Skip to main content

Theranostic Applications of Functional Nanomaterials Using Microscopic and Spectroscopic Techniques

  • Chapter
  • First Online:
Functional Smart Nanomaterials and Their Theranostics Approaches

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 122 Accesses

Abstract

Theranostics encompasses the diagnostic and therapeutic capabilities concurrently offered by nanomaterials through imaging and spectral techniques. Several nanomaterials have been functionalized for specialized theranostic applications, including metal and metal-oxide nanoparticles, carbon-based nanomaterials, polymeric nanomaterials, lipid-based nanoparticles, quantum dots, and biomimetic nanomaterials. Some of the functionalization of these nanomaterials are steered to develop superior properties that are desirable for theranostic applications, including biocompatibility, nontoxicity, hydrophilicity, lipophilicity, and colloidal stability. This functionalization assists the nanomaterials in transferring and diffusing across various biological barriers, such as blood–brain barrier, extracellular matrix, mucous, and cell walls, in terms of acting as effective imaging, spectral and theranostic agents. Some of the innovative imaging techniques like in vivo and in vitro fluorescence microscopy, electron microscopy, 2D/3D-confocal microscopy, 3D-two-photon laser scanning microscopy, and spectral techniques like inductively coupled mass spectrometry (ICP-MS), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, impedance spectroscopy and recent hybrid techniques like hyperspectral imaging (HSI) and UV-Vis-NIR spectroscopy have been successfully developed as promising and feasible theranostic applications. By applying these cutting-edge functionalized nanomaterials, early diagnosis and prompt delivery of medicine can be made possible, allowing hospitals to include hybrid microscopic and spectral imaging modalities into routine patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Aslund AKO, Pottier A, Schiffelers R, Ceccaldi A, Schmid R (2020) Delivering the power of nanomedicine to patients today. J Control Release 326:164–171. https://doi.org/10.1016/j.jconrel.2020.07.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Huang H, Lovell JF (2017) Advanced functional nanomaterials for theranostics. Adv Funct Mater 27(2):1603524. https://doi.org/10.1002/adfm.201603524

    Article  PubMed  CAS  Google Scholar 

  3. Funkhouser J (2002) Reinventing pharma: the theranostic revolution. Curr Drug Discov 2:17–19

    Google Scholar 

  4. McCarthy JR (2009) The future of theranostic nanoagents. Nanomedicine (Lond) 4(7):693–695. https://doi.org/10.2217/nnm.09.58

    Article  PubMed  Google Scholar 

  5. DeNardo GL, DeNardo SJ (2012) Concepts, consequences, and implications of theranosis. In: Seminars in nuclear medicine, vol 3. Elsevier, pp 147–150

    Google Scholar 

  6. ESR (2015) Medical imaging in personalised medicine: a white paper of the research committee of the European Society of Radiology (ESR). Insights Imaging 6:141–155

    Article  Google Scholar 

  7. Caldorera-Moore ME, Liechty WB, Peppas NA (2011) Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 44(10):1061–1070. https://doi.org/10.1021/ar2001777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Husen A, Bachheti RK, Bachheti A (2023) Current trends in green nano-emulsions (Food, Agriculture and Biomedical Sectors). Springer Nature Singapore Pte Ltd., 152 Beach Road, #21–01/04 Gateway East, Singapore 189721, Singapore

    Google Scholar 

  9. Husen A, Siddiqi KS (2023) Advances in smart nanomaterials and their applications. Elsevier Inc., 50 Hampshire St., 5th Floor, Cambridge, MA 02139, USA. https://doi.org/10.1016/C2021-0-02202-1

  10. Jin-Chul K, Madhusudhan A, Husen A (2021) Smart nanomaterials in biomedical applications. Springer Nature Switzerland AG, Gewerbestrasse 11, 6330 Cham, Switzerland. https://doi.org/10.1007/978-3-030-84262-8

  11. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2019) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1):112. https://doi.org/10.3390/molecules25010112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Baptista A, Silva F, Porteiro J, Míguez J, Pinto G (2018) Sputtering physical vapour deposition (PVD) coatings: a critical review on process improvement and market trend demands. Coatings 8(11):402

