Skip to main content

Artificial Intelligence and Machine Learning in Clinical Research and Patient Remediation

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning in Healthcare

Abstract

With a significant increase in the amount of data generated in healthcare and associated research activities, researchers need an effective, efficient, and novel approach to store, manage, and analyze the collected data. Artificial intelligence (AI) and Machine learning (ML) are the new technologies that have emerged to serve healthcare data-related complexity and innovations efficiently. While AI is an application of computational algorithms to segregate, classify, analyze, and draw conclusions from a large set of data, ML is a subset of AI, which refers to the process of building statistical models to predict the outcomes or results from the given data. AI and ML techniques find applications, where the data is generated regularly and at any instance, is very large and complex for any human to process it. Hence, large-scale automation would help in deriving a correct inference thereby saving cost and time. Recent developments have shown that AI and ML have a comprehensive role in the future of healthcare research. The key areas of healthcare applications involve image analysis and diagnosis, recommendation of treatment, genome sequencing, statistical analysis of drugs, and similar administrative activities. These applications of AI and ML in the healthcare and medical fields possess unique challenges related to interpretation, performance and reliability. Therefore, in the chapter, we will cover the AI and ML techniques employed in image analysis and treatment recommendation, prediction of deceases, conducting drugs clinical trials and healthcare administration. We will also learn about the various challenges related to AI and ML in the healthcare and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arshadi, A. K., Webb, J., Salem, M., Cruz, E., Thomson, S. C., Ghadirian, N., Collins, J., Cecilia, E. D., Kelly, B., Goodarzi, H., & Yuan, J. S. (2020). Artificial intelligence for covid-19 drug discovery and vaccine development. Frontiers in Artificial Intelligence, 3, 2624.

    Google Scholar 

  • Aganezov, S., et al. (2022). A complete reference genome improves analysis of human genetic variation. Science, 376, eabl3533.

    Google Scholar 

  • Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H. (2007). Greedy layer-wise training of deep networks. Proceedings of Advances in Neural Information Processing Systems, 153

    Google Scholar 

  • Berisha, V., Krantsevich, C., Hahn, P. R., Dasarthy, G., Turaga, P., & Liss, J. (2021). Digital medicine and the curse of dimensionality. NPJ Digital Medicine, 4, 153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boussard, T. H., Bozkurt, S., Ioannidis, J. P. A., & Shah, N. H. (2020). MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care. Journal of the American Medical Informatics Association, 12, 2011.

    Article  Google Scholar 

  • Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. PMLR, 81, 77.

    Google Scholar 

  • Caster, O., Aoki, Y., Gattepaille, L. M., & Grundmark, B. (2020). Disproportionality analysis for pharmacovigilance signal detection in small databases or subsets: recommendations for limiting false-positive associations. Drug Safety, 43, 479.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, A., & Lu, T. P. (2019). Gene-gene interaction: The curse of dimensionality. Annals of Translational Medicine, 7, 813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Li, K., Rong, H., Bilal, K., Yang, N., & Li, K. (2018a). A disease diagnosis and treatment recommendation system based on big data mining and cloud computing. Information Science, 435, 124.

    Article  Google Scholar 

  • Chen, J., Druhl, E., Ramesh, B. P., Houston, T. K., Brandt, C. A., Zulman, D. M., Vimalananda, V. G., Malkani, S., & Yu, H. (2018b). A natural language processing system that links medical terms in electronic health record notes to lay definitions: System development using physician reviews. Journal of Medical Internet Research, 20, e26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y. H., He, C., Riviere, J. E., Monteiro-Riviere, N. A., & Lin, Z. (2020). Meta-analysis of nanoparticle delivery to tumors using a physiologically based pharmacokinetic modeling and simulation approach. ACS Nano, 14, 3075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chin, C. S., & Khalak, A. (2019). https://doi.org:https://doi.org/10.1101/705616

  • Clark, M. M., et al. (2019). Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Science Translational Medicine, 11, 489.

