
Chapter 2
Neural Networks-Based Immune
Optimization Regulation Using Adaptive
Dynamic Programming

2.1 Introduction

In the fight against cancer, there had been no effectivemeasures before chemotherapy
and radiation appeared since there only exist tiny differences between cancer cells
and normal cells. Doctors operate to remove solid tumors that have not yet spread,
which can not guarantee cancer from recurring. When radiotherapy and chemother-
apy have increased side effects, and targeted therapy is not flexible because of its
strong pertinence, the scientific research direction began to turn to the human body
system. Generally, tumor cells escape from the immune system, not because it fails
for the immune system to recognize them or it is not activated, but cancer cells have
evolved away to block the activation ofT cells bymaking a specific binding. Thus, the
medical communities have struggled to find a lot of special means for cancer cells to
intercept the activation of the T cells, freeing up the immune system. Compared with
traditional treatments such as surgery, radiation and chemotherapy, immunotherapy
has fewer side effects and better therapeutic effects. However, it is difficult to tackle
the transient period of immune agents. Therefore, the hybrid therapy of chemother-
apy and immunotherapy is a better choice. As [1], it is hardly sufficient to control
tumor growth through neither chemotherapy nor immunotherapy alone, but tumor
cells can be eradicated by adopting the combination therapies which is known as
biochemotherapy described in [2].

With extensive development of nonlinear dynamic [3, 4], its engineering applica-
tion scenarios enjoy increasing diversification such as competitive Nash equilibrium
problems, especially in the biomedical field. And not coincidentally, game theory
has been introduced into the interaction model of tumor cells and immune cells. Both
of the chemotherapy and immunotherapy aim at reducing the number of tumor cells.
Based on this fact, the collaborative game is formed and one can design adaptive
therapy from the view of game theory. Multiple biological interactions constitute
complex nonlinear growth process of tumor cells, however, regarding major influ-
ence factors of tumor cell populations as research object is the focus. Hunting cells
refer to the immune cells participating in removing foreign agents and strengthening
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the immune response. temperatures have suggested that cell-mediated anti-tumor
immunity contributed to increasing the population of hunting tumor cells to main-
tain a specific proportion between the resting and the hunting predator cells as 40% in
literature [5], which was beneficial for maintenance of the tumor dormant state. The
immune regulations vary from individual to individual, but immunotherapy-based
optimal regulation plays the role of reducing tumor cells without considering certain
circumstances in case of special invocation. Enhanced tumor antigen presentation
could effectively stimulate dendritic cells and increase the immunotherapy-based
curative effect in [6]. The known “predator-prey” between immune cells and tumor
cells leads to cyclic growth and reduction, which can be continue indefinitely or
reach an equilibrium saddle point determined by system parameters. Literature [7]
investigated nonlinear dynamical model which provided guiding significance for
introducing that into cybernetics. As known, system identification or optimal control
is of great practical value. As a powerful and effective optimization algorithm, the
ADP method can solve the nonlinear optimal control problems well, realizing the
most appropriate therapeutic strategy.

Of course, the immune system has the responsibility for restraining tumor growth,
but it is hardly to fight out the tumor cells alone. Firstly, ego characteristic of tumor
cells compared to normal cells within the body leads to no exclusion and tolerance
to tumor cells of the immune system. Secondly, there is no strong defense mecha-
nism itself in fighting with the cancer cells which means the failure of the immune
response. Finally, Immune function was observed to be protective through interven-
tion with organic binding agents of CD4 and CD8 cells. Chemotherapy can not only
rapidly kill differentiated tumor cells, but also destroy regular cells. This side effect
caused by chemotherapy can be lessened through introducing the immunotherapy.
Thus the combined therapy of chemotherapy and immunotherapy is more reason-
able. Immunotherapies can strengthen the immune system through extra stimula-
tion, on the other hand, improve the ability to recognize foreign entity. Therefore,
decelerating the growth rate of tumor cells with minimized dose of chemotherapy
and immunotherapeutic drugs is the control objective. Furthermore, optimal control
strategy is obtained throughADPmethod, giving the optimal levels of each treatment
regimen through nonzero-sum differential games strategy developed in [8].