    Article  Google Scholar 

  13. Patel J, Patel A, Patel M, Vyas G (2022) Introduction to nanoparticulate drug delivery systems. In: Pharmacokinetics and pharmacodynamics of nanoparticulate drug delivery systems. Springer, pp 3–23

    Google Scholar 

  14. Saxena J, Jyoti A (2020) Nanomaterials: novel preparation routes, characterizations, and applications. In: Nanobiotechnology. Apple Academic Press, pp 23–33

    Google Scholar 

  15. Shaban M, Hasanzadeh M (2020) Biomedical applications of dendritic fibrous nanosilica (DFNS): recent progress and challenges. RSC Adv 10(61):37116–37133. https://doi.org/10.1039/d0ra04388e

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raliya R, Singh Chadha T, Haddad K, Biswas P (2016) Perspective on nanoparticle technology for biomedical use. Curr Pharm Des 22(17):2481–2490. https://doi.org/10.2174/1381612822666160307151409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9(1):1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  PubMed  PubMed Central  Google Scholar 

  18. Huo D, Kim MJ, Lyu Z, Shi Y, Wiley BJ, Xia Y (2019) One-dimensional metal nanostructures: from colloidal syntheses to applications. Chem Rev 119(15):8972–9073. https://doi.org/10.1021/acs.chemrev.8b00745

    Article  PubMed  CAS  Google Scholar 

  19. He Z, Yang Y, Liang HW, Liu JW, Yu SH (2019) Nanowire genome: a magic toolbox for 1D nanostructures. Adv Mater 31(51):e1902807. https://doi.org/10.1002/adma.201902807

    Article  PubMed  CAS  Google Scholar 

  20. Mauro N, Utzeri MA, Varvara P, Cavallaro G (2021) Functionalization of metal and carbon nanoparticles with potential in cancer theranostics. Molecules 26(11):3085. https://doi.org/10.3390/molecules26113085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pascui OF, Lohwasser R, Sommer M, Thelakkat M, Thurn-Albrecht T, Saalwachter K (2010) High crystallinity and nature of crystal− crystal phase transformations in regioregular poly (3-hexylthiophene). Macromolecules 43(22):9401–9410

    Article  CAS  Google Scholar 

  22. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(1):3. https://doi.org/10.1186/1477-3155-2-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wolfram J, Ferrari M (2019) Clinical cancer nanomedicine. Nano Today 25:85–98. https://doi.org/10.1016/j.nantod.2019.02.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hussain T, Nguyen QT (2014) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 66:90–100. https://doi.org/10.1016/j.addr.2013.09.007

    Article  PubMed  CAS  Google Scholar 

  25. Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854. https://doi.org/10.1002/smll.200700351

    Article  PubMed  CAS  Google Scholar 

  26. Wang YW, Reder NP, Kang S, Glaser AK, Liu JTC (2017) Multiplexed optical imaging of tumor-directed nanoparticles: a review of imaging systems and approaches. Nanotheranostics 1(4):369–388. https://doi.org/10.7150/ntno.21136

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44(10):2963–2997. https://doi.org/10.1039/c4cs00370e

    Article  PubMed  CAS  Google Scholar 

  28. Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123(9):1979–1990. https://doi.org/10.1002/ijc.23858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wojtynek NE, Mohs AM (2020) Image-guided tumor surgery: the emerging role of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12(4):e1624. https://doi.org/10.1002/wnan.1624

    Article  PubMed  PubMed Central  Google Scholar 

  30. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  PubMed  CAS  Google Scholar 

  31. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13(1):195–208

    Article  PubMed  Google Scholar 

  32. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640. https://doi.org/10.1021/cr900263j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16(12):574–583. https://doi.org/10.1016/j.molmed.2010.08.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ding F, Zhan Y, Lu X, Sun Y (2018) Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 9(19):4370–4380. https://doi.org/10.1039/c8sc01153b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N (2022) Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 37(8):3067–3084. https://doi.org/10.1007/s10103-022-03610-3

  36. Wachsmann-Hogiu S, Annala AJ, Farkas DL (2021) Laser applications in biology and biotechnology. In: Handbook of laser technology and applications. CRC Press, pp 321–344