    Article  Google Scholar 

  • Cokol-Cakmak, M., Cetiner, S., Erdem, N., Bakan, F., & Cokol, M. (2020). Guided screen for synergistic three-drug combinations. PLoS ONE, 15, e0235929.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cook-Deegan, R., & Heaney, C. (2010). Patents in genomics and human genetics. Annual Review of Genomics and Human Genetics, 11, 383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinoza, P. M., Aquino-Santos, R., Cárdenas-Benitez, N., Aguilar-Velasco, J., Buenrostro-Segura, C., Edwards-Block, A., & Medina-Cass, A. (2014). WiSPH: A wireless sensor net- work-based home care monitoring system. Sensors, 14, 7096.

    Article  Google Scholar 

  • Ferreira, A. P., & Tobyn, M. (2015). Multivariate analysis in the pharmaceutical industry: Enabling process understanding and improvement in the PAT and QbD era. Pharmaceutical Development and Technology, 20, 513.

    Article  PubMed  Google Scholar 

  • Fowler, G. A. (2020). Black Lives Matter could change facial recognition forever—if Big Tech doesn’t stand in the way. Washington Post. https://www.washingtonpost.com/technology/2020/06/12/facial-recognition-ban/

  • Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial nets. Communications of the ACM, 63(11), 139.

    Article  Google Scholar 

  • Greco, L., Percannella, G., Ritrovato, P., Tortorella, F., & Vento, M. (2020). Trends in IoT based solutions for health care: Moving AI to the edge. Pattern Recognition Letters, 135, 356.

    Article  Google Scholar 

  • Griffiths, S. (2016). This AI software can tell if you’re at risk from cancer before symptoms appear. Wired Science. https://www.wired.co.uk/article/cancer-risk-ai-mammograms

  • Hammond, G., Johnston, K., Huang, K., & Maddox, K. E. J. (2020). Social determinants of health improve predictive accuracy of clinical risk models for cardiovascular hospitalization, annual cost, and death. Circulation: Cardiovascular Quality and Outcomes, 13, e006752.

    PubMed  Google Scholar 

  • Hamraz, M., Khan, Z., Khan, D. M., Gul, N., Ali, A., & Aldahmini, S. (2022). Gene selection in binary classification problems within functional genomics experiments via robust fisher score. IEEE Access, 10, 51682.

    Article  Google Scholar 

  • Hassan, M., et al. (2022). Innovations in genomics and big data analytics for personalized medicine and health care: A review. International Journal of Molecular Sciences, 23, 4645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hastings, J. F., O’Donnell, Y. E. I., Fey, D., & Croucher, D. R. (2020). Applications of personalised signalling network models in precision oncology. Pharmacology and Therapeutics, 212, 107555.

    Article  PubMed  Google Scholar 

  • Haugeland, J. (1985). Artificial intelligence: the very idea. MIT Press.

    Google Scholar 

  • He, Y., Xiang, Z., & Mobley, H. L. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010, 29725.

    Article  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arxiv:1512.03385.

    Google Scholar 

  • Heinson, A. I., Gunawardana, Y., Moesker, B., Denman Hume, C. C., Vataga, E., Hall, Y., Styalianou, E., McShane, H., Williams, A., Niranjan, M., & Woelk, C. H. (2017). Enhancing the biological relevance of machine learning classifiers for reverse vaccinology. International Journal of Molecular Sciences, 18, 312

    Google Scholar 

  • Hejase, H. A., & Chan, C. (2015). Improving drug sensitivity prediction using different types of data. CPT: Pharmacometrics and Systems Pharmacology, 4, e2.

    PubMed  PubMed Central  Google Scholar 

  • Hinton, G. (2010). A practical guide to training restricted boltzmann machines. Momentum, 9, 926.

    Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313, 504.

    Article  PubMed  Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735.

    Article  PubMed  Google Scholar 

  • Hsieh, T. C., et al. (2019). PEDIA: Prioritization of exome data by image analysis. Genetics in Medicine, 21, 2807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang, S., Kim, E., Lee, I., & Marcotte, E. M. (2015). Systematic comparison of variant calling pipelines using gold standard personal exome variants. Science and Reports, 5, 17875.

    Article  Google Scholar 

  • Hyder, A. (2018). Public funding for genomics and the return on investment: a public health perspective. Perspectives in Biology and Medicine, 61, 572.

