Skip to main content

Electrochemical Biosensors for Metabolites Detection

  • Chapter
  • First Online:
Electrochemical Biosensors for Whole Blood Analysis
  • 208 Accesses

Abstract

Metabolites, including intermediate and final products in metabolic pathways, play a crucial role in physiology activities. The detection of metabolites in the blood is very important for preventing disease and understanding health status. The electrochemical biosensors are an effective method to realize highly sensitive and specific detection of metabolites. In this chapter, we focus on the electrochemical detection of metabolites in blood, including glucose, urea, uric acid, bilirubin, cholesterol, lactic acid, creatinine, galactose, triglyceride, and hydrogen peroxide. From the perspective of different metabolites, the innovation of electrochemical biosensors for detecting them is discussed. We hope to provide ideas for the detection of metabolites in the blood through this Chapter and point out the important role of the detection of metabolites in human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42:3184–3196

    Article  CAS  Google Scholar 

  2. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    Article  CAS  Google Scholar 

  3. Xu M, Obodo D, Yadavalli VK (2019) The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 124:96–114

    Article  Google Scholar 

  4. Zhu CZ, Yang GH, Li H, Du D, Lin YH (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249

    Article  CAS  Google Scholar 

  5. Kokkinos C (2019) Electrochemical DNA biosensors based on labeling with nanoparticles. Nanomaterials 9:1361

    Article  CAS  Google Scholar 

  6. Yousefi H, Mahmud A, Chang DR, Das J, Gomis S, Chen JB, Wang HS, Been T, Yip L, Coomes E, Li ZJ, Mubareka S, McGeer A, Christie N, Gray-Owen S, Cochrane A, Rini JM, Sargent EH, Kelley SO (2021) Detection of SARS-CoV-2 viral particles using direct, reagent-free electrochemical sensing. J Am Chem Soc 143:1722–1727

    Article  CAS  Google Scholar 

  7. Ahmad R, Khan M, Mishra P, Jahan N, Ahsan MA, Ahmad I, Khan MR, Watanabe Y, Syed MA, Furukawa H, Khosla A (2021) Engineered hierarchical CuO nanoleaves based electrochemical nonenzymatic biosensor for glucose detection. J Electrochem Soc 168:017501

    Article  CAS  Google Scholar 

  8. Liu JJ, Moakhar RS, Perumal AS, Roman HN, Mahshid S, Wachsmann-Hogiu S (2020) An AgNP-deposited commercial electrochemistry test strip as a platform for urea detection. Sci Rep 10:9527

    Article  CAS  Google Scholar 

  9. Verma S, Choudhary J, Singh KP, Chandra P, Singh SP (2019) Uricase grafted nanoconducting matrix based electrochemical biosensor for ultrafast uric acid detection in human serum samples. Int J Biol Macromol 130:333–341

    Article  CAS  Google Scholar 

  10. Lu ZJ, Cheng YR, Zhang Y, Wang XF, Xu PC, Yu HT, Li XX (2021) Non-enzymatic free bilirubin electrochemical sensor based on ceria nanocube. Sens Actuator B-Chem 329:129224

    Article  CAS  Google Scholar 

  11. Wang SJ, Chen SY, Shang KS, Gao XY, Wang X (2021) Sensitive electrochemical detection of cholesterol using a portable paper sensor based on the synergistic effect of cholesterol oxidase and nanoporous gold. Int J Biol Macromol 189:356–362

    Article  CAS  Google Scholar 

  12. Pilas J, Selmer T, Keusgen M, Schoning MJ (2019) Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array. Anal Chem 91:15293–15299

    Article  CAS  Google Scholar 

  13. Ponnaiah SK, Prakash P (2020) Carbon dots doped tungstic anhydride on graphene oxide nanopanels: a new picomolar-range creatinine selective enzymeless electrochemical sensor. Mater Sci Eng C-Mater Biol Appl 113:111010

    Article  CAS  Google Scholar 

  14. Phan PHL, Tran QT, Dinh DA, Bok KK, Hong CH, Cuong TV (2019) The facile synthesis of novel ZnO nanostructure for galactose biosensor application. J Nanomater 2019:2364327

    Google Scholar 

  15. Bhardwaj SK, Chauhan R, Yadav P, Ghosh S, Mahapatro AK, Singh J, Basu T (2019) Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater Sci 7:1598–1606

