Skip to main content

Magnetic Nanoparticles in Stimuli-Responsive Drug Delivery Systems

  • Chapter
  • First Online:
Theranostic Iron-Oxide Based Nanoplatforms in Oncology

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 86 Accesses

Abstract

There has been a lot of interest in the design and development of a multifunctional and stimulus-responsive magnetic nanoparticle (MNP)-based drug delivery system for the detection and treatment of cancer. However, stable in vitro and in vivo and in vivo magnetic iron oxide nanoparticles, strong biocompatibility, high loading effectiveness, and regulated drug release are necessary for their efficient absorption into biomedical systems. To get over these difficulties, surface-functionalized magnetic iron oxide nanoparticles were developed utilizing tailored surface ligands. These nanoparticles offer novel implications for MNP-based drug delivery systems in cancer therapy and imaging. Additionally, to improve the efficacy of the MNP-based delivery system, stimuli-responsive ligand synthesis and design have been integrated with the engineering of several physicochemical characteristics into MNPs. This chapter provides a concise summary of recent advances in the design of stimuli-responsive, multifunctional MNP-based drug delivery systems. It begins by presenting various surface ligands that are employed to create various stimuli-responsive MNP-based delivery systems (see below figure). It then goes over a few techniques for creating stimuli-responsive MNP-based delivery systems (see below figure).

Abstract’s hierarchical chart of various surface ligands for MNP-based delivery system development (discussed in depth in this chapter)

Abstract’s hierarchical chart of the most popular methods in developing MNP-based drug delivery systems (discussed in depth in this chapter)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asua JM (2018) Challenges in polymerization in dispersed media. Polym React Eng Dispersed Syst II:1–22

    Google Scholar 

  • Bajaj A, Samanta B, Yan H, Jerry DJ, Rotello VM (2009) Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J Mater Chem 19(35):6328–6331

    Article  Google Scholar 

  • Banchelli M, Nappini S, Montis C, Bonini M, Canton P, Berti D, Baglioni P (2014) Magnetic nanoparticle clusters as actuators of ssDNA release. Phys Chem Chem Phys 16(21):10023–10031

    Article  Google Scholar 

  • Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282

    Article  Google Scholar 

  • Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF (2014) The effect of surface charge of functionalized Fe3O4 nanoparticles on protein adsorption and cell uptake. Biomaterials 35(24):6389–6399

    Article  Google Scholar 

  • Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 21(25):9239–9247

    Article  Google Scholar 

  • Chen Y-W, Liu T-Y, Chang P-H, Hsu P-H, Liu H-L, Lin H-C, Chen S-Y (2016) A theranostic nrGO@ MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 8(25):12648–12657

    Article  Google Scholar 

  • Cheng Z, Dai Y, Kang X, Li C, Huang S, Lian H, Hou Z, Ma P, Lin J (2014) Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI. Biomaterials 35(24):6359–6368

    Article  Google Scholar 

  • Chowdhuri AR, Bhattacharya D, Sahu SK (2016) Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans 45(7):2963–2973

    Article  Google Scholar 

  • Davis K, Cole B, Ghelardini M, Powell BA, Mefford OT (2016) Quantitative measurement of ligand exchange with small-molecule ligands on iron oxide nanoparticles via radioanalytical techniques. Langmuir 32(51):13716–13727

    Article  Google Scholar 

  • Derfus A (2007) G. vonMaltzahn, TJ Harris, T. Duza, KS Vecchio, E. Ruoslahti, SN Bhatia. Adv Mater 19:3932–3936

    Article  Google Scholar 

  • Elzoghby AO, Samy WM, Elgindy NA (2012) Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release 161(1):38–49

    Article  Google Scholar 

  • Fan Z, Shelton M, Singh AK, Senapati D, Khan SA, Ray PC (2012) Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano 6(2):1065–1073