    Article  PubMed  Google Scholar 

  • Ihnaini, B., Khan, M. A., Khan, T. A., Abbas, S., Daoud, M. S., Ahmad, M., & Khan, M. A. (2021). A smart healthcare recommendation system for multidisciplinary diabetes patients with data fusion based on deep ensemble learning. Computational Intelligence and Neuroscience, 11, 4243700.

    Google Scholar 

  • Jones, K. M., Ankeny, R. A., & Cook-Deegan, R. (2018). The Bermuda triangle: The pragmatics, policies, and principles for data sharing in the history of the human genome project. Journal of the History of Biology, 51, 693.

    Article  PubMed Central  Google Scholar 

  • Karwasra, R., Fatihi, S., Raza, K., Singh, S., Khanna, K., Sharma, S., Sharma, N., & Varma, S. (2020). Filgrastim loading in PLGA and SLN nanoparticulate system: A bioinformatics approach. Drug Development and Industrial Pharmacy, 46, 1354.

    Article  PubMed  Google Scholar 

  • Klonoff, D. C. (2017). Fog computing and edge computing architectures for processing data from diabetes devices connected to the medical internet of things. Journal of Diabetes Science and Technology, 11, 647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Proceedings of Advances in Neural Information Processing Systems, 1097

    Google Scholar 

  • Lander, E. S., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860.

    Article  PubMed  Google Scholar 

  • Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20, 318.

    Article  PubMed  Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86, 2278.

    Article  Google Scholar 

  • Libbrecht, M. W., & Noble, W. S. (2015). Machine learning applications in genetics and genomics. Nature Reviews Genetics, 16, 321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logsdon, G. A., Vollger, M. R., & Eichler, E. E. (2020). Long-read human genome sequencing and its applications. Nature Reviews Genetics, 21, 597.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz, D. A., Sathe, S., Einstein, J. M., & Yeo, G. W. (2020). Direct RNA sequencing enables m(6)A detection in endogenous transcript isoforms at base-specific resolution. RNA, 26, 19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik-Sheriff, R. S., et al. (2020). BioModels-15 years of sharing computational models in life science. Nucleic Acids Research, 48, D407.

    PubMed  Google Scholar 

  • Martin, J., Cervero, A., Mir, P., Martinez, J. A. C., Pellicer, A., & Simon, C. (2013). The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertility and Sterility, 99, 1054.

    Article  PubMed  Google Scholar 

  • Mathur, N., Paul, G., Irvine, J., Abuhelala, M., Buis, A., & Glesk, I. (2016). A practical design and implementation of a low cost platform for remote monitoring of lower limb health of amputees in the developing world. IEEE Access, 4, 7440.

    Article  Google Scholar 

  • McCarthy, J. (2019). One in five U.S. adults use health apps, wearable trackers. Gallup website. https://news.gallup.com/poll/269096/one-five-adults-health-appswearable-trackers.aspx

  • Miotto, R., Li, L., Kidd, B. A., & Dudley, J. T. (2016). Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Science and Reports, 6, 26094.

    Article  Google Scholar 

  • Misra, B. B., Langefeld, C. D., Olivier, M., & Cox, L. A. (2018). Integrated omics: tools, advances, and future approaches. Journal of Molecular Endocrinology, 62, R21.

    Article  Google Scholar 

  • Noguchi, Y., Tachi, T., & Teramachi, H. (2019). Review of statistical methodologies for detecting drug-drug interactions using spontaneous reporting systems. Frontiers in Pharmacology, 10, 1319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurk, S., et al. (2022). The complete sequence of a human genome. Science, 376, 44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature visualization. Distill, 2.

    Google Scholar 

  • Ong, E., Wang, H., Wong, M. U., Seetharaman, M., Valdez, N., & He, Y. (2020). Vaxign-ML: Supervised machine learning reverse vaccinology model for improved prediction of bacterial protective antigens. Bioinformatics, 36, 3185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozsoy, M. G., Ozyer, T., Polat, F., & Alhajj, R. (2018). Realizing drug repositioning by adapting a recommendation system to handle the process. BMC Bioinformatics, 19, 136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizza, M., Scarlato, V., Masignani, V., Giuliani, M. M., Aricò, B., Comanducci, M., Jennings, G. T., Baldi, L., Bartolini, E., Capecchi, B., Galeotti, C. L., Luzzi, E., Manetti, R., Marchetti, E., Mora, M., Nuti, S., Ratti, G., Santini, L., Savino, S.,…Rappuoli, R. (2000). Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science, 287, 1816.