    Google Scholar 

  37. Chen J, Zhuo S, Chen G, Yan J, Yang H, Liu N, Zheng L, Jiang X, Xie S (2011) Establishing diagnostic features for identifying the mucosa and submucosa of normal and cancerous gastric tissues by multiphoton microscopy. Gastrointest Endosc 73(4):802–807. https://doi.org/10.1016/j.gie.2010.12.016

    Article  PubMed  Google Scholar 

  38. Hwang JY, Park J, Kang BJ, Lubow DJ, Chu D, Farkas DL, Shung KK, Medina-Kauwe LK (2012) Multimodality imaging in vivo for preclinical assessment of tumor-targeted doxorubicin nanoparticles. PLoS ONE 7(4):e34463. https://doi.org/10.1371/journal.pone.0034463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13(3):372–377. https://doi.org/10.1038/nm1486

    Article  PubMed  CAS  Google Scholar 

  40. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22(10):1879–1903. https://doi.org/10.1021/bc200151q

    Article  PubMed  CAS  Google Scholar 

  41. Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165(7–8):1628–1651. https://doi.org/10.1007/s12010-011-9383-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Schneider S, Lenz D, Holzer M, Palme K, Suss R (2010) Intracellular FRET analysis of lipid/DNA complexes using flow cytometry and fluorescence imaging techniques. J Control Release 145(3):289–296. https://doi.org/10.1016/j.jconrel.2010.04.016

    Article  PubMed  CAS  Google Scholar 

  43. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6(24):2781–2795. https://doi.org/10.1002/smll.201000418

    Article  PubMed  CAS  Google Scholar 

  44. Han X, Xu K, Taratula O, Farsad K (2019) Applications of nanoparticles in biomedical imaging. Nanoscale 11(3):799–819. https://doi.org/10.1039/c8nr07769j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP (2019) Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv Mater 31(40):1902409

    Article  CAS  Google Scholar 

  46. Zhou T, Liang X, Wang P, Hu Y, Qi Y, Jin Y, Du Y, Fang C, Tian J (2020) A hepatocellular carcinoma targeting nanostrategy with hypoxia-ameliorating and photothermal abilities that, combined with immunotherapy, inhibits metastasis and recurrence. ACS Nano 14(10):12679–12696

    Article  PubMed  CAS  Google Scholar 

  47. Zavaleta C, Ho D, Chung EJ (2018) Theranostic nanoparticles for tracking and monitoring disease state. SLAS Technol 23(3):281–293. https://doi.org/10.1177/2472630317738699

    Article  PubMed  CAS  Google Scholar 

  48. Kim K, Kim JH, Park H, Kim YS, Park K, Nam H, Lee S, Park JH, Park RW, Kim IS, Choi K, Kim SY, Park K, Kwon IC (2010) Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring. J Control Release 146(2):219–227. https://doi.org/10.1016/j.jconrel.2010.04.004

    Article  PubMed  CAS  Google Scholar 

  49. Lim EK, Kim T, Paik S, Haam S, Huh YM, Lee K (2015) Nanomaterials for theranostics: recent advances and future challenges. Chem Rev 115(1):327–394. https://doi.org/10.1021/cr300213b

    Article  PubMed  CAS  Google Scholar 

  50. Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, Platt TL, Zhao X, Cuaresma RA, Everley PA, Ko M, Liou H, Mahoney M, Ferdosi S, Elgierari EM, Stolarczyk C, Tangeysh B, Xia H, Benz R, Siddiqui A, Carr SA, Ma P, Langer R, Farias V, Farokhzad OC (2020) Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun 11(1):3662. https://doi.org/10.1038/s41467-020-17033-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Buckle T, Van Der Wal S, Van Malderen SJ, Müller L, Kuil J, Van Unen V, Peters RJ, van Bemmel ME, McDonnell LA, Velders AH (2017) Hybrid imaging labels: providing the link between mass spectrometry-based molecular pathology and theranostics. Theranostics 7(3):624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sikorski J, Matczuk M, Kaminska A, Kruszewska J, Trzaskowski M, Timerbaev AR, Jarosz M (2022) Protein-mediated transformations of superparamagnetic nanoparticles evidenced by single-particle inductively coupled plasma tandem mass spectrometry: a disaggregation phenomenon. Int J Mol Sci 23(3):1088. https://doi.org/10.3390/ijms23031088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Kruszewska J, Sikorski J, Samsonowicz-Gorski J, Matczuk M (2020) A CE-ICP-MS/MS method for the determination of superparamagnetic iron oxide nanoparticles under simulated physiological conditions. Anal Bioanal Chem 412(29):8145–8153. https://doi.org/10.1007/s00216-020-02948-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Labied L, Rocchi P, Doussineau T, Randon J, Tillement O, Lux F, Hagege A (2021) Taylor dispersion analysis coupled to inductively coupled plasma-mass spectrometry for ultrasmall nanoparticle size measurement: from drug product to biological media studies. Anal Chem 93(3):1254–1259. https://doi.org/10.1021/acs.analchem.0c03988