    Article  Google Scholar 

  • Faramarzi A-R, Barzin J, Mobedi H (2017) Producing PLGA fine particles containing high magnetite nanoparticles by using the electrospray technique. J Polym Res 24:1–13

    Article  Google Scholar 

  • Gao G, Heo H, Lee J, Lee D (2010a) An acidic pH-triggered polymeric micelle for dual-modality MR and optical imaging. J Mater Chem 20(26):5454–5461

    Article  Google Scholar 

  • Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H, Lee JH, Lee DS (2010b) Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small 6(11):1201–1204

    Article  Google Scholar 

  • Gao GH, Lee JW, Nguyen MK, Im GH, Yang J, Heo H, Jeon P, Park TG, Lee JH, Lee DS (2011) PH-responsive polymeric micelle based on PEG-poly (β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area. J Control Release 155(1):11–17

    Article  Google Scholar 

  • Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5(11):1249

    Article  Google Scholar 

  • Gou M, Li S, Zhang L, Li L, Wang C, Su Z (2016) Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery. Chem Commun 52(74):11068–11071

    Article  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021.

    Google Scholar 

  • Gutiérrez L, Costo R, Grüttner C, Westphal F, Gehrke N, Heinke D, Fornara A, Pankhurst QA, Johansson C, Veintemillas-Verdaguer S (2015) Synthesis methods to prepare single-and multi-core iron oxide nanoparticles for biomedical applications. Dalton Trans 44(7):2943–2952

    Article  Google Scholar 

  • Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 9(2):172–178

    Article  Google Scholar 

  • Hu B, Dai F, Fan Z, Ma G, Tang Q, Zhang X (2015) Nanotheranostics: Congo red/Rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv Mater 27(37):5499–5505

    Article  Google Scholar 

  • Hu SH, Liu DM, Tung WL, Liao CF, Chen SY (2008) Surfactant-free, self-assembled PVA-iron oxide/silica core–shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency. Adv Func Mater 18(19):2946–2955

    Article  Google Scholar 

  • Huang J, Shu Q, Wang L, Wu H, Wang AY, Mao H (2015) Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39:105–113

    Article  Google Scholar 

  • Jain K, Vedarajan R, Watanabe M, Ishikiriyama M, Matsumi N (2015) Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polym Chem 6(38):6819–6825

    Article  Google Scholar 

  • Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361

    Google Scholar 

  • Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13(3):1059–1064

    Article  Google Scholar 

  • Karrimzadeh I, Faryadi M (2019) Superparamagnetic nanoparticles doped with copper cations and surface-capped by polyvinylpyrrolidone for biomedical applications. Anal Bioanal Electrochem 11:657–667

    Google Scholar 

  • Kim M-J, Jang D-H, Lee Y-I, Jung HS, Lee H-J, Choa Y-H (2011) Preparation, characterization, cytotoxicity and drug release behavior of liposome-enveloped paclitaxel/Fe3O4 nanoparticles. J Nanosci Nanotechnol 11(1):889–893

    Article  Google Scholar 

  • Kitagawa S (2014) Metal–organic frameworks (MOFs). Chem Soc Rev 43(16):5415–5418

    Article  Google Scholar 

  • Kumar CS, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63(9):789–808

    Article  Google Scholar 

  • Lee H, Shin T-H, Cheon J, Weissleder R (2015) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724

    Article  Google Scholar 

  • Lee N, Cho HR, Oh MH, Lee SH, Kim K, Kim BH, Shin K, Ahn T-Y, Choi JW, Kim Y-W (2012) Multifunctional Fe3O4/TaOx Core/Shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. J Am Chem Soc 134(25):10309–10312

    Article  Google Scholar 

  • Lee S-F, Zhu X-M, Wang Y-XJ, Xuan S-H, You Q, Chan W-H, Wong C-H, Wang F, Yu JC, Cheng CH (2013) Ultrasound, pH, and magnetically responsive crown-ether-coated core/shell nanoparticles as drug encapsulation and release systems. ACS Appl Mater Interfaces 5(5):1566–1574

    Article  Google Scholar 

  • Li F, Lu J, Kong X, Hyeon T, Ling D (2017) Adv Mater 29(14):1605897.

