Skip to main content

Functionalization of Cellulose-Based Materials

  • Chapter
  • First Online:
Advanced Multifunctional Materials from Fibrous Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 201))

  • 166 Accesses

Abstract

Multifunctional hybrid materials based on nanocellulose have gradually emerged as a substitute for petroleum-based materials. In this chapter, we briefly present the latest technology in this field, including processing, functional properties, and areas of application. For example, the combination of cellulose nanocrystals (CNCs) with different types of organic or inorganic nanoparticles enables the study and analysis of multifunctional nanohybrids with important scientific and industrial applications and opens new horizons in materials science. In particular, technical analysis, including supercapacitors, solar cells and batteries, separation technology, and wastewater treatment, catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Article  Google Scholar 

  • Awan F, Islam MS, Ma Y, Yang C, Shi Z, Berry RM, Tam KC (2018) Cellulose nanocrystal–ZnO nanohybrids for controlling photocatalytic activity and UV protection in cosmetic formulation. ACS Omega 3(10):12403–12411

    Article  Google Scholar 

  • Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43(4):761–769

    Article  Google Scholar 

  • Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6(2):1048–1054

    Article  Google Scholar 

  • Bertsch P, Isabettini S, Fischer P (2017) Ion-induced hydrogel formation and nematic ordering of nanocrystalline cellulose suspensions. Biomacromol 18(12):4060–4066

    Article  Google Scholar 

  • Borghei M, Miettunen K, Greca LG, Poskela A, Lehtonen J, Lepikko S, Tardy BL, Lund P, Subramanian VR, Rojas OJ (2018) Biobased aerogels with different surface charge as electrolyte carrier membranes in quantum dot-sensitized solar cell. Cellulose 25(6):3363–3375

    Article  Google Scholar 

  • Boury B, Plumejeau S (2015) Metal oxides and polysaccharides: an efficient hybrid association for materials chemistry. Green Chem 17(1):72–88

    Article  Google Scholar 

  • Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Article  Google Scholar 

  • Carpenter AW, de Lannoy C-F, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287

    Article  Google Scholar 

  • Deville S (2010) Freeze-casting of porous biomaterials: structure, properties and opportunities. Materials 3(3):1913–1927

    Article  Google Scholar 

  • Dhar P, Gaur SS, Kumar A, Katiyar V (2018) Cellulose nanocrystal templated graphene nanoscrolls for high performance supercapacitors and hydrogen storage: an experimental and molecular simulation study. Sci Rep 8(1):1–15

    Article  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409

    Article  Google Scholar 

  • Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem & Eng 6(3):3974–3983

    Article  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814

    Article  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679

    Article  Google Scholar 

  • Geim AK, Novoselov KS (2010) The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 11–19

    Google Scholar 

  • George J, Sabapathi SN (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    Article  Google Scholar 

  • Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54(10):2888–2910

    Article  Google Scholar 

  • Goikuria U, Larranaga A, Vilas JL, Lizundia E (2017) Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohyd Polym 171:193–201

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  Google Scholar 

  • Hamad WY, Miao C, Beck S (2019) Growing the bioeconomy: advances in the development of applications for cellulose filaments and nanocrystals. Ind Biotechnol 15(3):133–137

    Article  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453

    Article  Google Scholar 

  • Hiratani T, Kose O, Hamad WY, MacLachlan MJ (2018) Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure. Mater Horiz 5(6):1076–1081

    Article  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  Google Scholar 

  • Iler RK (1966) Multilayers of colloidal particles. J Colloid Interface Sci 21(6):569–594

    Article  Google Scholar 

  • Kaushik M, Moores A (2016) Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637

    Article  Google Scholar 

  • Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52(34):8912–8916

    Article  Google Scholar 

  • Klemm D, Cranston ED, Fischer D, Gama M, Kedzior SA, Kralisch D, Kramer F, Kondo T, Lindström T, Nietzsche S, Petzold-Welcke K, Rauchfuß F (2018) Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today 21(7):720–748. https://doi.org/10.1016/J.MATTOD.2018.02.001

    Article  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  Google Scholar 

  • Li L, Ma W, Higaki Y, Kamitani K, Takahara A (2018a) Organic-inorganic hybrid thin films fabricated by layer-by-layer assembly of the phosphorylated cellulose nanocrystal and imogolite nanotubes. Langmuir 34(44):13361–13367

    Article  Google Scholar 

  • Li Y-Y, Wang B, Ma M-G, Wang B (2018b) Review of recent development on preparation, properties, and applications of cellulose-based functional materials. Int J Polym Sci 2018

