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Abstract. Huge amounts of data are generated and shared in social net-
works and other network topologies. This raises privacy concerns when
such data is not protected from leaking sensitive or personal informa-
tion. Network topologies are commonly modeled through static graphs.
Nevertheless, dynamic graphs better capture the temporal evolution and
properties of such networks. Several differentially private mechanisms
have been proposed for static graph data mining, but at the moment
there are no such algorithms for dynamic data protection and mining.
So, we propose two locally ε-differentially private methods for dynamic
graph protection based on edge addition and deletion through the appli-
cation of the noise-graph mechanism. We apply these methods to real-life
datasets and show promising results preserving graph statistics for appli-
cations in community detection in time-varying networks.

The main contributions of this work are: extending the definition of
local differential privacy for edges to the dynamic graph domain, and
showing that the community structure of the protected graphs is well
preserved for suitable privacy parameters.

1 Introduction and Related Work

A huge amount of data is generated every day in networked systems such as
social networks [4,5], biological networks, internet peer-to-peer networks [13],
and other technological networks [3]. These data can be modelled using graph
theory in which, the nodes represent the users or objects and the edges repre-
sent the relationship between two nodes in such networks. All networks undergo
changes, with nodes or edges arriving or going away as the system develops.
Therefore, static graph networks are not adequate to model these kinds of net-
work structures.

It is known that naif anonymization of a graph can lead to disclosure because
the adversaries can use information that they posses to infer private information
from the structure of the graph. Several types of such attacks have been devel-
oped. See e.g., de-anonymization attack [18], degree attacks [14], 1-neighborhood
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attacks [23], and sub-graph attacks [11]. Proper privacy models have been devel-
oped for static graphs. These models can be broadly classified into those follow-
ing k-anonymity and those following differential privacy. We focus here in the
differential privacy model [8].

The definition of “adjacent graphs” is the key to extending differential privacy
to social networks [12]. So far different definitions have been provided: node
privacy [10], edge privacy [19], out-link privacy, and partition privacy [19,20].
The most commonly used are node and edge differential privacy. Node privacy,
provides desirable privacy protection but is impractical to deliver high utility
(precise network analysis). Edge privacy shields users from attackers trying to
learn about precise relationships between them, and it has been more widely
adopted since it offers effective privacy protection in many practical applications.

Data on dynamic networks can take many different forms, but the most
popular form and the one we consider in this paper is a collection of successively
obtained, typically (but not necessarily) equally spaced snapshots of the network
topology [22]. We restrict ourselves to networks based on a constant set of nodes.
That is, nodes do not change but only edges do. This is not a limitation, because
as we consider a finite set of snapshots all known a priori, the set of nodes
appearing in at least one snapshot is known beforehand.

Keeping all of these in mind, here we propose dynamic graph privacy models
and two novel edge-differentially private mechanisms for dynamic graphs. The
closest related work, are the differentially private algorithms for counting-based
problems in [9]. However, their algorithms are based on sensitivity and hence
the edge randomization cannot be carried out locally, as in the present work.

1.1 Contributions and Paper Structure

In this work, our contributions are:

– the extension of the definition of local differential privacy for edges to dynamic
graphs;

– the privacy mechanisms for providing graphs compliant with edge-local dif-
ferential privacy for dynamic graphs. This is achieved by applying the noise-
graph mechanism;

– an empirical analysis of such privacy mechanisms. We show that the commu-
nity structure in dynamic graphs can be preserved while still protecting the
edges with local differential privacy.

The remainder of the paper is arranged in the following manner. We con-
clude this section presenting basic definitions related to graph protection (Sub-
sect. 1.2). In Sect. 2 we propose two differentially private algorithms for dynamic
graph protection. In Sect. 3 we implement the algorithms and describe how they
work on real datasets. Lastly, we draw a conclusion and give a sketch of the
future work on the basis of all these discussions. This is in Sect. 4.
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1.2 Basic Definitions

For graph randomization, we consider adding noise-graphs as in [16], that is,
a simplification from the original definition in [21], assuming that the original
graph and the noise graph have the same sets of nodes.