    Article  CAS  Google Scholar 

  16. Dong H, Zhou YL, Hao YQ, Zhao L, Sun S, Zhang YT, Ye BX, Xu MT (2020) “Turn-on” ratiometric electrochemical detection of H2O2 in one drop of whole blood sample via a novel microelectrode sensor. Biosens Bioelectron 165:112402

    Article  CAS  Google Scholar 

  17. Ye DX, Liang GH, Li HX, Luo J, Zhang S, Chen H, Kong JL (2013) A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116:223–230

    Article  CAS  Google Scholar 

  18. Zuo MH, Tang J, Xiang MM, Long Q, Dai JP, Yu GD, Zhang HG, Hu H (2019) Clinical observation of the reduced glutathione in the treatment of diabetic chronic kidney disease. J Cell Biochem 120:8483–8491

    Article  CAS  Google Scholar 

  19. Valentini F, Fernandez LG, Tamburri E, Palleschi G (2013) Single walled carbon nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: study of the extended linearity. Biosens Bioelectron 43:75–78

    Article  CAS  Google Scholar 

  20. Akhtar MA, Batool R, Hayat A, Han DX, Riaz S, Khan SU, Nasir M, Nawaz MH, Niu L (2019) Functionalized graphene oxide bridging between enzyme and Au-sputtered screen-printed interface for glucose detection. ACS Appl Nano Mater 2:1589–1596

    Article  CAS  Google Scholar 

  21. Sehit E, Altintas Z (2020) Significance of nanomaterials in electrochemical glucose sensors: an updated review (2016–2020). Biosens Bioelectron 159:112165

    Article  CAS  Google Scholar 

  22. Guo CX, Li CM (2010) Direct electron transfer of glucose oxidase and biosensing of glucose on hollow sphere-nanostructured conducting polymer/metal oxide composite. Phys Chem Chem Phys 12:12153–12159

    Article  CAS  Google Scholar 

  23. Adeel M, Rahman MM, Caligiuri I, Canzonieri V, Rizzolio F, Daniele S (2020) Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens Bioelectron 165:112331

    Article  CAS  Google Scholar 

  24. Ray H, Perreault F, Boyer TH (2019) Urea recovery from fresh human urine by forward osmosis and membrane distillation (FO-MD). Environ Sci-Wat Res Technol 5:1993–2003

    CAS  Google Scholar 

  25. Raghavan R, Eknoyan G (2018) Uremia: a historical reappraisal of what happened. Clin Nephrol 89:305–313

    Article  CAS  Google Scholar 

  26. Karazehir T, Ates M, Sarac AS (2016) Covalent immobilization of urease on poly(pyrrole-3-carboxylic acid): electrochemical impedance and Mott Schottky study. J Electrochem Soc 163:B435–B444

    Article  CAS  Google Scholar 

  27. Pundir CS, Jakhar S, Narwal V (2019) Determination of urea with special emphasis on biosensors: a review. Biosens Bioelectron 123:36–50

    Article  CAS  Google Scholar 

  28. Das J, Sarkar P (2016) Enzymatic electrochemical biosensor for urea with a polyaniline grafted conducting hydrogel composite modified electrode. RSC Adv 6:92520–92533

    Article  CAS  Google Scholar 

  29. Capek I (2009) Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Adv Colloid Interface Sci 150:63–89

    Article  CAS  Google Scholar 

  30. Ondes B, Akpinar F, Uygun M, Muti M, Uygun DA (2021) High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchem J 160:105667

    Article  CAS  Google Scholar 

  31. Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165:B3006–B3016

    Article  CAS  Google Scholar 

  32. Martinez-Perez D, Ferrer ML, Mateo CR (2003) A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids. Anal Biochem 322:238–242

    Article  CAS  Google Scholar 

  33. Raj CR, Ohsaka T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69–77

    Article  Google Scholar 

  34. Alderman M, Aiyer KJV (2004) Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin 20:369–379

    Article  CAS  Google Scholar 

  35. Misra N, Kumar V, Borde L, Varshney L (2013) Localized surface plasmon resonance-optical sensors based on radiolytically synthesized silver nanoparticles for estimation of uric acid. Sens Actuator B-Chem 178:371–378

    Article  CAS  Google Scholar 

  36. Jindal K, Tomar M, Gupta V (2012) CuO thin film based uric acid biosensor with enhanced response characteristics. Biosens Bioelectron 38:11–18