Prescribed performance tracking control has been creatively developed as [9],
however, there is seldom any literatures focusing on this scope considers mutual rela-
tionship among tumor cells, immune cells, chemotherapy and immunotherapy drugs,
let alone setting the performance as eventually acquired of optimal therapeutic effect
associatedwith couplingbehaviorsmentioned above.Retrospect to literatures as [10],
the chapter transformed it into multi-player nonzero-sum games problems whose
optimal control was obtained by complex decoupling in dealing with Hamilton-
Jacobi equation as [11]. Subsequently, online adaptive and off-policy learning algo-
rithms were respectively developed in [12–14]. Of course, the constrained-input was
taken into consideration, when it comes to practical applications in [15], even more
intensive work on uncertain constraints were in contemplation considered as [16]. As
[17], the control policies of the distributed subsystems acted as players, noticeably, the
chapter was formulated as a two-players nonzero-sum game including chemotherapy
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and immunotherapy. [18] first introduced an updating strategy based on intertask
relationships. Synchronously, reciprocal action between the tumor cells and immune
cells which could be analogous to interactions between systems in [19, 20].

The unknown nonlinear dynamic is usually implemented by fuzzy control as
[21, 22] and neural networks in [18, 23], where the actor network and critic network
are adopted for updating control policy at an appropriate time through policy iteration
technique as [24–26]. The convergence of model-based policy iteration algorithm
is equivalent to that of data-based learning as [27]. Similarly, states of the system
and critic error are required to be ultimately uniformly bounded during the process
of value iteration, which is guaranteed through event-triggered formation control
scheme firstly proposed for all signals of the closed-loop system in literature [28].
According to the iterative value algorithm, the optimum can be obtained through
learning continuously [29, 30]. However there is little research on the two-players
nonzero-sum game considering tumor cells and immune cells using the proposed
value iteration learning.

2.2 Preliminaries

As is known, there exist interaction relationships among the anticancer agent cells,
lymphocytes and macrophages that constitute the basic immune system microen-
vironment, which can be presented as follows. Firstly, T-lymphocytes and cyto-
toxic macrophages/natural killer cells can effectively damage tumor cells. Secondly,
destroyed behaviour of macrophages can also active T-lymphocytes for launching
another attack. Meanwhile, the population of T-lymphocytes can be fed through rest-
ing cells. Finally, the model is guided by degradation of resting cells and activation
of immune cells by natural growth rate. This section gives the nonlinear growth
equation which can represent the whole immune response.

Ntotal = υNH (t)NT (t)

ν + NT (t)
(2.1)

where NH (t), NT (t) denote the number of hunting cells and tumor cells at time t ,
respectively. υ and ν are positive constants. The changes in quantity caused by the
inactivation of the immune cells and the apoptosis of tumor cells are presented as:

dNT (t)

dt
= −σ1NH (t)NT (t)

dNH (t)

dt
= −σ2NH (t)NT (t) (2.2)

where σ1 denotes the loss rate of NT (t) caused by NH (t) and σ2 represents the loss
rate of NH (t) caused by NT (t). The situations above reflect the competition between
tumor cells and the host cells. Then we construct the dynamic equations as follows
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Table 2.1 Detailed descriptions of system parameters

Parameter Estimated value

ι1 Intrinsic growth rate of NT (t) ignoring NCD(t)

�1 Reciprocal carrying capacity of NT (t) irrespective of NT (t) and NCD(t)

� Constant influx rate of NH (t)

σ1 Rate of loss of NT (t) for NH (t)

δ1 Response coefficient to NCD(t) for NT (t)

D Per capita decay rate of NH (t) without regard to NT (t), NCD(t) and NI D(t)

σ2 Rate of loss of NH (t) for NT (t)

δ2 Response coefficient to NCD(t) for NH (t)

υ Maximum recruitment rate of NH (t) by ligand-transduced NT (t)

ς Maximum recruitment rate of NH (t) by NI D(t)

ν Steepness coefficient of NH (t) by NT (t)

ϑ Steepness coefficient of NH (t) by NI D(t)

ϕ1 Decay rate of NCD(t)

ϕ2 Decay rate of NI D(t)

ṄT (t) = ι1NT (t)(1 − �1NT (t)) − σ1NT (t)NH (t)

− δ1NCD(t)NT (t)

ṄH (t) = υNH (t)N 2
T (t)

ν + N 2
T (t)

+ ςNH (t)NI D(t)

ϑ + NI D(t)
− σ2NT (t)NH (t)

− DNH (t) − δ2NCD(t)NH (t)

(2.3)

where D represents the death rate of cells without considering any tumor cells.
ια (α = 1, 2) and �α denote the per capita growth rates and reciprocal carrying
capacities. The descriptions of the other associated parameters are given in Table2.1.