We denote by G(V,E) the graph with the set of nodes V and set of edges E.

Definition 1. Let G1(V,E1) and G2(V,E2) be two graphs with the same nodes
V ; then the addition of G1 and G2 is the graph G = (V,E) where:

E = (E1 \ E2) ∪ (E2 \ E1).

We denote G as
G = G1 ⊕ G2.

We will add noise using the Gilbert model, which is denoted by G(n, p). That
is, there are n nodes and each edge is chosen with probability p. The Gilbert
and the Erdös-Rényi random graph models are the most common and general
in the literature. It has been proved that they are asymptotically equivalent in
[1]. So, to add noise to a graph G, we will draw a random graph G′ from the
Gilbert model (i.e., G′ ∈ G(n, p)) and add it to G, to obtain G̃ = G ⊕ G′.

Now, we can define the general noise-graph mechanism [15] that we will use.

Definition 2 (Noise-graph mechanism). For any graph G with n nodes, and
two probabilities p0 and p1, we define the following noise-graph mechanism:

Ap0,p1(G) = G ⊕ G0 ⊕ G1, (1)

where G0 and G1 are such that:

G0 = G′ \ G for G′ ∈ G(n, 1 − p0)
G1 = G′′ ∩ G for G′′ ∈ G(n, 1 − p1).

Definition 3 (Stochastic matrix associated to the noise graph). The
probabilities of randomization of an edge or a non-edge in a graph G after apply-
ing the noise-graph mechanism Ap0,p1 are represented by the following stochastic
matrix:

P = P (Ap0,p1) =
(

p0 1 − p0
1 − p1 p1

)
(2)

2 Dynamic Graphs

Considering that the relations in a dynamic network may remain or disappear
over time, a basic model that accounts for the ratios of appearence or disappear-
ance of edges in a graph over a period of time was proposed in [22].

Formally, the network is observed at an initial state G0 at time t = 0, and
for every snapshot Gt each node pair not connected by an edge at the previous
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snapshot gains an edge with probability α, or not with probability 1−α. Similarly
each existing edge disappears with probability β or not with probability 1 − β,
from one snapshot to the next.

We denote the set of all dynamic graphs with n nodes V and T timestamps
as G = {(G0, G1 . . . GT ) : Gt = Gt(V,Et) for t = 0, . . . T}.

Thus, we can formally define a dynamic network graph model G iteratively by
considering the initial state G0 and applying the noise-graph mechanism Ap0,p1

to Gi−1 to obtain Gi, where p0 = 1 − α and p1 = 1 − β, for i = 1, . . . T .

Definition 4 (Dynamic-network-graph-model). The dynamic network
graph model consists of an initial state G0 and states Gt, for t = 1, . . . T , defined
by:

Gt = A1−α,1−β(Gt−1)

We will denote it as: G(G0, T, α, β).

In the other way around, if we have a series of snapshots G0, G1, . . . , GT of
a graph that evolves with time, and we know that it follows the basic model
of dynamic graphs, then, we can estimate α and β from these snapshots. The
expressions to compute the parameters from the adjacency matrices are given
in [22].

2.1 Differential Privacy for Dynamic Graphs

We adapt the definition of local differential privacy from [6] to be applied specif-
ically to edges in a graph. Edge differential privacy is about the presence or
absence of any edge, and local differential privacy is related to local randomiza-
tion of each of the outputs. We combine both definitions for dynamic graphs to
consider the edges in any of the graphs (snapshots) of the dynamic graph.

Definition 5 (Local differential privacy). [6] A randomized algorithm π,
satisfies ε-local differential privacy if for all inputs x, x′ and all outputs y ∈
Range(π):

P (π(x) = y) ≤ eεP (π(x′) = y) (3)

We denote by 1uv(t) the indicator function of edge uv in Gt, that is 1uv(t) = 1
if uv ∈ Et, and 1uv(t) = 0 otherwise. Similarly, 1A(uv(t)) is the indicator function
of edge uv in A(Gt), the randomized graph.

