.

    Article  PubMed  Google Scholar 

  23. Parmegiani L, Cognigni GE, Bernardi S, et al. Comparison of two ready-to-use systems designed for sperm-hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. Sperm Slow: a prospective, randomized trial. Fertil Steril. 2012;98(3):632–7.

    Article  PubMed  Google Scholar 

  24. Lepine S, McDowell S, Searle LM, et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev. 2019;7(7):CD010461.

    PubMed  Google Scholar 

  25. Van de Velde H, Nagy ZP, Joris H, et al. Effects of different hyaluronidase concentrations and mechanical procedures for cumulus cell removal on the outcome of intracytoplasmic sperm injection. Hum Reprod. 1997;12(10):2246–50.

    Article  PubMed  Google Scholar 

  26. Moura BR, Gurgel MC, Machado SP, et al. Low concentration of hyaluronidase for oocyte denudation can improve fertilization rates and embryo quality. JBRA Assist Reprod. 2017;21(1):27–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xue X, Wang WS, Shi JZ, et al. Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet. 2014;31(9):1161–6.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sandi-Monroy NL, Musanovic S, Zhu D, et al. Use of dimethylxanthine theophylline (SpermMobil®) does not affect clinical, obstetric or perinatal outcomes. Arch Gynecol Obstet. 2019;300(5):1435–43.

    Article  PubMed  Google Scholar 

  29. Shen ZQ, Shi B, Wang TR, et al. Characterization of the sperm proteome and reproductive outcomes with in vitro, fertilization after a reduction in male ejaculatory abstinence period. Mol Cell Proteomics. 2019;18(Suppl 1):S109–17.

    Article  PubMed  Google Scholar 

  30. Karimi N, Mohseni Kouchesfahani H, Nasr-Esfahani MH, et al. DGC/zeta as a new strategy to improve clinical outcome in male factor infertility patients following intracytoplasmic sperm injection: a randomized, single-blind, clinical trial. Cell J. 2020;22(1):55–9.

    PubMed  Google Scholar 

  31. Nagy ZP, Liu J, Joris H, et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod. 1995;10(12):3171–7.

    Article  PubMed  Google Scholar 

  32. Xie Y, Wang F, Puscheck EE, et al. Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev. 2007;74(10):1287–94.

    Article  PubMed  Google Scholar 

  33. Gianaroli L, Plachot M, van Kooij R, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–6.

    Article  Google Scholar 

  34. Ebner T, Yaman C, Moser M, et al. A prospective study on oocyte survival rate after ICSI: influence of injection technique and morphological features. J Assist Reprod Genet. 2001;18(12):623–8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ebner T, Moser M, Sommergruber M, et al. Incomplete denudation of oocytes prior to ICSI enhances embryo quality and blastocyst development. Hum Reprod. 2006;21(11):2972–7.

    Article  PubMed  Google Scholar 

  36. Coticchio G, Dal Canto M, Mignini Renzini M, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.

    Article  PubMed  Google Scholar 

  37. El-Hayek S, Yang Q, Abbassi L, et al. Mammalian oocytes locally remodel follicular architecture to provide the foundation for germline-soma communication. Curr Biol. 2018;28(7):1124–1131.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harton GL, Magli MC, Lundin K, et al. ESHRE PGD Consortium/Embryology Special Interest Group-best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum Reprod. 2011;26(1):41–6.

    Article  PubMed  Google Scholar 

  39. Velaers A, Paternot G, Debrock S, et al. Triple touch sperm immobilization vs. single touch sperm immobilization in ICSI-a randomised trial. Reprod Biol Endocrinol. 2012;10:65–5.

    Google Scholar 

  40. Palermo GD, Schlegel PN, Colombero LT, et al. Aggressive sperm immobilization prior to intracytoplasmic sperm injection with immature spermatozoa improves fertilization and pregnancy rates. Hum Reprod. 1996;11(5):1023–9.

    Article  PubMed  Google Scholar 

  41. Schatten H, Sun QY. The role of centrosomes in mammalian fertilization and its significance for ICSI. Mol Hum Reprod. 2009;15(9):531–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hardarson T, Lundin K, Hamberger L. The position of the metaphase II spindle cannot be predicted by the location of the first polar body in the human oocyte. Hum Reprod. 2000;15(6):1372–6.

    Article  PubMed  Google Scholar 

  43. Rienzi L, Ubaldi F, Martinez F, et al. Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod. 2003;18(6):1289–93.

    Article  PubMed  Google Scholar 

  44. Mahfoudh AM, Moon JH, Henderson S, et al. Relationship between pre-ICSI meiotic spindle angle, ovarian reserve, gonadotropin stimulation, and pregnancy outcomes. J Assist Reprod Genet. 2017;34(5):609–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rienzi L, Ubaldi F, Iacobelli M, et al. Meiotic spindle visualization in living human oocytes. Reprod Biomed Online. 2005;10(2):192–8.

    Article  PubMed  Google Scholar 

  46. Pujol A, García D, Obradors A, et al. Is there a relation between the time to ICSI and the reproductive outcomes? Hum Reprod. 2018;33(5):797–806.