    Google Scholar 

  • Prada-Ramallal, G., Takkouche, B., & Figueiras, A. (2019). Bias in pharmacoepidemiologic studies using secondary health care databases: A scoping review. BMC Medical Research Methodology, 19, 53.

    Article  PubMed  PubMed Central  Google Scholar 

  • New Drug Development Process. http://ca-biomed.org/wp-content/uploads/2020/08/FS-DrugDevelop.pdf

  • R. F. Service. (2006). Gene sequencing: The race for the $1000 genome. Science, 311, 1544.

    Article  Google Scholar 

  • Rabbani, M., Kanevsky, J., Kafi, K., Chandelier, F., & Giles, F. J. (2018). Role of artificial intelligence in the care of patients with non-small cell lung cancer. European Journal of Clinical Investigation, 48, e12901.

    Article  Google Scholar 

  • Raghavan, M., et al. (2014). The genetic prehistory of the new world arctic. Science, 345, 1255832.

    Article  PubMed  Google Scholar 

  • Ran, X., Zhou, F., Zhong, M., Liu, Y., & Zhang, J. (2020). Innovative applications of patient experience big data in modern hospital management improve healthcare quality. Chinese Medical Sciences Journal, 35, 366.

    Article  PubMed  Google Scholar 

  • Ranganathan, P., Pramesh, C. S., & Buyse, M. (2016). Common pitfalls in statistical analysis: The perils of multiple testing. Perspectives in Clinical Research, 7, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3, 445.

    Article  PubMed  Google Scholar 

  • Raza, K., & Alam, M. (2016). Recurrent neural network based hybrid model for reconstructing gene regulatory network. Computational Biology and Chemistry, 64, 322.

    Article  PubMed  Google Scholar 

  • Sabet, N. N., Zand, R., Zhang, Y., & Abedi, V. (2019). Artificial Intelligence transforms the future of health care. American Journal of Medicine, 132, 795.

    Article  Google Scholar 

  • La Salvia, M., Torti, E., Leon, R., Fabelo, H., Ortega, S., Vega, B. M., Callico, G. M., & Leporati, F. (2022). Deep convolutional generative adversarial networks to enhance artificial intelligence in healthcare: a skin cancer application. Sensors (Basel) 22.

    Google Scholar 

  • Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences USA, 74, 5463.

    Article  Google Scholar 

  • Sati, S., et al. (2012). High resolution methylome map of rat indicates role of intragenic DNA methylation in identification of coding region. PLoS ONE, 7, e31621.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shafin, K., et al. (2020). Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. Nature Biotechnology, 38, 1044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, A., Virmani, T., Pathak, V., Sharma, A., Pathak, K., Kumar, G., & Pathak, D. (2022). Artificial intelligence-based data-driven strategy to accelerate research, development, and clinical trials of COVID vaccine. BioMed Research International, 7205241.

    Google Scholar 

  • Shetta, O., & Niranjan, M. (2020). Robust subspace methods for outlier detection in genomic data circumvents the curse of dimensionality. Royal Society Open Science, 7, 190714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shieh, P., Hill, M. R., Zhang, W., Kristufek, S. L., & Johnson, J. A. (2021). Clip chemistry: Diverse (Bio)(macro)molecular and material function through breaking covalent bonds. Chemical Reviews, 121, 7059.

    Article  PubMed  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arxiv: 1409.1556.

    Google Scholar 

  • Smith, K. P., & Kirby, J. E. (2020). Image analysis and artificial intelligence in infectious disease diagnostics. Clinical Microbiology and Infection, 26, 1318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohail, M., et al. (2019). Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. Elife, 8.

    Google Scholar 

  • Stein, N., & Brooks, K. (2017). A fully automated conversational artificial intelligence for weight loss: Longitudinal observational study among overweight and obese adults. JMIR Diabetes, 2, e28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudlow, C., et al. (2015). UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine, 12, e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan, K., Varala, K., & Hudson, M. E. (2007). Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey. BMC Genomics, 8, 132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. IEEE conference on computer vision and pattern Recognition.