Consider the given chemotherapy and immunotherapy drugs as u(t) and v(t) at
time t , which is regarded as multiple dose administration compared with influence of
recombinant human interleukin-11 for injection or recombinant human granulocyte
colony-stimulating factor injection. Assume that targeted therapy cannot be achieved
through only chemotherapeutic drugs. Then we can obtain that

fresponse(t) = sα(1 − e−λu(t)) (2.4)

where sα is the different response coefficients for distinguishing the change rate of
different cells. The mathematical model considering injected drugs is presented as
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ṄCD(t) = u(t) − ϕ1NCD(t)

ṄI D(t) = v(t) − ϕ2NI D(t)

ṄT (t) = ι1NT (t)(1 − �1NT (t)) − σ1NT (t)NH (t)

− δ1NCD(t)NT (t) − s2(1 − e−λu(t))

ṄH (t) = υNH (t)N 2
T (t)

ν + N 2
T (t)

+ ςNH (t)NI D(t)

ϑ + NI D(t)
− σ2NT (t)NH (t) − DNH (t)

− δ2NCD(t)NH (t) − s1(1 − e−λu(t)) (2.5)

where NCD(t) and NI D(t) are concentrations of chemotherapy and immunotherapy.
v(t) and u(t) are the doses of chemotherapeutic drug and immunotherapeutic drug.
Generally speaking, λ is taken as 1 for the unknown role of cytokines.

Remark 2.1 The model (2.5) describes the relations among the hunting cells, the
tumor cells, the concentration of chemotherapy agentia, and the concentration of
immunotherapy agentia. From (2.5) we can find both of the hunting cells and the
chemotherapy agentia can reduce the number of tumor cells, and the immunotherapy
agentia can stimulate the growth of hunting cells. On the other hand, the tumor cells
can influence the number of hunting cells. Based on this complicated interactive
relationship, we can obtain the optimal object through ADP, that is, minimization of
tumor cells while ensuring the number of normal cells at certain time t .

Before proceeding, let X = [NT , NH , NCD, NI D]T , then the model (2.5) can be
simplified as

Ẋ(t) = f (X) + g(X)u(t) + κ(X)v(t) (2.6)

where f (X) is the right-hand dynamics of (2.5) excluding the control u(t) and v(t).
The matrixes g(X) = [0, 0, 1, 0]T and κ(X) = [0, 0, 0, 1]T .

For system (2.6), the performance index function of the ε player can be given as

Jε(X0) =
∫ ∞

0

(
XTQεX + uTRε1u + vTRε2v

)
dτ (2.7)

where Qε is positive definite matrix, Rε1 and Rε2 are symmetric positive matrixes.
The corresponding cost functions are presented as:

Vε(X, u, v) =
∫ ∞

t
Rε(X, u, v)dτ (2.8)

with the utility function

Rε(X, u, v) =XTQεX + uTRε1u + vTRε2v. (2.9)
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Definition 2.2 For two-player NZS game of system (2.6), the Nash equilibrium
solution is said to be obtained with the control pair (u∗, v∗) which satisfied that,

Vε(u
∗, v∗) ≤ Vε(u, v∗)

Vε(u
∗, v∗) ≤ Vε(u

∗, v) (2.10)

for any admissible control policies u and v.