    Article  PubMed  CAS  Google Scholar 

  55. Kuchma EA, Zolotukhin PV, Belanova AA, Soldatov MA, Lastovina TA, Kubrin SP, Nikolsky AV, Mirmikova LI, Soldatov AV (2017) Low toxic maghemite nanoparticles for theranostic applications. Int J Nanomedicine 12:6365–6371. https://doi.org/10.2147/IJN.S140368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chamieh J, Leclercq L, Martin M, Slaoui S, Jensen H, Ostergaard J, Cottet H (2017) Limits in size of Taylor dispersion analysis: representation of the different hydrodynamic regimes and application to the size-characterization of cubosomes. Anal Chem 89(24):13487–13493. https://doi.org/10.1021/acs.analchem.7b03806

    Article  PubMed  CAS  Google Scholar 

  57. Tseng Y, Harroun S, Wu C, Mao J, Chang H, Huang C (2017) Satellite-like gold nanocomposites for targeted mass spectrometry imaging of tumor tissues. Nanotheranostics 1(2):141–153. https://doi.org/10.7150/ntno. 18897

  58. Zhang W, Wang X, Xia Y, Ouyang Z (2017) Ambient ionization and miniature mass spectrometry systems for disease diagnosis and therapeutic monitoring. Theranostics 7(12):2968–2981. https://doi.org/10.7150/thno.19410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Mohammadpour Z, Majidzadeh AK (2020) Applications of two-dimensional nanomaterials in breast cancer theranostics. ACS Biomater Sci Eng 6(4):1852–1873. https://doi.org/10.1021/acsbiomaterials.9b01894

    Article  PubMed  CAS  Google Scholar 

  60. Chu HW, Unnikrishnan B, Anand A, Mao JY, Huang CC (2018) Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J Food Drug Anal 26(4):1215–1228. https://doi.org/10.1016/j.jfda.2018.07.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lv Q, Cui H, Song X (2021) Aptamers for the diagnosis of malign tumors. In: Aptamers for medical applications. Springer, pp 239–277

    Google Scholar 

  62. Mesguich C, Zanotti-Fregonara P, Hindie E (2016) New perspectives offered by nuclear medicine for the imaging and therapy of multiple myeloma. Theranostics 6(2):287–290. https://doi.org/10.7150/thno.14400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. van Leeuwen FW, van der Poel HG (2016) Surgical guidance in prostate cancer: “From Molecule to Man” translationsfluorescence-guided surgery for prostate cancer patients. Clin Cancer Res 22(6):1304–1306

    Article  PubMed  Google Scholar 

  64. Mukherjee D, Zhao J (2013) The role of chemokine receptor CXCR4 in breast cancer metastasis. Am J Cancer Res 3(1):46–57

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Kuil J, Buckle T, van Leeuwen FW (2012) Imaging agents for the chemokine receptor 4 (CXCR4). Chem Soc Rev 41(15):5239–5261. https://doi.org/10.1039/c2cs35085h

    Article  PubMed  CAS  Google Scholar 

  66. Buckle T, Kuil J, van den Berg NS, Bunschoten A, Lamb HJ, Yuan H, Josephson L, Jonkers J, Borowsky AD, van Leeuwen FW (2013) Use of a single hybrid imaging agent for integration of target validation with in vivo and ex vivo imaging of mouse tumor lesions resembling human DCIS. PLoS ONE 8(1):e48324. https://doi.org/10.1371/journal.pone.0048324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. van Leeuwen FW, Valdes-Olmos R, Buckle T, Vidal-Sicart S (2016) Hybrid surgical guidance based on the integration of radionuclear and optical technologies. Br J Radiol 89(1062):20150797. https://doi.org/10.1259/bjr.20150797