    Google Scholar 

  • Li H, Yan K, Shang Y, Shrestha L, Liao R, Liu F, Li P, Xu H, Xu Z, Chu PK (2015) Folate-bovine serum albumin functionalized polymeric micelles loaded with superparamagnetic iron oxide nanoparticles for tumor targeting and magnetic resonance imaging. Acta Biomater 15:117–126

    Article  Google Scholar 

  • Li W-M, Chen S-Y, Liu D-M (2013) In situ doxorubicin–CaP shell formation on amphiphilic gelatin–iron oxide core as a multifunctional drug delivery system with improved cytocompatibility, pH-responsive drug release and MR imaging. Acta Biomater 9(2):5360–5368

    Article  Google Scholar 

  • Liu G, Zhou L, Su Y, Dong C-M (2014a) An NIR-responsive and sugar-targeted polypeptide composite nanomedicine for intracellular cancer therapy. Chem Commun 50(83):12538–12541

    Article  Google Scholar 

  • Liu L, Zeng J, Zhao X, Tian K, Liu P (2017) Independent temperature and pH dual-responsive PMAA/PNIPAM microgels as drug delivery system: effect of swelling behavior of the core and shell materials in fabrication process. Colloids Surf A: Phys Chemical Eng Asp 526:48–55.

    Google Scholar 

  • Liu Y, Chen T, Wu C, Qiu L, Hu R, Li J, Cansiz S, Zhang L, Cui C, Zhu G (2014b) Facile surface functionalization of hydrophobic magnetic nanoparticles. J Am Chem Soc 136(36):12552–12555

    Article  Google Scholar 

  • Ma Q, Nakane Y, Mori Y, Hasegawa M, Yoshioka Y, Watanabe TM, Gonda K, Ohuchi N, Jin T (2012) Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors. Biomaterials 33(33):8486–8494

    Article  Google Scholar 

  • Mahmoudi, M., Sant S, Wang B, Laurent S, Sen T (2011). Adv Drug Delivery Rev

    Google Scholar 

  • Malvindi MA, De Matteis V, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PloS One 9(1):e85835

    Google Scholar 

  • Mattix B, Olsen TR, Moore T, Casco M, Simionescu D, Visconti RP, Alexis F (2014) Accelerated iron oxide nanoparticle degradation mediated by polyester encapsulation within cellular spheroids. Adv Func Mater 24(6):800–807

    Article  Google Scholar 

  • Mendes M, Sousa JJ, Pais A, Vitorino C (2018) Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 10(4):181

    Article  Google Scholar 

  • Mohammed L, Ragab D, Gomaa H (2016) Bioactivity of hybrid polymeric magnetic nanoparticles and their applications in drug delivery. Curr Pharm Des 22(22):3332–3352

    Article  Google Scholar 

  • Palma S, Marciello M, Carvalho A, Veintemillas-Verdaguer S (2015) M. d. P. Morales and ACA Roque. J Colloid Interface Sci 437(147):1997–2017

    Google Scholar 

  • Park W, Chen J, Cho S, Park S-J, Larson AC, Na K, Kim D-H (2016) Acidic pH-triggered drug-eluting nanocomposites for magnetic resonance imaging-monitored intra-arterial drug delivery to hepatocellular carcinoma. ACS Appl Mater Interfaces 8(20):12711–12719

    Article  Google Scholar 

  • Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S (2011) HSA coated iron oxide nanoparticles as drug delivery vehicles for cancer therapy. Mol Pharm 8(5):1669–1676

    Article  Google Scholar 

  • Ramanujam R, Sundaram B, Janarthanan G, Devendran E, Venkadasalam M, Milton MJ (2018) Biodegradable polycaprolactone nanoparticles based drug delivery systems: a short review. Biosci Biotechnol Res Asia 15(3):679–685