    Google Scholar 

  • Lizundia E, Maceiras A, Vilas JL, Martins P, Lanceros-Mendez S (2017a) Magnetic cellulose nanocrystal nanocomposites for the development of green functional materials. Carbohyd Polym 175:425–432. https://doi.org/10.1016/J.CARBPOL.2017.08.024

    Article  Google Scholar 

  • Lizundia E, Nguyen T-D, Vilas JL, Hamad WY, MacLachlan MJ (2017b) Chiroptical luminescent nanostructured cellulose films. Mater Chem Front 1(5):979–987

    Article  Google Scholar 

  • Lizundia E, Urruchi A, Vilas JL, León LM (2016) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohyd Polym 136:250–258

    Article  Google Scholar 

  • Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633

    Article  Google Scholar 

  • Martin C, Barker R, Watkins EB, Dubreuil F, Cranston ED, Heux L, Jean B (2017) Structural variations in hybrid all-nanoparticle gibbsite nanoplatelet/cellulose nanocrystal multilayered films. Langmuir 33(32):7896–7907

    Article  Google Scholar 

  • Meng Q, Manas-Zloczower I (2015) Carbon nanotubes enhanced cellulose nanocrystals films with tailorable electrical conductivity. Compos Sci Technol 120:1–8

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994

    Article  Google Scholar 

  • Munier P, Gordeyeva K, Bergström L, Fall AB (2016) Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and robust particle networks. Biomacromol 17(5):1875–1881

    Article  Google Scholar 

  • Nan F, Nagarajan S, Chen Y, Liu P, Duan Y, Men Y, Zhang J (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem & Eng 5(10):8951–8958

    Article  Google Scholar 

  • Oechsle A-L, Lewis L, Hamad WY, Hatzikiriakos SG, MacLachlan MJ (2018) CO2-switchable cellulose nanocrystal hydrogels. Chem Mater 30(2):376–385

    Article  Google Scholar 

  • Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16

    Article  Google Scholar 

  • Pérez-Madrigal MM, Edo MG, Alemán C (2016) Powering the future: application of cellulose-based materials for supercapacitors. Green Chem 18(22):5930–5956

    Article  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266

    Article  Google Scholar 

  • Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385

    Article  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583–1598

    Article  Google Scholar 

  • Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425

    Article  Google Scholar 

  • Rescignano N, Fortunati E, Montesano S, Emiliani C, Kenny JM, Martino S, Armentano I (2014) PVA bio-nanocomposites: a new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohyd Polym 99:47–58. https://doi.org/10.1016/J.CARBPOL.2013.08.061

    Article  Google Scholar 

  • Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  Google Scholar 

  • Revol J-F, Godbout L, Gray DG (1998) Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J Pulp Pap Sci 24(5):146–149

    Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396. https://doi.org/10.1016/j.cocis.2014.10.003

    Article  Google Scholar 

  • Scherer GW (1986) Drying gels: I. General theory. J Non-Cryst Solids 87(1–2):199–225

    Article  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromol 11(9):2195–2198

    Article  Google Scholar 

  • Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 50(46):10991–10995

    Article  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425

    Article  Google Scholar 

  • Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  Google Scholar 

  • Trigueiro JPC, Silva GG, Pereira FV, Lavall RL (2014) Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interface Sci 432:214–220

    Article  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  Google Scholar 

  • Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X (2013) A novel reagentless approach for synthesizing cellulose nanocrystal-supported palladium nanoparticles with enhanced catalytic performance. J Mater Chem A 1(30):8645–8652

    Article  Google Scholar 

  • Xiong R, Hu K, Grant AM, Ma R, Xu W, Lu C, Zhang X, Tsukruk VV (2016) Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv Mater 28(7):1501–1509

    Article  Google Scholar 

  • Yan W, Chen C, Wang L, Zhang D, Li A-J, Yao Z, Shi L-Y (2016) Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity. Carbohyd Polym 140:66–73

    Article  Google Scholar 

  • Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25(5):933–943

    Article  Google Scholar 

  • Zhou C, Chu R, Wu R, Wu Q (2011) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromol 12(7):2617–2625

    Article  Google Scholar 

  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanapriya Venkataraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, X. et al. (2023). Functionalization of Cellulose-Based Materials. In: Militký, J., Venkataraman, M. (eds) Advanced Multifunctional Materials from Fibrous Structures. Advanced Structured Materials, vol 201. Springer, Singapore. https://doi.org/10.1007/978-981-99-6002-6_5

Download citation

Publish with us

Policies and ethics