    Article  CAS  Google Scholar 

  37. Liu HY, Jamal R, Abdiryim T, Simayi R, Liu LL, Liu YJ (2021) Carboxylated cellulose as a soft template combined with PEDOT derivatives in BMIM Cl: a competent biosensor for detection of guanine and Uric Acid in the blood. ACS Sustain Chem Eng 9:5860–5871

    Article  CAS  Google Scholar 

  38. Noh HB, Won MS, Shim YB (2014) Selective nonenzymatic bilirubin detection in blood samples using a Nafion/Mn-Cu sensor. Biosens Bioelectron 61:554–561

    Article  CAS  Google Scholar 

  39. Rawal R, Kharangarh PR, Dawra S, Tomar M, Gupta V, Pundir CS (2020) A comprehensive review of bilirubin determination methods with special emphasis on biosensors. Process Biochem 89:165–174

    Article  CAS  Google Scholar 

  40. Santhosh M, Chinnadayyala SR, Singh NK, Goswami P (2016) Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry 111:7–14

    Article  CAS  Google Scholar 

  41. Feng QL, Du YL, Zhang C, Zheng ZX, Hu FD, Wang ZH, Wang CM (2013) Synthesis of the multi-walled carbon nanotubes-COOH/graphene/gold nanoparticles nanocomposite for simple determination of Bilirubin in human blood serum. Sens Actuator B-Chem 185:337–344

    Article  CAS  Google Scholar 

  42. Chauhan N, Rawal R, Hooda V, Jain U (2016) Electrochemical biosensor with graphene oxide nanoparticles and polypyrrole interface for the detection of bilirubin. RSC Adv 6:63624–63633

    Article  CAS  Google Scholar 

  43. Kumar B, Poddar S, Sinha SK (2022) Electrochemical cholesterol sensors based on nanostructured metal oxides: current progress and future perspectives. J Iran Chem Soc 19:4093–4116

    Article  CAS  Google Scholar 

  44. Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A (2020) Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem 13:2001–2010

    Article  CAS  Google Scholar 

  45. Ahmad M, Nisar A, Sun HY (2022) Emerging trends in non-enzymatic cholesterol biosensors: challenges and advancements. Biosensors-Basel 12:955

    Article  CAS  Google Scholar 

  46. Cevik E, Cerit A, Gazel N, Yildiz HB (2018) Construction of an amperometric cholesterol biosensor based on DTP(aryl)aniline conducting polymer bound cholesterol oxidase. Electroanalysis 30:2445–2453

    Article  CAS  Google Scholar 

  47. Ji J, Zhou ZH, Zhao XL, Sun JD, Sun XL (2015) Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol. Biosens Bioelectron 66:590–595

    Article  CAS  Google Scholar 

  48. Ji R, Wang LL, Wang GF, Zhang XJ (2014) Synthesize thickness copper(I) sulfide nanoplates on copper rod and It’s application as nonenzymatic cholesterol sensor. Electrochim Acta 130:239–244

    Article  CAS  Google Scholar 

  49. Alam F, RoyChoudhury S, Jalal AH, Umasankar Y, Forouzanfar S, Akter N, Bhansali S, Pala N (2018) Lactate biosensing: the emerging point-of-care and personal health monitoring. Biosens Bioelectron 117:818–829

    Article  CAS  Google Scholar 

  50. Kost GJ (1993) New whole-blood analyzers and their impact on cardiac and critical care. Crit Rev Clin Lab Sci 30:153–202

    Article  CAS  Google Scholar 

  51. Bravo I, Gutierrez-Sanchez C, Garcia-Mendiola T, Revenga-Parra M, Pariente F, Lorenzo E (2019) Enhanced performance of reagent-less carbon nanodots based enzyme electrochemical biosensors. Sensors 19:5576

    Article  CAS  Google Scholar 

  52. Gonzalez-Gallardo CL, Arjona N, Alvarez-Contreras L, Guerra-Balcazar M (2022) Electrochemical creatinine detection for advanced point-of-care sensing devices: a review. RSC Adv 12:30785–30802

    Article  CAS  Google Scholar 

  53. Dasgupta P, Kumar V, Krishnaswamy PR, Bhat N (2020) Serum creatinine electrochemical biosensor on printed electrodes using monoenzymatic pathway to 1-methylhydantoin detection. ACS Omega 5:22459–22464