The Hamilton functions can be constructed as:

Hε(X, u, v) = XTQεX + uTRε1u + vTRε2v

+ ∇VT
ε ( f (X) + g(X)u(t) + κ(X)v(t)) (2.11)

where ∇Vε is the partial derivative of the cost function and ε = 1, 2. According to
the stationarity conditions at equilibrium points, the optimal control for two players
are obtained

u∗ = −1

2
R−1

11 g
T (X)∇V∗

1

v∗ = −1

2
R−1

22 κT (X)∇V∗
2 (2.12)

with V∗
1 and V∗

2 being the solutions of coupled HJ equations as

XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1 + ∇V∗T

1 f (X)

+ 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

− 1

2
∇V∗T

1 κ(X)R−1
22 κT (X)∇V∗

2 = 0, (2.13)

and

XTQ2X − 1

4
∇V∗T

2 κ(X)R−1
22 κT (X)∇V∗

2 + ∇V∗T
2 f (X)

+ 1

4
∇V∗T

1 g(X)R−1
11 R21R

−1
11 g

T (X)∇V∗
1

− 1

2
∇V∗T

2 g(X)R−1
11 g

T (X)∇V∗
1 = 0. (2.14)

Lemma 2.3 For nonlinear system (2.6), suppose thatV∗
1 andV∗

2 satisfy the equations
(2.13) and (2.14). Then under the optimal control (2.12), the system is asymptotically
stable.

Proof The proof is omitted since it is similar to that in [31, 32].
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By solving the coupled HJ equations (2.13) and (2.14), one can obtain the optimal
control as (2.12), which means the Nash equilibrium for the two-player NZS game
system is attained. Nevertheless, due to the existence of nonlinear terms and coupled
terms, these partial differential equations are uneasy to solve. SinceADP is a powerful
approximate learning method, the approximate solutions of (2.13) and (2.14) can be
acquired.

2.3 Design of Adaptive Controller

In order to find the optimal control strategy, a critic network is constructed based on
neural network firstly. And then optimal value function can be shown as:

V∗
ε = (ζ∗

ε )T ξε(X) + oε, ε = 1, 2, (2.15)

where ζ∗
ε ∈ Rpε , ξε ∈ Rpε and oε ∈ R are the ideal weight vector, activation function

and approximation error of the neural network. As it’s scarcely possible to get the
weight ζ∗

ε , we give the approximate version

V̂∗
ε = (ζ̂ε)

T ξε(X). (2.16)

Based on (2.12) and (2.15), we obtain the optimal control as

u∗ = −1

2
R−1

11 g
T (X)((∇ξ1(X))T ζ∗

1 + ∇o1)

v∗ = −1

2
R−1

22 κT (X)((∇ξ2(X))T ζ∗
2 + ∇o2) (2.17)

Then we further get the approximate control policies as

û = −1

2
R−1

11 g
T (X)(∇ξ1(X)T ζ̂1

v̂ = −1

2
R−1

22 κT (X)(∇ξ2(X)T ζ̂2 (2.18)

Remark 2.4 For the unknowable nature of ideal weights, the NNs are used to
approximate the system dynamics and approximate version as (2.16), aming at min-
imizing the current estimate of the value functions in (2.15) by selecting policies
(2.18) can be obtained with available closed-form expressions.

According to (2.18), the closed-loop system can be rewritten as

Ẋ(t) = f (X) + g(X)û + κ(X)v̂. (2.19)



20 2 Neural Networks-Based Immune Optimization Regulation Using Adaptive …

Furthermore, we can attain the approximate Hamilton as

Hε(X, û, v̂) = XTQεX + ûTRε1û

+ v̂TRε2v̂ + (ζ̂ε)
T∇ξε(X)Ẋ(t)

= eε(t). (2.20)

To approach the optimal strategy and minimize eε(t), the goal of adaptive learn-
ing is set to be E = E1 + E2 = 1/2e21 + 1/2e22. Then applying the gradient descent
method, we obtain the learning law of critic for player ε

˙̂
ζε = −�ε

1

(δTε δε + 1)2
∂E(t)

∂ζ̂ε

= −�ε
1

(δTε δε + 1)2
∂Eε(t)

∂ζ̂ε

= −�ε
δεeε(t)

(δTε δε + 1)2

(2.21)

where δε = ∇ξε(X)Ẋ(t), and �ε is the positive learning law. Let ζ̃ε = ζ∗
ε − ζ̂ε, then

we have

˙̃ζε = �ε
δεσε(t)

(δTε δε + 1)2
− �ε

δεδ
T
ε ζ̃ε

(δTε δε + 1)2
= �εδεσε(t) − �εδ̄εδ̄

T
ε ζ̃ε, (2.22)

where δε = δε/(δ
T
ε δε + 1)2, δ̄ε = δε/(δ

T
ε δε + 1) and σε(t) = −∇oTε (X)( f (X) +

g(X)û + κ(X)v̂) is the approximate residual error when employing critic neural
network [33].