Definition 6 (Edge-local differential privacy for dynamic graphs). An
edge randomization algorithm A : G → G, satisfies ε-edge local differential pri-
vacy if for every pair of nodes u, v ∈ V , any timestamp t ∈ {1, . . . T} and
x, x′, y ∈ {0, 1}:

P (1A(uv(t)) = y | 1uv(t) = x) ≤ eεP (1A(uv(t)) = y | 1uv(t) = x′), (4)

we say that A is ε-edge locally differentially private (ε-eLDP).
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Observe that when we consider local differential privacy at edge level, it
implies the same probability of presence or absence of every edge in the protected
graph independently of whether the edge was present or not in the original graph.

Thus, Definition 6 can be obtained from Definition 5, considering that the
inputs x, x′ represent whether any edge uv is present in the snapshot-graph Gt or
not, and output y is the presence or absence of the same edge in the randomized
graph.

2.2 Protection Mechanisms for Dynamic Graphs

Considering that a dynamic graph can be modelled with the dynamic-network-
graph-model from Definition 4, it is natural to use it as a first approach to
protect dynamic graphs. Thus, we show that the dynamic random graph model
G(G0, T, p0, p1) is edge-differentially private for specific parameters p0 and p1.

Additionally, we define the parallel protection mechanism that adds noise to
each snapshot of the dynamic graph, and therefore it may have a better utility.

Definition 7 (Dynamic-network-mechanism). Let G = (G0, G1 . . . GT ) be
a dynamic graph. We define the protected dynamic graph G′ = (G′

0, G
′
1 . . . G′

T )
by letting:

G′
0 = Ap0,p1(G0) and Gi = Ai+1

p0,p1
(G0).

That is, the dynamic-network-mechanism is:

Dp0,p1(G) = G(G′
0, T, 1 − p0, 1 − p1),

Remark 1 (Randomization probabilities matrix). The probabilities of random-
ization for the dynamic network mechanism Dp0,p1(G) are calculated by the
(t = 1, . . . , T + 1) powers of the stochastic matrix P in (2), we denote them as
as:

P t =
(

p0 1 − p0
1 − p1 p1

)t

=
(

p00[t] p01[t]
p10[t] p11[t]

)
(5)

Note that pxy[t] corresponds to: P (1A(uv(t)) = y | 1uv(t) = x), with x, y ∈
{0, 1}.

Theorem 1. The mechanism Dp0,p1 is ε-eLDP if

eε ≥ max
t=1,...T+1

{
p10[t]
p00[t]

,
p11[t]
p01[t]

,
p00[t]
p10[t]

,
p01[t]
p11[t]

}
(6)

See proof on page 13.

Lemma 1. Assume that the following inequality holds:

eε ≥ max
{

p10
p00

,
p11
p01

,
p00
p10

,
p01
p11

}
(7)

Then (6) holds, that is:

eε ≥ max
t=1,...T+1

{
p10[t]
p00[t]

,
p11[t]
p01[t]

,
p00[t]
p10[t]

,
p01[t]
p11[t]

}
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See proof on page 14.

Corollary 1. The mechanism Dp0,p1 is ε-eLDP if

eε ≥ max
{

p10
p00

,
p11
p01

,
p00
p10

,
p01
p11

}
(8)

Theorem 1 from [17] provides a complete characterization of the values for
the probabilities (p00, p11) for which this equation holds, hence (p00, p11) can be
parameterized depending on the ε required for protection.

Let us now consider an alternative protection mechanism. We call it the
parallel protection of a dynamic graph. We define it as follows.

Definition 8 (Parallel protection mechanism). Let G = G0, G1, . . . , GT be
a dynamic graph. Let Ap0,p1 denote the noise-graph mechanism. Then, we define
the parallel protection of the dynamic graph with parameters p0 and p1 as the
protection process that provides G̃ = G̃0, G̃1, . . . , G̃T with G̃i = Ap0,p1(Gi) for
i = 0, . . . , T .