    Article  CAS  Google Scholar 

  54. Kumar P, Jaiwal R, Pundir CS (2017) An improved amperometric creatinine biosensor based on nanoparticles of creatininase, creatinase and sarcosine oxidase. Anal Biochem 537:41–49

    Article  CAS  Google Scholar 

  55. Yu KM, Yang P, Huang TY, Shen TYS, Lau JYN, Hu OYP (2022) A novel galactose electrochemical biosensor intended for point-of-care measurement of quantitative liver function using galactose single-point test. Anal Bioanal Chem 414:4067–4077

    Article  CAS  Google Scholar 

  56. Khun K, Ibupoto ZH, Nur O, Willander M (2012) Development of galactose biosensor based on functionalized ZnO nanorods with galactose oxidase. J Sens 2012:696247

    Article  Google Scholar 

  57. Kanyong P, Pemberton RM, Jackson SK, Hart JP (2013) Development of an amperometric screen-printed galactose biosensor for serum analysis. Anal Biochem 435:114–119

    Article  CAS  Google Scholar 

  58. Sharma M, Yadav P, Sharma M (2019) Novel electrochemical sensing of galactose using GalOxNPs/CHIT modified pencil graphite electrode. Carbohydr Res 483:107749

    Article  CAS  Google Scholar 

  59. Bouri M, Zuaznabar-Gardona JC, Novell M, Blondeau P, Andrade FJ (2021) Paper-based potentiometric biosensor for monitoring galactose in whole blood. Electroanalysis 33:81–89

    Article  CAS  Google Scholar 

  60. Mie Y, Katagai S, Ikegami M (2020) Electrochemical oxidation of monosaccharides at nanoporous gold with controlled atomic surface orientation and non-enzymatic galactose sensing. Sensors 20:5632

    Article  CAS  Google Scholar 

  61. Hooda V, Gahlaut A, Gothwal A, Hooda V (2018) Recent trends and perspectives in enzyme based biosensor development for the screening of triglycerides: a comprehensive review. Artif Cell Nanomed Biotechnol 46:626–635

    Article  CAS  Google Scholar 

  62. Skulas-Ray AC, Kris-Etherton PM, Harris WS, Heuvel JPV, Wagner PR, West SG (2011) Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr 93:243–252

    Article  CAS  Google Scholar 

  63. Okazaki M, Komoriya N, Tomoike H, Inoue N, Usui S, Itoh S, Hosaki S (1998) Quantitative detection method of triglycerides in serum lipoproteins and serum-free glycerol by high-performance liquid chromatography. J Chromatogr B 709:179–187

    Article  CAS  Google Scholar 

  64. Narwal V, Pundir CS (2017) An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzyme Microb Technol 100:11–16

    Article  CAS  Google Scholar 

  65. Bhardwaj SK, Yadav P, Ghosh S, Basu T, Mahapatro AK (2016) Biosensing test-bed using electrochemically deposited reduced graphene oxide. ACS Appl Mater Interfaces 8:24350–24360

    Article  CAS  Google Scholar 

  66. Cai LP, Deng LY, Huang XY, Ren JC (2018) Catalytic chemiluminescence polymer dots for ultrasensitive In vivo imaging of intrinsic reactive oxygen species in mice. Anal Chem 90:6929–6935

    Article  CAS  Google Scholar 

  67. Abdesselem M, Ramodiharilafy R, Devys L, Gacoin T, Alexandrou A, Bouzigues CI (2017) Fast quantitative ROS detection based on dual-color single rare-earth nanoparticle imaging reveals signaling pathway kinetics in living cells. Nanoscale 9:656–665

    Article  CAS  Google Scholar 

  68. Zhou J, Liao CN, Zhang LM, Wang QG, Tian Y (2014) Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells. Anal Chem 86:4395–4401

    Article  CAS  Google Scholar 

  69. Dai HX, Chen YL, Niu XY, Pan CJ, Chen HL, Chen XG (2018) High-performance electrochemical biosensor for nonenzymatic H2O2 sensing based on Au@C-Co3O4 heterostructures. Biosens Bioelectron 118:36–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shen, J., Dai, Y., Xia, F. (2023). Electrochemical Biosensors for Metabolites Detection. In: Xia, F., Li, H., Li, S., Lou, X. (eds) Electrochemical Biosensors for Whole Blood Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-99-5644-9_5

Download citation

Publish with us

Policies and ethics