    Article  PubMed  PubMed Central  Google Scholar 

  68. Goldstein A, Soroka Y, Frusic-Zlotkin M, Popov I, Kohen R (2014) High resolution SEM imaging of gold nanoparticles in cells and tissues. J Microsc 256(3):237–247. https://doi.org/10.1111/jmi.12179

    Article  PubMed  CAS  Google Scholar 

  69. Li L, Mak KY, Shi J, Koon HK, Leung CH, Wong CM, Leung CW, Mak CS, Chan NM, Zhong W, Lin KW, Wu EX, Pong PW (2012) Comparative in vitro cytotoxicity study on uncoated magnetic nanoparticles: effects on cell viability, cell morphology, and cellular uptake. J Nanosci Nanotechnol 12(12):9010–9017. https://doi.org/10.1166/jnn.2012.6755

    Article  PubMed  CAS  Google Scholar 

  70. Havrdova M, Polakova K, Skopalik J, Vujtek M, Mokdad A, Homolkova M, Tucek J, Nebesarova J, Zboril R (2014) Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron 67:149–154

    Article  PubMed  CAS  Google Scholar 

  71. Malatesta M (2021) Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci 22(23):12789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Costanzo M, Malatesta M (2019) Embedding cell monolayers to investigate nanoparticleplasmalemma interactions at transmission electron microscopy. Eur J Histochem EJH 63(1)

    Google Scholar 

  73. Lerch S, Ritz S, Bley K, Messerschmidt C, Weiss CK, Musyanovych A, Landfester K, Mailander V (2015) Nanoprobing the acidification process during intracellular uptake and trafficking. Nanomedicine 11(6):1585–1596. https://doi.org/10.1016/j.nano.2015.04.010

    Article  PubMed  CAS  Google Scholar 

  74. Costanzo M, Carton F, Marengo A, Berlier G, Stella B, Arpicco S, Malatesta M (2016) Fluorescence and electron microscopy to visualize the intracellular fate of nanoparticles for drug delivery. Eur J Histochem 60(2):2640. https://doi.org/10.4081/ejh.2016.2640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cabezón I, Manich G, Martín-Venegas R, Camins A, Pelegrí C, Vilaplana J (2015) Trafficking of gold nanoparticles coated with the 8D3 anti-transferrin receptor antibody at the mouse blood–brain barrier. Mol Pharm 12(11):4137–4145

    Article  PubMed  Google Scholar 

  76. Yang J, Tu J, Lamers GEM, Olsthoorn RCL, Kros A (2017) Membrane fusion mediated intracellular delivery of lipid bilayer coated mesoporous silica nanoparticles. Adv Healthc Mater 6(20):1700759. https://doi.org/10.1002/adhm.201700759

    Article  CAS  Google Scholar 

  77. Heo DN, Yang DH, Moon H-J, Lee JB, Bae MS, Lee SC, Lee WJ, Sun I-C, Kwon IK (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33(3):856–866

    Article  PubMed  CAS  Google Scholar 

  78. Zhang LW, Monteiro-Riviere NA (2012) Use of confocal microscopy for nanoparticle drug delivery through skin. J Biomed Opt 18(6):061214

    Article  Google Scholar 

  79. Du Y, Fan K, Zhang H, Li L, Wang P, He J, Ding S, Yan X, Tian J (2018) Endoscopic molecular imaging of early gastric cancer using fluorescently labeled human H-ferritin nanoparticle. Nanomedicine 14(7):2259–2270. https://doi.org/10.1016/j.nano.2018.07.007

    Article  PubMed  CAS  Google Scholar 

  80. Xu L, Zhang J, Yin L, Long X, Zhang W, Zhang Q (2020) Recent progress in efficient organic two-photon dyes for fluorescence imaging and photodynamic therapy. J Mater Chem C 8(19):6342–6349

    Article  CAS  Google Scholar 

  81. Wang H, Zhou S (2016) Magnetic and fluorescent carbon-based nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater Sci 4(7):1062–1073. https://doi.org/10.1039/c6bm00262e