We denote the parallel protection of a dynamic graph G with parameters p0
and p1 as A||

p0,p1(G).

Equivalently to Corollary 1, the following can be proven.

Proposition 1. The parallel protection mechanism A||
p0,p1 satisfies ε-local dif-

ferential privacy when

eε ≥ max
{

p10
p00

,
p11
p01

,
p00
p10

,
p01
p11

}

See proof on page 15.

3 Application to Community Detection Algorithms

This section consists of an experimental analysis of previous theoretical claims for
an application of the proposed privacy algorithms. We base our utility analysis
on community detection algorithms through normalised mutual information.

3.1 Experiment Description

We used two real-life datasets to evaluate the application of the proposed privacy
protection algorithms. They are: CAIDA-AS relationship and DBLP datasets.
We provide their basic statistics in Table 1.

One dataset is the CAIDA-AS relationship dataset [2] – Autonomous Systems
(AS), which roughly corresponds to Internet Service Providers (ISP) and their
relationships. We consider the p2p links, that are those that connect two ISPs
who have agreed to exchange traffic on a quid pro quo basis. From this data we
took the 1-month snapshot graphs for each of the 12 months in 2015.
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The computer science bibliography DBLP provides its whole dataset of bibli-
ographical entries in XML format, under the terms of the Open Data Commons
Attribution License (ODC-BY 1.0). We use the coauthorship graph from [7],
which has 1,482,029 unique authors and 10,615,809 timestamped co-authorship
edges between authors. We preprocess the DBLP dataset, considering only the
authors that published a paper each of the years between 2005 and 2013.

Table 1. Preprocessed datasets statistics

Dataset No. of nodes No. of Edges Avg. Snapshot Density

CAIDA-AS 5,715 403,761 0.0010

DBLP 25,439 450,878 0.00007

The experiments are divided into five parts, that we summarize as follows:

1. We divide the data into snapshots such that the same vertices appear in every
snapshot. In the case of DBLP this is the set of authors that have published
at least a paper each year of the period from 2005 to 2013.

2. We fix the value of p0, p1 as in Table 2. We choose the smaller values of p1 for
smaller ε, otherwise the data will have a huge amount of edges. For larger ε
values we may choose larger p1 which also yields better utility. Note that the
same ε can be obtained from several pair of values p0, p1, cf. [17].

3. We protect the data with our two proposed protection algorithms: the
dynamic-network and the parallel mechanisms. We apply them five times
each to obtain the average and confidence intervals of the utility measures.

4. We detect the community structure on each of the snapshot graphs, and
compare it to the original community structure without privacy protection,
we report the average and 95% confidence intervals on the figures.

5. We measure the density of each snapshot graph and compare them.

Table 2. Values of p0 and p1 to obtain the ε in the experiments.

ε 2 4 6 8 10 12 14 16 18 20

p0 0.986602 0.998187 0.999755 0.999967 0.999955 0.999994 0.999999

p1 0.099 0.999

Utility Measures: We use Community Detection Algorithms, to assess the
partitioning or clustering of nodes as well as their propensity to stick together
or disintegrate. Communities make it possible to map a network at a wide scale
because they operate as meta-nodes in the network, that are used to facilitate
analysis. The prediction of missing connections and the detection of fake links
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in the network are the two most significant applications of community detection
in network research.

NMI, or Normalised Mutual Information, is a metric used to assess how well
community discovery methods execute network partitioning. Due to its broad
meaning and ability to compare two partitions even when there are different
numbers of clusters, it is frequently taken into consideration.

Finally, the Graph Density is defined to be the ratio of the number of edges
with respect to the maximum possible edges.

3.2 CAIDA Dataset

In this section, we compare the effects of the dynamic-network and the parallel
mechanisms for small and large ε values on the NMI and density measures of
the CAIDA-AS dataset in Figs. 1 and 2.