    Article  Google Scholar 

  • Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Article  Google Scholar 

  • Schmidtke C, Eggers R, Zierold R, Feld A, Kloust H, Wolter C, Ostermann J, Merkl J-P, Schotten T, Nielsch K (2014) Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties. Langmuir 30(37):11190–11196

    Article  Google Scholar 

  • Shah SA, Majeed A, Shafique M, Rashid K, Awan S-U (2014) Cell viability study of thermo-responsive core–shell superparamagnetic nanoparticles for multimodal cancer therapy. Appl Nanosci 4:227–232

    Article  Google Scholar 

  • Shen J-M, Yin T, Tian X-Z, Gao F-Y, Xu S (2013) Surface charge-switchable polymeric magnetic nanoparticles for the controlled release of anticancer drug. ACS Appl Mater Interfaces 5(15):7014–7024

    Article  Google Scholar 

  • Shi P, Qu K, Wang J, Li M, Ren J, Qu X (2012) PH-responsive NIR enhanced drug release from gold nanocages possesses high potency against cancer cells. Chem Commun 48(61):7640–7642

    Article  Google Scholar 

  • Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discovery Today 19(4):474–481

    Article  Google Scholar 

  • Skouras A, Mourtas S, Markoutsa E, De Goltstein M-C, Wallon C, Catoen S, Antimisiaris SG (2011) Magnetoliposomes with high USPIO entrapping efficiency, stability and magnetic properties. Nanomed Nanotechnol Biol Med 7(5):572–579

    Google Scholar 

  • Smolensky ED, Park HYE, Berquó TS, Pierre VC (2011) Surface functionalization of magnetic iron oxide nanoparticles for MRI applications–effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging 6(4):189–199

    Article  Google Scholar 

  • Sood A, Arora V, Shah J, Kotnala R, Jain TK (2016) Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J Exp Nanosci 11(5):370–382

    Article  Google Scholar 

  • Stephen ZR, Kievit FM, Veiseh O, Chiarelli PA, Fang C, Wang K, Hatzinger SJ, Ellenbogen RG, Silber JR, Zhang M (2014) Redox-responsive magnetic nanoparticle for targeted convection-enhanced delivery of O 6-benzylguanine to brain tumors. ACS Nano 8(10):10383–10395

    Article  Google Scholar 

  • Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113

    Article  Google Scholar 

  • Tong S, Hou S, Ren B, Zheng Z, Bao G (2011) Self-assembly of phospholipid–PEG coating on nanoparticles through dual solvent exchange. Nano Lett 11(9):3720–3726

    Article  Google Scholar 

  • Tran TT-D, Van Vo T, Tran PH-L (2015) Design of iron oxide nanoparticles decorated oleic acid and bovine serum albumin for drug delivery. Chem Eng Res Des 94:112–118

    Article  Google Scholar 

  • Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22):10729–10752

    Article  Google Scholar 

  • Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    Article  Google Scholar 

  • Vallet-Regí M (2012) Mesoporous silica nanoparticles: their projection in nanomedicine. Int Sch Res Not

    Google Scholar 

  • Verma NK, Crosbie-Staunton K, Satti A, Gallagher S, Ryan KB, Doody T, McAtamney C, MacLoughlin R, Galvin P, Burke CS (2013) Magnetic core-shell nanoparticles for drug delivery by nebulization. Journal of Nanobiotechnology 11(1):1–12

    Article  Google Scholar 

  • Wadajkar AS, Menon JU, Tsai Y-S, Gore C, Dobin T, Gandee L, Kangasniemi K, Takahashi M, Manandhar B, Ahn J-M (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34(14):3618–3625

    Article  Google Scholar 

  • Wang C, Xu H, Liang C, Liu Y, Li Z, Yang G, Cheng L, Li Y, Liu Z (2013) Iron oxide@ polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 7(8):6782–6795