Before presenting the main results of this chapter, two regular assumptions are
necessary [34–36].

Assumption 2.1 For ε = 1, 2, the signal δ̄ε is persistently excited such that the fol-
lowing inequality is satisfied

ςε Iνε×νε
≤

∫ t+T

t
δ̄εδ̄

T
ε dε, (2.23)

where νε denotes the neuro number of the εth critic network.

Assumption 2.2 For ε = 1, 2, there exist positive constants ξεmax , oεmax and σεmax

such that the following inequalities hold, that is, ‖∇ξε(X)‖ ≤ ξεmax , ‖∇o‖ ≤ oεmax

and ‖σε‖ ≤ σεmax .

Applying the Lyapunovmethod, the stability in the sense of UUB is demonstrated
to be guaranteed by the following theorem.

Theorem 2.5 For system (2.6),when the weight updating laws of critic networks are
given by (2.21), then the UUB properties of the weight estimation error ζ̃ε can be
guaranteed by the obtained control policies (2.18).
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Proof Select the Lyapunov function as

L = 1

2
�−1
1 ζ̃T

1 ζ̃T
1 + 1

2
�−1
2 ζ̃T

2 ζ̃T
2 . (2.24)

Taking the time derivative of (2.24), then we obtain

L̇ = �−1
1 ζ̃T

1
˙̃ζ1 + �−1

2 ζ̃T
2

˙̃ζ2
= ζ̃T

1 (δ1σ1(t) − δ̄1δ̄
T
1 ζ̃1) + ζ̃T

2 (δ2σ2(t) − δ̄2δ̄
T
2 ζ̃2) (2.25)

According to Young’s inequality, we have

ζ̃T
1 δ1σ1(t) ≤ ζ̃T

1 δ̄1σ1(t) ≤ 1

2
ζ̃T
1 δ̄1δ̄

T
1 ζ̃1 + 1

2
σ2
1max . (2.26)

Similarly,

ζ̃T
2 δ2σ2(t) ≤ 1

2
ζ̃T
2 δ̄2δ̄

T
2 ζ̃2 + 1

2
σ2
2max . (2.27)

Substituting (2.26) and (2.27) into (2.25), we get

L̇ ≤ −1

2
ζ̃T
1 δ̄1δ̄

T
1 ζ̃1 − 1

2
ζ̃T
2 δ̄2δ̄

T
2 ζ̃2 + 1

2
(σ2

1max + σ2
2max ). (2.28)

From (2.28) we can conclude that L̇ < 0 when one of the following conditions
holds

‖ζ̃1‖ >

√
σ2
1max + σ2

2max

λmin(δ̄1δ̄
T
1 )

, (2.29)

or

‖ζ̃2‖ >

√
σ2
1max + σ2

2max

λmin(δ̄2δ̄
T
2 )

. (2.30)

According to Lyapunov theory, it yields that the weight estimation errors for both
critic networks are UUB.

Remark 2.6 Theweight matrices are usually updated through certain renewal equa-
tions, and from (2.29) and (2.30), we can draw that the approximation weight error
will asymptotically converge to zero as νε → ∞.

Theorem 2.7 Consider the system (2.6). The weight updating laws for critic net-
works are given by (2.21). Then the obtained policies (2.18) can force system states
X to be UUB.
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Proof In order to discuss the stability of closed-loop system, the derivative of V =
V∗
1 + V∗

2 is considered as

V̇ =(∇V∗
1 )T ( f (X) + g(X)û + κ(X)v̂)

+ (∇V∗
2 )T ( f (X) + g(X)û + κ(X)v̂). (2.31)

Recalling (2.13) and (2.14), we have

∇V∗T
1 f (X) = − XTQ1X + 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+ 1