    Article  PubMed  Google Scholar 

  47. Woodward BJ, Campbell KH, Ramsewak SS, et al. A comparison of headfirst and tailfirst microinjection of sperm at intracytoplasmic sperm injection. Fertil Steril. 2008;89(3):711–4.

    Article  PubMed  Google Scholar 

  48. Palermo GD, Alikani M, Bertoli M, et al. Oolemma characteristics in relation to survival and fertilization patterns of oocytes treated by intracytoplasmic sperm injection. Hum Reprod. 1996;11(1):172–6.

    Article  PubMed  Google Scholar 

  49. Nagy ZP, Oliveira SA, Abdelmassih V, et al. Novel use of laser to assist ICSI for patients with fragile oocytes: a case report. Reprod Biomed Online. 2002;4(1):27–31.

    Article  PubMed  Google Scholar 

  50. Moser M, Ebner T, Sommergruber M, et al. Laser-assisted zona pellucida thinning prior to routine ICSI. Hum Reprod. 2004;19(3):573–8.

    Article  PubMed  Google Scholar 

  51. Richter KS, Davis A, Carter J, et al. No advantage of laser-assisted over conventional intracytoplasmic sperm injection: a randomized controlled trial [NCT00114725]. J Exp Clin Assist Reprod. 2006;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Takeuchi S, Minoura H, Shibahara T, et al. Comparison of piezo-assisted micromanipulation with conventional micromanipulation for intracytoplasmic sperm injection into human oocytes. Gynecol Obstet Investig. 2001;52(3):158–62.

    Article  Google Scholar 

  53. Hiraoka K, Kitamura S. Clinical efficiency of Piezo-ICSI using micropipettes with a wall thickness of 0.625 μm. J Assist Reprod Genet. 2015;32(12):1827–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Furuhashi K, Saeki Y, Enatsu N, et al. Piezo-assisted ICSI improves fertilization and blastocyst development rates compared with conventional ICSI in women aged more than 35 years. Reprod Med Biol. 2019;18(4):357–61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Reprod Biomed Online. 2011;22(6):632–46.

    Article  Google Scholar 

  56. Papale L, Fiorentino A, Montag M, et al. The zygote. Hum Reprod. 2012;27(Suppl 1):22–49.

    Article  Google Scholar 

  57. Mateo S, Parriego M, Boada M, et al. In vitro development and chromosome constitution of embryos derived from monopronucleated zygotes after intracytoplasmic sperm injection. Fertil Steril. 2013;99(3):897–902.e1.

    Article  PubMed  Google Scholar 

  58. ESHRE Special Interest Group of Embryology and Alpha Scientists in Reproductive Medicine. The Vienna consensus: report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online. 2017;35(5):494–510.

    Article  Google Scholar 

  59. Fabozzi G, Rega E, Starita MF, et al. The influence of clinical and laboratory factors on the formation of monopronucleated zygotes after intracytoplasmic sperm injection (ICSI). Zygote. 2019;27(2):64–8.

    Article  PubMed  Google Scholar 

  60. Bradley CK, Traversa MV, Hobson N, et al. Clinical use of monopronucleated zygotes following blastocyst culture and preimplantation genetic screening, including verification of biparental chromosome inheritance. Reprod Biomed Online. 2017;34(6):567–74.

    Article  PubMed  Google Scholar 

  61. Mateo S, Vidal F, Parriego M, et al. Could monopronucleated ICSI zygotes be considered for transfer? Analysis through time-lapse monitoring and PGS. J Assist Reprod Genet. 2017;34(7):905–11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rosenbusch BE. Selective microsurgical removal of a pronucleus from tripronuclear human oocytes to restore diploidy: disregarded but valuable? Fertil Steril. 2009;92(3):897–903.

    Article  PubMed  Google Scholar 

  63. Bonte D, Ferrer-Buitrago M, Dhaenens L, et al. Assisted oocyte activation significantly increases fertilization and pregnancy outcome in patients with low and total failed fertilization after intracytoplasmic sperm injection: a 17-year retrospective study. Fertil Steril. 2019;112(2):266–74.

    Article  PubMed  Google Scholar 

  64. Murugesu S, Saso S, Jones BP, et al. Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertil Steril. 2017;108(3):468–482.e3.

    Article  PubMed  Google Scholar 

  65. Chen B, Li B, Li D, et al. Novel mutations and structural deletions in TUBB8: expanding mutational and phenotypic spectrum of patients with arrest in oocyte maturation, fertilization or early embryonic development. Hum Reprod. 2017;32(2):457–64.

    Article  PubMed  Google Scholar 

  66. Keck C, Fischer R, Baukloh V, et al. Staff management in the in vitro fertilization laboratory. Fertil Steril. 2005;84(6):1786–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, D., Gao, Y. (2024). Quality Management of Intracytoplasmic Sperm Injection. In: Quality Management in the Assisted Reproduction Laboratory. Springer, Singapore. https://doi.org/10.1007/978-981-99-6659-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6659-2_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6658-5

  • Online ISBN: 978-981-99-6659-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics