Skip to main content

Electrochemical Biosensors for Nucleic Acids Detection

  • Chapter
  • First Online:
Electrochemical Biosensors for Whole Blood Analysis
  • 208 Accesses

Abstract

The highly sensitive and selective detection of nucleic acids in clinical samples is of great significance to the diagnosis and prognosis of diseases. Electrochemical biosensors have been widely used in nucleic acid detection due to their advantages of fast response, simple operation, and low cost. In this chapter, we summarize the progress of electrochemical biosensors using one-dimensional, two-dimensional, and three-dimensional probes for nucleic acids detection, aiming to provide general guidance for the design of electrochemical detection methods for nucleic acids in complex matrices, such as whole blood. We also discuss the limitations and challenges in each kind of probe in terms of sensitivity, selectivity, and anti-fouling, providing ideas for further development of electrochemical biosensors for nucleic acid detection in complex matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, Gingeras TR (2012) Landscape of transcription in human cells. Nature 489:101–108

    Article  CAS  Google Scholar 

  2. Jayanthi V, Das AB, Saxena U (2017) Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 91:15–23

    Article  CAS  Google Scholar 

  3. Christie EL, Dawson SJ, Bowtell DD (2016) Blood worth bottling: circulating tumor DNA as a cancer biomarker. Cancer Res 76:5590–5591

    Article  CAS  Google Scholar 

  4. Wu L, Qu X (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997

    Article  CAS  Google Scholar 

  5. Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090

    Article  CAS  Google Scholar 

  6. Jie J, Hu S, Liu W, Wei Q, Huang Y, Yuan X, Ren L, Tan M, Yu Y (2020) Portable and battery-powered PCR device for DNA amplification and fluorescence detection. Sensors (Basel) 20

    Google Scholar 

  7. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89:189–215

    Article  CAS  Google Scholar 

  8. Abi A, Mohammadpour Z, Zuo X, Safavi A (2018) Nucleic acid-based electrochemical nanobiosensors. Biosens Bioelectron 102:479–489

    Article  CAS  Google Scholar 

  9. Han R, Li Y, Chen M, Li W, Ding C, Luo X (2022) Antifouling electrochemical biosensor based on the designed functional peptide and the electrodeposited conducting polymer for CTC analysis in human blood. Anal Chem 94:2204–2211

    Article  CAS  Google Scholar 

  10. Wang DX, Wang J, Wang YX, Du YC, Huang Y, Tang AN, Cui YX, Kong DM (2021) DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 12:7602–7622

    Article  CAS  Google Scholar 

  11. Ma ZY, Xu F, Qin Y, Zhao WW, Xu JJ, Chen HY (2016) Invoking direct exciton-plasmon interactions by catalytic ag deposition on Au nanoparticles: photoelectrochemical bioanalysis with high efficiency. Anal Chem 88:4183–4187

    Article  CAS  Google Scholar 

  12. Li S, Tian T, Zhang T, Cai X, Lin Y (2019) Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Mater Today 24:57–68

    Article  CAS  Google Scholar 

  13. Jing L, Xie C, Li Q, Yang M, Li S, Li H, Xia F (2022) Electrochemical biosensors for the analysis of breast cancer biomarkers: from design to application. Anal Chem 94:269–296

    Article  CAS  Google Scholar 

  14. Hai X, Li Y, Zhu C, Song W, Cao J, Bi S (2020) DNA-based label-free electrochemical biosensors: from principles to applications. TrAC Trend Anal Chem 133

    Google Scholar 

  15. Li C, Wu D, Hu X, Xiang Y, Shu Y, Li G (2016) One-step modification of electrode surface for ultrasensitive and highly selective detection of nucleic acids with practical applications. Anal Chem 88:7583–7590

    Article  CAS  Google Scholar 

  16. Pei H, Zuo XL, Zhu D, Huang Q, Fan CH (2013) Functional DNA nanostructures for theranostic applications. Acc Chem Res 47(2):550–559

    Article  Google Scholar 

  17. Deng M, Li M, Li F, Mao X, Li Q, Shen J, Fan C, Zuo X (2019) Programming accessibility of DNA monolayers for degradation-free whole-blood biosensors. ACS Mater Lett 1:671–676

    Article  CAS  Google Scholar 

  18. Li H, Dauphin-Ducharme P, Arroyo-Curras N, Tran CH, Vieira PA, Li S, Shin C, Somerson J, Kippin TE, Plaxco KW (2017) A biomimetic phosphatidylcholine-terminated monolayer greatly improves the in vivo performance of electrochemical aptamer-based sensors. Angew Chem Int Ed 56:7492–7495

    Article  CAS  Google Scholar 

  19. Russo MJ, Han M, Desroches PE, Manasa CS, Dennaoui J, Quigley AF, Kapsa RMI, Moulton SE, Guijt RM, Greene GW, Silva SM (2021) Antifouling strategies for electrochemical biosensing: mechanisms and performance toward point of care based diagnostic applications. ACS Sens 6:1482–1507

    Article  CAS  Google Scholar 

  20. Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Inter 9:2914–2923

    Article  CAS  Google Scholar 

  21. Chen L, Lv S, Liu M, Chen C, Sheng J, Luo X (2018) Low-fouling magnetic nanoparticles and evaluation of their potential application as disease markers assay in whole serum. ACS Appl Nano Mater 1:2489–2495

    Article  CAS  Google Scholar 

  22. Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  CAS  Google Scholar 

  23. Su S, Wu Y, Zhu D, Chao J, Liu X, Wan Y, Su Y, Zuo X, Fan C, Wang L (2016) On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of MicroRNA. Small 12:3794–3801

    Article  CAS  Google Scholar 

  24. Daggumati P, Appelt S, Matharu Z, Marco ML, Seker E (2016) Sequence-specific electrical purification of nucleic acids with nanoporous gold electrodes. J Am Chem Soc 138:7711–7717

    Article  CAS  Google Scholar 

  25. Li L, Wang L, Xu Q, Xu L, Liang W, Li Y, Ding M, Aldalbahi A, Ge Z, Wang L, Yan J, Lu N, Li J, Wen Y, Liu G (2018) Bacterial analysis using an electrochemical DNA biosensor with poly-adenine-mediated DNA self-assembly. ACS Appl Mater Inter 10:6895–6903

    Article  CAS  Google Scholar 

  26. Wang L, Wen Y, Yang X, Xu L, Liang W, Zhu Y, Wang L, Li Y, Li Y, Ding M, Ren S, Yang Z, Lv M, Zhang J, Ma K, Liu G (2019) Ultrasensitive electrochemical DNA biosensor based on a label-free assembling strategy using a triblock polyA DNA probe. Anal Chem 91:16002–16009

    Article  CAS  Google Scholar 

  27. Wang Q, Wen Y, Li Y, Liang W, Li W, Li Y, Wu J, Zhu H, Zhao K, Zhang J, Jia N, Deng W, Liu G (2019) Ultrasensitive electrochemical biosensor of bacterial 16S rRNA gene based on polyA DNA probes. Anal Chem 91:9277–9283

    Article  CAS  Google Scholar 

  28. Pei H, Li F, Wan Y, Wei M, Liu H, Su Y, Chen N, Huang Q, Fan C (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134:11876–11879

    Article  CAS  Google Scholar 

  29. Gu M, Yi X, Xiao Y, Zhang J, Lin M, Xia F (2023) Programming the dynamic range of nanobiosensors with engineering poly-adenine-mediated spherical nucleic acid. Talanta 256:124278

    Article  CAS  Google Scholar 

  30. Mills DM, Martin CP, Armas SM, Calvo-Marzal P, Kolpashchikov DM, Chumbimuni-Torres KY (2018) A universal and label-free impedimetric biosensing platform for discrimination of single nucleotide substitutions in long nucleic acid strands. Biosens Bioelectron 109:35–42

    Article  CAS  Google Scholar 

  31. Fan CH, Plaxco KW, Heeger AJ Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. PNAS 100(16):9134–9137

    Google Scholar 

  32. Lin M, Yi X, Wan H, Zhang J, Huang F, Xia F (2020) Photoresponsive electrochemical DNA biosensors achieving various dynamic ranges by using only-one capture probe. Anal Chem 92:9963–9970

    Article  CAS  Google Scholar 

  33. Yu S, Wang Y, Jiang LP, Bi S, Zhu JJ (2018) Cascade amplification-mediated in situ hot-spot assembly for MicroRNA detection and molecular logic gate operations. Anal Chem 90:4544–4551

    Article  CAS  Google Scholar 

  34. Oishi M, Juji S (2021) Acceleration of DNA hybridization chain reactions on 3D nanointerfaces of magnetic particles and their direct application in the enzyme-free amplified detection of microRNA. ACS Appl Mater Inter 13:35533–35544

    Article  CAS  Google Scholar 

  35. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115:12491–12545

    Article  CAS  Google Scholar 

  36. Dong JB, Wen L, Yang HS, Zhao JY, He CJ, Hu ZK, Peng L, Hou CJ, Huo DQ (2022) Catalytic hairpin assembly-driven ratiometric dual-signalelectrochemical biosensor for ultrasensitive detection of micrornabased on the ratios of Fe-MOFs and MB-GA-UiO-66-NH2. Anal Chem 94:5846–5855

    Article  CAS  Google Scholar 

  37. Guo Q, Yu Y, Zhang H, Cai C, Shen Q (2020) Electrochemical sensing of exosomal MicroRNA based on hybridization chain reaction signal amplification with reduced false-positive signals. Anal Chem 92:5302–5310

    Article  CAS  Google Scholar 

  38. Liu J, Xie G, Lv S, Xiong Q, Xu H (2023) Recent applications of rolling circle amplification in biosensors and DNA nanotechnology. TrAC Trends Anal Chem 160

    Google Scholar 

  39. Saadati A, Hassanpour S, Mdl G, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Baradaran B (2019) Recent advances on application of peptide nucleic acids as a bioreceptor in biosensors development. TrAC Trend Anal Chem 114:56–68