2
∇V∗T

1 κ(X)R−1
22 κT (X)∇V∗

2 , (2.32)

and

∇V∗T
2 f (X) = − XTQ2X + 1

4
∇V∗T

2 κ(X)R−1
22 κT (X)∇V∗

2

− 1

4
∇V∗T

1 g(X)R−1
11 R21R

−1
11 g

T (X)∇V∗
1

+ 1

2
∇V∗T

2 g(X)R−1
11 g

T (X)∇V∗
1 . (2.33)

For ε = 1, we can obtain V̇∗
1 as

V̇∗
1 = − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

− ∇V∗T
1 (g(X)(u∗ − û) + κ(X)(v∗ − v̂)). (2.34)

According to (2.15) and (2.16) we have

V̇∗
1 = − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+ 1

2
((∇ξ1(X))T ζ∗

1 + ∇o1)
T
(
g(X)R−1

11 g
T (X)

× ((∇ξT1 (X))T ζ̃1 + ∇o1) + κ(X)R−1
22 κT (X)

× ((∇ξT2 (X))T ζ̃2 + ∇o2)
)
. (2.35)
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Due to Assumption 2.2 and Theorem 2.5, we obtain that

V̇∗
1 ≤ − XTQ1X − 1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1

− 1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2 + θ1,

(2.36)

where the positive constant θ1 denotes the bound of the term 1
2 ((∇ξ1(X))T ζ∗

1 +
∇o1)T

(
g(X)R−1

11 g
T (X)((∇ξT1 (X))T ζ̃1 + ∇o1) + κ(X)R−1

22 κT (X)((∇ξT2 (X))T ζ̃2

+∇o2)
)
. As R11, R12 and R22 are symmetric positive definite, we have

1

4
∇V∗T

2 κ(X)R−1
22 R12R

−1
22 κT (X)∇V∗

2

+1

4
∇V∗T

1 g(X)R−1
11 g

T (X)∇V∗
1 > 0. (2.37)

Furthermore, we attain

V̇∗
1 ≤ −XTQ1X + θ1 ≤ −λmin(Q1)‖X‖2 + θ1. (2.38)

Similarly, for ε = 2, it yields that

V̇∗
2 ≤ −XTQ2X + θ2 ≤ −λmin(Q2)‖X‖2 + θ2, (2.39)

where the definition of θ2 is similar to that of θ1. Then it can be concluded that V̇ < 0
when the following inequality is satisfied

‖X‖ > max

{√
θ1

λmin(Q1)
,

√
θ2

λmin(Q2)

}
� Θ. (2.40)

Thus with the proposed control policies (2.18), the system state N is UUB with
the bound Θ . This completes the proof.

Remark 2.8 From Theorems 2.5 and 2.7, we can conclude that under the obtained
control policies the states of the system X and the critic weight error ζ̃ε are ultimately
uniformly bounded.

Remark 2.9 According to the clinical requirements, the specific value of the cost
function is finalised. Transformation is implemented from the mathematical mecha-
nismmodel to the solvable affine model. Subsequently, the chapter solve the optimal
control problem that means minimum dose of medicine can realize the best thera-
peutic effect.
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2.4 Simulation and Numerical Experiments

To verify the proposed method in the previous section, a simulation is given as
followed.

2.4.1 States Analysis on Tumor Cell Growth

According to clinical medical statistics borrowed from the literature [37], the specific
parameters of the dynamic models are presented as Table2.2.

According to (2.5) and Table2.2, we construct the model (2.41)

ṄT (t) = 0.00431NT (t)(1 − 1.02 × 10−9)NT (t))

− 6.41 × 10−11NT (t)NH (t)

− 0.08NCD(t)NT (t) − (1 − e−u(t))

ṄH (t) = 0.33 + 0.0125NH (t)N 2
T (t)

2.02 × 107 + N 2
T (t)

+ 0.125NH (t)NI D(t)

2 × 107 + NI D(t)

− 3.42 × 10−6NT (t)NH (t) − (1 − e−u(t))

− 0.204NH (t) − 3.42 × 10−6NCD(t)NH (t)

ṄCD(t) = u(t) − 0.1NCD(t)

ṄI D(t) = v(t) − NI D(t) (2.41)

The initial state of tumor cells N1(t) and immune cells N2(t) in a patient and follow
a certain chemotherapy and immunotherapy regimen. Correspondingly, N3(t) and
N4(t) respectively denote the concentrations of chemotherapy and immunotherapy.
And we can get the following curves on systems states tumor cells, immune cells,
chemotherapy and immunotherapy drugs as shown in Fig. 2.1. Initial value is set as
X0 = [

20 10 8 6
]T
.