    Article  PubMed  CAS  Google Scholar 

  82. Vickers ET, Garai M, Bonabi Naghadeh S, Lindley S, Hibbs J, Xu Q-H, Zhang JZ (2017) Two-photon photoluminescence and photothermal properties of hollow gold nanospheres for efficient theranostic applications. J Phys Chem C 122(25):13304–13313

    Article  Google Scholar 

  83. Vickers ET (2020) Synthesis, characterization, surface tailoring, and applications of hollow gold nanospheres and perovskite nanomaterial. University of California, Santa Cruz

    Google Scholar 

  84. So PT, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2(1):399–429. https://doi.org/10.1146/annurev.bioeng.2.1.399

    Article  PubMed  CAS  Google Scholar 

  85. Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci 95(26):15741–15746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284(5421):1811–1816. https://doi.org/10.1126/science.284.5421.1811

    Article  PubMed  CAS  Google Scholar 

  87. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17(8):763–767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Masters BR, So PT, Gratton E (1997) Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys J 72(6):2405–2412. https://doi.org/10.1016/S0006-3495(97)78886-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Giniunas L, Juskaitis R, Shatalin SV (1993) Endoscope with optical sectioning capability. Appl Opt 32(16):2888–2890. https://doi.org/10.1364/AO.32.002888

    Article  PubMed  CAS  Google Scholar 

  90. Palsson S, Stenram U, Thompson MS, Vaitkuviene A, Poskiene V, Ziobakiene R, Oyama J, DeWeert MJ, Gustafsson U, Bendsoe N, Andersson-Engels S, Svanberg S, Svanberg K (2006) Methods for detailed histopathological investigation and localization of biopsies from cervix uteri to improve the interpretation of autofluorescence data. J Environ Pathol Toxicol Oncol 25(1–2):321–340. https://doi.org/10.1615/jenvironpatholtoxicoloncol.v25.i1-2.210

    Article  PubMed  Google Scholar 

  91. Berland K (2001) Basics of fluorescence. In: Methods in cellular imaging. Springer, pp 5–19

    Google Scholar 

  92. Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyas B, Padmanabhan P (2018) Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomedicine 13:5561–5576. https://doi.org/10.2147/IJN.S149022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Dufes C (2006) Beyond delivery. Gene Ther 13:739–740

    Article  Google Scholar 

  94. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4(6):435–446. https://doi.org/10.1038/nmat1390

    Article  PubMed  CAS  Google Scholar 

  95. Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34(3):383–408. https://doi.org/10.1385/CBB:34:3:383

    Article  PubMed  CAS  Google Scholar 

  96. Lucas B, Remaut K, Sanders NN, Braeckmans K, De Smedt SC, Demeester J (2005) Studying the intracellular dissociation of polymer-oligonucleotide complexes by dual color fluorescence fluctuation spectroscopy and confocal imaging. Biochemistry 44(29):9905–9912. https://doi.org/10.1021/bi0476883

    Article  PubMed  CAS  Google Scholar 

  97. Hu F, Li C, Zhang Y, Wang M, Wu D, Wang Q (2015) Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res 8(5):1637–1647

    Article  CAS  Google Scholar 

  98. Chen H, Li B, Zhang M, Sun K, Wang Y, Peng K, Ao M, Guo Y, Gu Y (2014) Characterization of tumor-targeting Ag 2 S quantum dots for cancer imaging and therapy in vivo. Nanoscale 6(21):12580–12590

    Article  PubMed  CAS  Google Scholar 

  99. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8(9):723–730. https://doi.org/10.1038/nphoton.2014.166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Du Y, Xu B, Fu T, Cai M, Li F, Zhang Y, Wang Q (2010) Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J Am Chem Soc 132(5):1470–1471. https://doi.org/10.1021/ja909490r

    Article  PubMed  CAS  Google Scholar 

  101. Park W, Shin H, Choi B, Rhim W-K, Na K, Han DK (2020) Advanced hybrid nanomaterials for biomedical applications. Prog Mater Sci 114:100686