(a) Dynamic mechanism for large ε values (b) Parallel mechanism for large ε values

(c) Dynamic mechanism for small ε values (d) Parallel mechanism for small ε values

Fig. 1. Normalized mutual information between the communities detected on the
CAIDA-AS data and the data protected with the dynamic and parallel mechanisms
for several ε values.
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In Fig. 1, we notice that for ε = 20 the NMI of both algorithms is almost 1,
which means that the communities discovered over the protected data are almost
the same as the original ones. Additionally, the NMI in the dynamic mechanism
tends to decrease as the timestamp increases, whereas the parallel does not has
this effect. For smaller values of ε, as the protection is stronger, the difference
between the NMI values in both mechanisms is small. This may be explained
with the larger densities obtained for small ε values in Fig. 2 (a) and (b). In
contrast, in Fig. 2 (c) and (d), we note that for large ε values, the densities for
each protected snapshot graphs are similar to the original density, and tend to
it as the ε value increases.

(a) Dynamic mechanism for small ε values (b) Parallel mechanism for small ε values

(c) Dynamic mechanism for large ε values (d) Parallel mechanism for large ε values

Fig. 2. Densities for the snapshot-graphs obtained by applying the dynamic and par-
allel mechanisms to CAIDA-AS.

3.3 DBLP Dataset

We compare the effects of the dynamic-network and the parallel mechanisms
for small and large ε values on the NMI and density measures of the DBLP
dataset in Figs. 3 and 4. In Fig. 3, it is shown that for larger ε, the communities
detected on the protected graph are similar to the original communities, since
the NMI is around 0.9. Also, it can be noted that the parallel mechanism has bet-
ter NMI than the dynamic-network mechanism for large ε values. Additionally,
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the dynamic-network mechanism’s NMI decreases in time, whereas the parallel
does not. For smaller ε values the performance of both mechanisms is similar.

(a) Dynamic mechanism for large ε values (b) Parallel mechanism for large ε values

(c) Dynamic mechanism for small ε values (d) Parallel mechanism for small ε values

Fig. 3. Normalized mutual information between the communities detected on the
DBLP data and the data protected with the dynamic and parallel mechanisms for
several ε values.

In Fig. 4 (a) and (b), we show the effect of both mechanisms on the densities of
the graph for small ε values. We notice that for ε = 2 the density of the protected
snapshots is near to 0.007 which means that they have around 4,529,999 of edges,
which is 100 times the original average snapshot density of 0.00007. In Fig. 4 (c)
and (d), we show the effect of both mechanisms on the densities of the graph for
large ε values. An increase in the density means that there have been created
more noise-edges than there have been erased real-edges. Again, the parallel
mechanism incurs a lower increase in density than the dynamic. Moreover, the
increase in density for ε = 10 is more steep for the dynamic than for the rest of
ε values.
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(a) Dynamic mechanism for small ε values (b) Parallel mechanism for small ε values

(c) Dynamic mechanism for large ε values (d) Parallel mechanism for large ε values

Fig. 4. Densities for the snapshot-graphs obtained by applying the dynamic and par-
allel mechanisms to DBLP.

4 Conclusions and Future Scope

We proposed two protection methods for dynamic graphs: the dynamic-network
and the parallel protection mechanisms. We extended the definition of local dif-
ferential privacy for edges in dynamic graphs. We showed that both our proposed
methods are ε-edge locally differentially private for specific values of random-
ization probabilities in the noise-graph mechanism p0 and p1. We performed an
empirical analysis of such algorithms, to show that they keep the community
structure of the dynamic graphs while protecting their edges with local differen-
tial privacy.

In this work, we only focus on edge privacy with fixed nodes which extend
the ε-edge local differential privacy notion. But, there is still room to look over
changing nodes and change of edges and nodes simultaneously. We also would
like to extend this notion of privacy in the path of graph neural networks and
federated learning. We plan to extend the empirical analysis to other graph
utility metrics and other definitions of dynamic graphs.
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A Proofs

Proof (Proof of Theorem 1). Let G = G0, G1, . . . GT be a dynamic graph. Recall
that Dp0,p1(G) = G(g0, T, 1 − p0, 1 − p1), which outputs the initial state g0 =
Ap0,p1(G0), and the further snapshots g1, . . . , gT such that gi = Ai+1

p0,p1
(G0).