    Article  CAS  Google Scholar 

  40. Hu Q, Wang Q, Kong J, Li L, Zhang X (2018) Electrochemically mediated in situ growth of electroactive polymers for highly sensitive detection of double-stranded DNA without sequence-preference. Biosens Bioelectron 101:1–6

    Article  CAS  Google Scholar 

  41. Das J, Ivanov I, Safaei TS, Sargent EH, Kelley SO (2018) Combinatorial probes for high-throughput electrochemical analysis of circulating nucleic acids in clinical samples. Angew Chem Int Ed 57:3711–3716

    Article  CAS  Google Scholar 

  42. Das J, Cederquist KB, Zaragoza AA, Lee PE, Sargent EH, Kelley SO (2012) An ultrasensitive universal detector based on neutralizer displacement. Nat Chem 4:642–648

    Article  CAS  Google Scholar 

  43. Das J, Ivanov I, Montermini L, Rak J, Sargent EH, Kelley SO (2015) An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 7:569–575

    Article  CAS  Google Scholar 

  44. Das J, Ivanov I, Sargent EH, Kelley SO (2016) DNA clutch probes for circulating tumor DNA analysis. J Am Chem Soc 138:11009–11016

    Article  CAS  Google Scholar 

  45. Zhang B, Chen M, Cao J, Liang Y, Tu T, Hu J, Li T, Cai Y, Li S, Liu B, Xu J, Liang B, Ye X, Cai X (2021) An integrated electrochemical POCT platform for ultrasensitive circRNA detection towards hepatocellular carcinoma diagnosis. Biosens Bioelectron 192:113500

    Article  CAS  Google Scholar 

  46. Zhang X, Yang Z, Chang Y, Qing M, Yuan R, Chai Y (2018) Novel 2D-DNA-nanoprobe-mediated enzyme-free-target-recycling amplification for the ultrasensitive electrochemical detection of MicroRNA. Anal Chem 90:9538–9544

    Article  CAS  Google Scholar 

  47. Zhou L, Wang Y, Yang C, Xu H, Luo J, Zhang W, Tang X, Yang S, Fu W, Chang K, Chen M (2019) A label-free electrochemical biosensor for microRNAs detection based on DNA nanomaterial by coupling with Y-shaped DNA structure and non-linear hybridization chain reaction. Biosens Bioelectron 126:657–663

    Article  CAS  Google Scholar 

  48. Athanasiadou D, Carneiro KMM (2021) DNA nanostructures as templates for biomineralization. Nat Rev Chem 5:93–108

    Article  CAS  Google Scholar 

  49. Lin M, Song P, Zhou G, Zuo X, Aldalbahi A, Lou X, Shi J, Fan C (2016) Electrochemical detection of nucleic acids, proteins, small molecules and cells using a DNA-nanostructure-based universal biosensing platform. Nat Protoc 11:1244–1263

    Article  CAS  Google Scholar 

  50. Pei H, Lu N, Wen Y, Song S, Liu Y, Yan H, Fan C (2010) A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv Mater 22:4754–4758

    Article  CAS  Google Scholar 

  51. Lin M, Wang J, Zhou G, Wang J, Wu N, Lu J, Gao J, Chen X, Shi J, Zuo X, Fan C (2015) Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew Chem Int Ed 54:2151–2155

    Article  CAS  Google Scholar 

  52. Li C, Hu X, Lu J, Mao X, Xiang Y, Shu Y, Li G (2018) Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem Sci 9:979–984

    Article  CAS  Google Scholar 

  53. Guo Z, Zhang L, Yang Q, Peng R, Yuan X, Xu L, Wang Z, Chen F, Huang H, Liu Q, Tan W (2022) Manipulation of multiple cell-cell interactions by tunable DNA scaffold networks. Angew Chem Int Ed 61:e202111151

    Article  CAS  Google Scholar 

  54. Chai H, Chen X, Shi R, Miao P (2023) Irregular DNA triangular prism/triplex assembly for duplicate MiRNA analysis with nicking endonuclease-mediated amplification. Anal Chem 95:4564–4569

    Article  CAS  Google Scholar 

  55. Chai H, Zhu J, Guo Z, Tang Y, Miao P (2023) Ultrasensitive miRNA biosensor amplified by ladder hybridization chain reaction on triangular prism structured DNA. Biosens Bioelectron 220:114900

    Article  CAS  Google Scholar 

  56. Jiang Y, Chen X, Feng N, Miao P (2022) Electrochemical aptasensing of SARS-CoV-2 based on triangular prism DNA nanostructures and dumbbell hybridization chain reaction. Anal Chem 94:14755–14760

    Article  CAS  Google Scholar 

  57. Chai H, Miao P (2021) Ultrasensitive assay of ctDNA based on DNA triangular prism and three-way junction nanostructures. Chin Chem Lett 32:783–786

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meihua Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chu, W., Yang, M., Lin, M., Xia, F. (2023). Electrochemical Biosensors for Nucleic Acids Detection. In: Xia, F., Li, H., Li, S., Lou, X. (eds) Electrochemical Biosensors for Whole Blood Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-99-5644-9_8

Download citation

Publish with us

Policies and ethics