    Article  CAS  Google Scholar 

  102. Yhee JY, Kim SA, Koo H, Son S, Ryu JH, Youn IC, Choi K, Kwon IC, Kim K (2012) Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Theranostics 2(2):179–189. https://doi.org/10.7150/thno.3716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Jones RR, Hooper DC, Zhang L, Wolverson D, Valev VK (2019) Raman techniques: fundamentals and Frontiers. Nanoscale Res Lett 14(1):231. https://doi.org/10.1186/s11671-019-3039-2

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics–from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134. https://doi.org/10.1016/j.addr.2015.03.009

    Article  PubMed  CAS  Google Scholar 

  105. Nicolson F, Clark L, Panikkanvalappil SR, Andreiuk B, Andreou C (2022) Advances in surface enhanced Raman spectroscopy for in vivo imaging in oncology. Nanotheranostics 6(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ko KH, Kown CI, Park JM, Lee HG, Han NY, Hahm KB (2014) Molecular imaging for theranostics in gastroenterology: one stone to kill two birds. Clin Endosc 47(5):383–388. https://doi.org/10.5946/ce.2014.47.5.383

    Article  PubMed  PubMed Central  Google Scholar 

  107. Krafft C, Dochow S, Latka I, Dietzek B, Popp J (2012) Diagnosis and screening of cancer tissues by fiber-optic probe Raman spectroscopy. Biomed Spectrosc Imaging 1(1):39–55

    Article  CAS  Google Scholar 

  108. Kenry NF, Clark L, Panikkanvalappil S, Andreiuk B, Andreou C (2022) Advances in surface enhanced raman spectroscopy for in vivo imaging in oncology. Nanotheranostics 6(1):31–49. https://doi.org/10.7150/ntno. 62970

  109. Cialla-May D, Zheng XS, Weber K, Popp J (2017) Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem Soc Rev 46(13):3945–3961. https://doi.org/10.1039/c7cs00172j

    Article  PubMed  CAS  Google Scholar 

  110. De La Zerda A, Kircher MF, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F (2013) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. In: Photons plus ultrasound: imaging and sensing. SPIE, pp 63–74

    Google Scholar 

  111. Kircher MF, de la Zerda A, Jokerst JV, Zavaleta CL, Kempen PJ, Mittra E, Pitter K, Huang R, Campos C, Habte F, Sinclair R, Brennan CW, Mellinghoff IK, Holland EC, Gambhir SS (2012) A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med 18(5):829–834. https://doi.org/10.1038/nm.2721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lasch P, Haensch W, Naumann D, Diem M (2004) Imaging of colorectal adenocarcinoma using FT-IR microspectroscopy and cluster analysis. Biochim Biophys Acta 1688(2):176–186. https://doi.org/10.1016/j.bbadis.2003.12.006

    Article  PubMed  CAS  Google Scholar 

  113. Tang XC, Pikal MJ, Taylor LS (2002) A spectroscopic investigation of hydrogen bond patterns in crystalline and amorphous phases in dihydropyridine calcium channel blockers. Pharm Res 19(4):477–483. https://doi.org/10.1023/a:1015147729564

    Article  PubMed  CAS  Google Scholar 

  114. Boskey AL, Mendelsohn R (2005) Infrared spectroscopic characterization of mineralized tissues. Vib Spectrosc 38(1–2):107–114. https://doi.org/10.1016/j.vibspec.2005.02.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kidder LH, Colarusso P, Stewart SA, Levin IW, Appel NM, Lester DS, Pentchev PG, Lewis EN (1999) Infrared spectroscopic imaging of the biochemical modifications induced in the cerebellum of the Niemann-pick type C mouse. J Biomed Opt 4(1):7–13. https://doi.org/10.1117/1.429915

    Article  PubMed  CAS  Google Scholar 

  116. Lasch P, Boese M, Pacifico A, Diem M (2002) FT-IR spectroscopic investigations of single cells on the subcellular level. Vib Spectrosc 28(1):147–157

    Article  CAS  Google Scholar 

  117. Choo LP, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) In situ characterization of beta-amyloid in Alzheimer’s diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71(4):1672–1679. https://doi.org/10.1016/S0006-3495(96)79411-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Mukherjee S, Chowdhury D, Kotcherlakota R, Patra S, B V, Bhadra MP, Sreedhar B, Patra CR (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4(3):316–335. https://doi.org/10.7150/thno.7819