To prove that mechanism Dp0,p1 is ε-eLDP we must show that:

P (1A(uv(t)) = y | 1uv(t) = x)
P (1A(uv(t)) = y | 1uv(t) = x′)

≤ eε

We assume that x 	= x′, otherwise the inequality holds.
Now, suppose that x = 1 and x′ = 0, and that (6) holds.
Therefore, we must prove that, for y = 0, 1 and t ≥ 1:

P (1A(uv(t)) = y | 1uv(t) = 1)
P (1A(uv(t)) = y | 1uv(t) = 0)

≤ eε (9)

Note that, these probabilities can be calculated using the stochastic matrix
P t in (5), and by Remark 1 they are the following for y = 0:

P (1A(uv(t)) = 0 | 1uv(t) = 1) = p10[t]

P (1A(uv(t)) = 0 | 1uv(t) = 0) = p00[t]

and the following for y = 1:

P (1A(uv(t)) = 1 | 1uv(t) = 1) = p11[t]

P (1A(uv(t)) = 1 | 1uv(t) = 0) = p01[t]

Thus, for y = 0, 1, the Eq. (9) becomes:

p10[t]
p00[t]

≤ eε and
p11[t]
p01[t]

≤ eε

The argument is similar when x = 0 and x′ = 1. As all these probabilities
are bounded by eε by (6), we finish the proof.

Proof (Proof of Lemma 1). Assume that (7) holds. We first show that (6) is true
for t = 2. Note that:

p00[2]
p10[2]

=
p00p00 + p01p10
p10p00 + p11p10

Divide all by p10 and, by (7), to obtain:

(p00
p10

)p00 + p01

p00 + p11
≤ eεp00 + p01

p00 + p11
.

And,
eεp00 + p01
p00 + p11

≤ eε ⇐⇒ p01
p11

≤ eε.
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Which is true from (7).
Note that:

p10[2]
p00[2]

=
p10p00 + p11p10
p00p00 + p01p10

Again, divide all by p10 and, by (7), obtain:

p00 + p11
(p00

p10
)p00 + p01

≤ p00 + p11

( 1
eε )p00 + p01

.

Moreover,

p00 + p11

( 1
eε )p00 + p01

≤ eε ⇐⇒ ( 1
eε )p00 + p01

p00 + p11
≥ 1

eε
⇐⇒ p01

p11
≥ 1

eε
⇐⇒ p11

p01
≤ eε,

which is true from (7). The proof is similar for p11[2]
p01[2]

and p01[2]
p11[2]

. Finally, since (6)
is true for t = 2, considering that it is true for t = 1, the proof for all t follows
by iteratively letting the corresponding pij [2] = pij , and all the rest is the same.

Proof (Proof of Proposition 1). We need to consider two cases. In the first case,
the edge uv is in A||

p0,p1(G) and also in A||
p0,p1(G′). We consider that we have a

graph G with an edge uv and the graph G′ does not have this edge. Then, the
protection mechanism will produce graphs G̃1 and G̃′. With probability p1 we
have that the edge uv is still in G̃1 and with probability 1 − p0 the edge uv has
appeared in G̃′. In order that the condition for differential privacy holds we need

p1/(1 − p0) ≤ eε.

Similarly, if the edge uv is in G′ but not in G, we will have

(1 − p0)/(p1) ≤ eε.

The second case is when we have that the edge uv is neither in A||
p0,p1(G)

not in A||
p0,p1(G′). Let us consider that the graph G does not have the edge uv

but the graph G′ has this edge. Then, the protection mechanism will add the
edge uv to G with probability 1 − p0, and the edge uv will be kept in G′ with
probability p1. So, we need that

(1 − p0)/p1 ≤ eε.

Similarly, if the edge uv is in G but not in G′, then

p0/(1 − p1) ≤ eε.
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