Table 2.2 Concentration variation on immune cells, tumor cells, chemotherapeutic drug and
immunoagents

Parameter Estimated value Units Parameter Estimated value Units

ι1 0.00431 day−1 �1 1.02 × 10−9 cell−1

σ1 6.41 × 10−11 cell−1 δ1 0.08 day−1

D 0.204 day−1 σ2 3.42 × 10−6 cell−1

δ2 2 × 10−11 day−1 υ 0.0125 day−1

ς 0.125 day−1 ν 2.02 × 107 cell2

ϑ 2 × 107 cell ϕ1 0.1 day−1

ϕ2 1 day−1
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Fig. 2.1 The curves of system states

It is obviously that the control policies can stabilize the nonlinear system and
make the system states tend to zero which means that the closed-system is stable
and the control method is effective. Retrospect the original problem that the key is
to minimize cancer cells and reduce therapy toxicity as possible.

2.4.2 Weight Analysis of Control Policies

Theweights ζ∗
ε of the control policies u(t) and v(t) can be estimated through the value

function V̂∗
ε = (ζ̂ε)

T ξε(X) in (2.16), and the performance index is shown as (2.6)with
Q1 = I4×4, Q2 = 5Q1, R11 = R22 = 1, R12 = R21 = 2. The initialize weights are
set as [−0.25,−0.25,−1,−0.25]T . The selected activation function is selected as
[ζT

11→15, ζ
T
16→18, ζ

T
19→10],where ζ11→15 = [N 2

1 (t), N1(t)N2(t), N1(t)N3(t), N1(t)N4(t),
N 2
2 (t)] and ζ16→18 = [N2(t)N3(t), N2(t)N4(t), N 2

3 (t)] and ζ19→10 = [N3(t)N4(t),
N 2
4 (t)]
According to Fig. 2.2, we can conclude that the proposed optimal control demon-

strated a shorter convergence time than that without taking optimal control, where
the former needs only 10s, but the later may be 38s, which draws the superiority of
the proposed method.

In Fig. 2.3,we can obtain the less doses of the drugs is another advantage compared
with that without taking optimal control. Taking comprehensive consideration of
Figs. 2.2 and 2.3, we can draw a conclusion that the adopted algorithm can not only
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Fig. 2.2 Optimal control policies u(t)

Fig. 2.3 Optimal control policies v(t)
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Fig. 2.4 The curves of system states

decrease the convergence time but also reduce doses of chemotherapy drugs and
immune agents, and patients will benefit from for the minimal toxicity and shorter
response time.

When the initialize state is set as [−0.5,−0.1,−1,−0.4]T , and the other param-
eters are unaltered, we give another set of figures as Figs. 2.4, 2.5 and 2.6. In Figs. 2.5
and 2.6, there exist more obvious advantages for the proposed algorithms over that
without taking optimal control in response time and control policies,and we can
conclude that effectiveness of the control method does not vary in the different ini-
tial weights.

2.5 Conclusion

This chapter has introduced adaptive dynamic programming into solving the optimal
control policies of tumor cells growth model and realized objective of minimizing
tumor cells with the minimum dose of chemotherapeutic and immunotherapeutic
drugs. As is known, the negative effect caused by chemotherapy and immunotherapy
must be reduced for the reasonable treatment plan extracted from the optimal con-
trol behavior. Convergence properties have been proved to be guaranteed through
Lyapunov theory. Meanwhile, states of the system and critic error have been demon-
strated to be ultimately uniformly bounded. Simulations have been given to verify
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Fig. 2.5 Optimal control policies u(t)

Fig. 2.6 Optimal control policies v(t)
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rationality of the proposed method. In the future work, we will further investigate
the medical frontier topics and propose adaptive therapeutic methods to solve these
issues by employing ADP approach.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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