    Article  Google Scholar 

  • Wang W, Ji X, Na HB, Safi M, Smith A, Palui G, Perez JM, Mattoussi H (2014) Design of a multi-dopamine-modified polymer ligand optimally suited for interfacing magnetic nanoparticles with biological systems. Langmuir 30(21):6197–6208

    Article  Google Scholar 

  • Wang X-G, Dong Z-Y, Cheng H, Wan S-S, Chen W-H, Zou M-Z, Huo J-W, Deng H-X, Zhang X-Z (2015) A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 7(38):16061–16070

    Article  Google Scholar 

  • Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116(18):10473–10512

    Article  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015)Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Google Scholar 

  • Xiao Y, Du J (2020) Superparamagnetic nanoparticles for biomedical applications. J Mater Chem B 8(3):354–367

    Article  Google Scholar 

  • Xu H, Cheng L, Wang C, Ma X, Li Y, Liu Z (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32(35):9364–9373

    Article  Google Scholar 

  • Yang C, Guo W, Cui L, An N, Zhang T, Lin H, Qu F (2014) PH-responsive magnetic core–shell nanocomposites for drug delivery. Langmuir 30(32):9819–9827

    Article  Google Scholar 

  • Yang HY, Jang M-S, Gao GH, Lee JH, Lee DS (2016) PH-Responsive biodegradable polymeric micelles with anchors to interface magnetic nanoparticles for MR imaging in detection of cerebral ischemic area. Nanoscale 8(25):12588–12598

    Article  Google Scholar 

  • Zhang Q, Nurumbetov G, Simula A, Zhu C, Li M, Wilson P, Kempe K, Yang B, Tao L, Haddleton DM (2016) Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles. Polym Chem 7(45):7002–7010

    Article  Google Scholar 

  • Zhang Y, Wang SN, Ma S, Guan JJ, Li D, Zhang XD, Zhang ZD (2008)Self‐assembly multifunctional nanocomposites with Fe3O4 magnetic core and CdSe/ZnS quantum dots shell. J Biomed Mater Res Part A: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 85(3):840–846

    Google Scholar 

  • Zhao J, Wang H, Liu J, Deng L, Liu J, Dong A, Zhang J (2013) Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin. Biomacromol 14(11):3973–3984

    Article  Google Scholar 

  • Zhong S, Zhang H, Liu Y, Wang G, Shi C, Li Z, Feng Y, Cui X (2017) Folic acid functionalized reduction-responsive magnetic chitosan nanocapsules for targeted delivery and triggered release of drugs. Carbohyd Polym 168:282–289

    Article  Google Scholar 

  • Zhou X, Yang J, Zhong M, Xia Q, Li B, Duan X, Wei Z (2020) Intercalation of two-dimensional layered materials. Chem Res Chin Univ 36(4):584–596

    Article  Google Scholar 

  • Zhu J, Lu Y, Li Y, Jiang J, Cheng L, Liu Z, Guo L, Pan Y, Gu H (2014) Synthesis of Au–Fe3O4 heterostructured nanoparticles for in vivo computed tomography and magnetic resonance dual model imaging. Nanoscale 6(1):199–202

    Article  Google Scholar 

  • Zhu X, Huang H, Zhang Y, Zhang H, Hou L, Zhang Z (2017) Cit/CuS@ Fe3O4-based and enzyme-responsive magnetic nanoparticles for tumor chemotherapy, photothermal, and photodynamic therapy. J Biomater Appl 31(7):1010–1025

    Article  Google Scholar 

  • Zhu Y, Tao C (2015) DNA-capped Fe3O4/SiO2 magnetic mesoporous silica nanoparticles for potential controlled drug release and hyperthermia. RSC Adv 5(29):22365–22372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Magnetic Nanoparticles in Stimuli-Responsive Drug Delivery Systems. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_6

Download citation

Publish with us

Policies and ethics