  119. Barsukov Y, Macdonald JR (2012) Electrochemical impedance spectroscopy. Charact Mater 2:898-913

    Google Scholar 

  120. DeNardo SJ, DeNardo GL, Miers LA, Natarajan A, Foreman AR, Gruettner C, Adamson GN, Ivkov R (2005) Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 11(19):7087s–7092s

    Article  PubMed  CAS  Google Scholar 

  121. Silva JG, Sánchez V, Polo SM, González CA (2013) Expression of c-erbB-2 in breast cancer cell lines as experimental receptor of magnetic nanoparticles. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 4498–4501

    Google Scholar 

  122. Malagrino TRS, Godoy AP, Barbosa JM, Lima AGT, Sousa NCO, Pedrotti JJ, Garcia PS, Paniago RM, Andrade LM, Domingues SH, Silva WM, Ribeiro H, Taha-Tijerina J (2022) Multifunctional hybrid MoS(2)-PEGylated/Au nanostructures with potential theranostic applications in biomedicine. Nanomaterials (Basel) 12(12):2053. https://doi.org/10.3390/nano12122053

    Article  PubMed  CAS  Google Scholar 

  123. Silva JG, Cárdenas RA, Quiróz AR, Sánchez V, Lozano LM, Pérez NM, López J, Villanueva C, González CA (2014) Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension. Physiol Meas 35(6):931

    Article  PubMed  Google Scholar 

  124. Gao L, Smith RT (2015) Optical hyperspectral imaging in microscopy and spectroscopy—a review of data acquisition. J Biophotonics 8(6):441–456. https://doi.org/10.1002/jbio.201400051

    Article  PubMed  Google Scholar 

  125. Zhang Y, Wu X, He L, Meng C, Du S, Bao J, Zheng Y (2020) Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl Cancer Res 9(2):1265–1277. https://doi.org/10.21037/tcr.2019.12.53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Li Q, He X, Wang Y, Liu H, Xu D, Guo F (2013) Review of spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt 18(10):100901. https://doi.org/10.1117/1.JBO.18.10.100901

    Article  PubMed  CAS  Google Scholar 

  127. Bird B, Bedrossian K, Laver N, Miljkovic M, Romeo MJ, Diem M (2009) Detection of breast micro-metastases in axillary lymph nodes by infrared micro-spectral imaging. Analyst 134(6):1067–1076. https://doi.org/10.1039/b821166c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Verdonck M, Denayer A, Delvaux B, Garaud S, De Wind R, Desmedt C, Sotiriou C, Willard-Gallo K, Goormaghtigh E (2016) Characterization of human breast cancer tissues by infrared imaging. Analyst 141(2):606–619. https://doi.org/10.1039/c5an01512j

    Article  PubMed  CAS  Google Scholar 

  129. Boucheron LE, Bi Z, Harvey NR, Manjunath B, Rimm DL (2007) Utility of multispectral imaging for nuclear classification of routine clinical histopathology imagery. BMC Cell Biol 8(Suppl 1):S8. https://doi.org/10.1186/1471-2121-8-S1-S8

  130. Berisha S, Lotfollahi M, Jahanipour J, Gurcan I, Walsh M, Bhargava R, Van Nguyen H, Mayerich D (2019) Deep learning for FTIR histology: leveraging spatial and spectral features with convolutional neural networks. Analyst 144(5):1642–1653. https://doi.org/10.1039/c8an01495g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752. https://doi.org/10.1038/35021093

    Article  PubMed  CAS  Google Scholar 

  132. Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC (2017) Satellite-like gold nanocomposites for targeted mass spectrometry imaging of tumor tissues. Nanotheranostics 1(2):141–153. https://doi.org/10.7150/ntno.18897

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Tahiliani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahiliani, S., Lukhmana, N., Aravamudhan, S. (2024). Theranostic Applications of Functional Nanomaterials Using Microscopic and Spectroscopic Techniques. In: Madhusudhan, A., Purohit, S.D., Prasad, R., Husen, A. (eds) Functional Smart Nanomaterials and Their Theranostics Approaches. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6597-7_4

Download citation

Publish with us

Policies and ethics