    Google Scholar 

  • The Social Dilemma website 2020. https://www.thesocialdilemma.com/

  • Thiele, I., & Palsson, B. O. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nature Protocols, 5, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiese, M. S., Arnold Z. C., Walker, S. D. (2015). The misuse and abuse of statistics in biomedical research. Biochemia Medica (Zagreb), 25, 5.

    Google Scholar 

  • Tringe, S. G., & Rubin, E. M. (2005). Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics, 6, 805.

    Article  PubMed  Google Scholar 

  • Tschandl, P., et al. (2020). Human-computer collaboration for skin cancer recognition. Nature Medicine, 26, 1229.

    Article  PubMed  Google Scholar 

  • Udyavar, A. R., et al. (2017). Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity. Cancer Research, 77, 1063.

    Article  PubMed  Google Scholar 

  • Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vires, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association studies. Nature Reviews Methods Primers, 1, 59.

    Article  Google Scholar 

  • 2006th Edition: drinking water standards and health advisories, environmental protection agency, United States of America (2006).

    Google Scholar 

  • UserTesting, H. (2019). Chatbot apps are on the rise but the overall customer experience (cx) falls short according to a UserTesting report. UserTesting.

    Google Scholar 

  • Vayena, E., Blasimme, A., & Cohen, I. G. (2018). Machine learning in medicine: Addressing ethical challenges. PLoS Medicine, 15, e1002689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 11, 3371.

    Google Scholar 

  • Wandelt, S., Rheinlander, A., Bux, M., Thalheim, L., Haldemann, B., Leser, U. (2012) Data management challenges in next generation sequencing. Datenbank-Spektrum, 12, 161.

    Google Scholar 

  • Wani, N., & Raza, K. (2019). IMTF-GRN: Integrative Matrix Tri-Factorization for Inference of Gene Regulatory Networks. IEEE Access, 7, 126154.

    Article  Google Scholar 

  • Wani, N., & Raza, K. (2021). MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks. PeerJ Computer Science, 7, e363.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedagedera, J. R., Afuape, A., Chirumamillia, S. K., Momiji, H., Leary, R., Dunlavey, M., Matthews, R., Abduljalil, K., Jamei, M., & Bois, F. Y. (2022). Population PBPK modeling using parametric and nonparametric methods of the Simcyp Simulator, and Bayesian samplers. CPT: Pharmacometrics and Systems Pharmacology, 11, 755.

    PubMed  PubMed Central  Google Scholar 

  • Wong, A., Otles, E., Donnelly, J. P., Krumm, A., McCullough, J., DeTroyer-Cooley, O., Pestrue, J., Phillips, M., Konye, J., Penoza, C., Ghous, M., & Singh, K. (2021). External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Internal Medicine, 181, 1065.

    Article  PubMed  Google Scholar 

  • Xiang, Y., Du, J., Fujimoto, K., Li, F., Schneider, J., & Tao, C. (2022). Application of artificial intelligence and machine learning for HIV prevention interventions. The LANCET HIV, 9, e54.

    Article  PubMed  Google Scholar 

  • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 157.

    Google Scholar 

  • Zagidullin, B., et al. (2019). DrugComg: An integrative cancer drug combination data portal. Nucleic Acids Research, 47, W43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., & Castello, A. (2017). Principal components analysis in clinical studies. Annals of Translational Medicine, 5, 351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng, S., Wang, W., Aldahdood, J., Malyutina, A., Shadbahr, T., Tanoli, Z., Pessia, A., & Tang, J. (2022). SynergyFinder plus: Toward better interpretation and annotation of drug combination screening datasets. Genomics, Proteomics and Bioinformatics, 20, 587.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, M., Dubey, V., Hackett, T.A., Kashyap, M.K. (2023). Artificial Intelligence and Machine Learning in Clinical Research and Patient Remediation. In: Yadav, D.K., Gulati, A. (eds) Artificial Intelligence and Machine Learning in Healthcare. Springer, Singapore. https://doi.org/10.1007/978-981-99-6472-7_3

Download citation

Publish with us

Policies and ethics