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Abstract Moore’s law is slowing down and, as traditional von Neumann comput-
ers face challenges in efficiently handling increasingly important issues in a modern
information society, there is a growing desire to find alternative computing and device
technologies. Ising machines are non-von Neumann computing systems designed to
solve combinatorial optimization problems. To explore their efficient implemen-
tation, Ising machines have been developed using a variety of physical principles
such as optics, electronics, and quantum mechanics. Among them, oscillator-based
Ising machines (OIMs) utilize synchronization dynamics of network-coupled spon-
taneous nonlinear oscillators. In these OIMs, phases of the oscillators undergo bina-
rization through second-harmonic injection signals, which effectively transform the
broad class of network-coupled oscillator systems into Ising machines. This makes
their implementation versatile across a wide variety of physical phenomena. In this
Chapter, we discuss the fundamentals and working mechanisms of the OIMs. We
also numerically investigate the relationship between their performance and their
properties, including some unexplored effects regarding driving stochastic process
and higher harmonics, which have not been addressed in the existing literature.

1 Introduction

In today’s society, we are increasingly reliant on information devices in every aspect
of our lives. The remarkable progress in information technology has been largely
driven by the advancements in semiconductor technology, specifically the scaling
law known as Moore’s law [1]. However, the pace of Moore’s law slows down due
to physical and economic limitations [2].

The modern era of information processing has been largely dominated by the
von Neumann architecture, a paradigm that has served as the backbone of general-
purpose computing for decades. However, von Neumann machines have inherent
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limitations when solving certain types of problems, such as those involving com-
binatorial optimization. These problems have a wide spectrum of applications in
the real world, including machine learning, computer vision, circuit wiring, route
planning, and resource allocation [3–6].

Recognizing these challenges, there has been a growing interest in non-silicon-
based, non-von Neumann architectures. These architectures, which admit massively
parallel, asynchronous, and in-memory operations, are different from traditional
general-purpose computing devices/models and are designed specifically to tackle
these complex problems more effectively. These architectures, which include quan-
tum computers, neuromorphic computers, and Ising machines, among others, offer
promising alternatives for the advancement of next-generation information process-
ing [7, 8].

Many combinatorial optimization problems can be translated into a problem of
physics: finding the ground state of an Ising model, a system of interacting binary
spins. Ising machines are physical systems specifically designed to find the ground
states of Ising models [9]. Ising machines have been implemented using various
physical systems, such as superconducting qubits, optical parametric oscillators,
dedicated digital CMOS devices, memristors, and photonic simulators [10–15].

Oscillations are ubiquitous phenomena observed across the fields of natural sci-
ence and engineering [16, 17]. Coupled oscillator systems, which can be realized
through various physical phenomena, possess diverse information processing capac-
ity and hold promise for building ultra energy efficient, high frequency and density
scalable computing architecture [18, 19] (see [18, Table 1] for a comparison of sev-
eral building block physical rhythmic elements). While the state of an oscillator is
represented by a continuous phase value, sub-harmonic injection locking phenomena
can be used to realize discrete states, as proposed since the time of von Neumann and
Goto [20, 21]. These discrete states can be utilized to implement Ising spins, a prin-
ciple that led to the foundation of oscillator-based Ising machines (OIMs) [22, 23].
OIMs have been experimentally demonstrated using various physical systems, such
as analog electronic, insulator-to-metal phase transition, and spin oscillators [22,
24–26].

In this Chapter, we discuss the fundamentals and working mechanisms of the
OIMs. We also numerically investigate the relationship between their performance
and their properties, including some unexplored effects regarding driving stochas-
tic process and higher harmonics, which have not been addressed in the existing
literature.

2 Ising Model and Ising Machines

The Isingmodel, proposed by E. Ising in the early 20th century, is a theoretical model
used to describe a system of interacting binary spins [27]. The model is specified
by a collection of discrete variables, the “spins,” (si )Ni=1 ∈ {−1, 1}N , where N is the
number of spins, and a cost function, or “Hamiltonian,” H : {−1, 1}N → R, which
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specifies how the spins interact. The Ising Hamiltonian is given by:

H = −1

2

N∑

i=1

N∑

j=1

Ji j si s j −
N∑

i

hi si , (1)

where Ji j ∈ R is the interaction coefficient between the i th and j th spins, and hi ∈ R

is the external magnetic field for the i th spin. Many combinatorial optimization
problems can be mapped onto the problem of finding the ground state of the Ising
model, with instances of these problems specified by the symmetric adjacencymatrix
J and vector h. The problem is to find the spin configuration s that minimizes the
above Hamiltonian. In this chapter, we limit to consider the Ising models with no
external field:

H = −1

2

N∑

i=1

N∑

j=1

Ji j si s j . (2)

These models still encompass various important combinatorial optimization prob-
lems [28], called NP-complete problems, which can be computationally intractable
for the traditional von Neumann architecture machines.

Ising machines are physical systems that are designed to efficiently explore
the ground state of the Ising Hamiltonian. Various Ising machines have been pro-
posed, using approaches including classical, quantum, classical-quantum hybrid,
and quantum-inspired classical [9]. Also, these machines have been realized through
various physical systems, such as superconducting qubits, optical parametric oscilla-
tors, dedicated digital CMOS devices, memristors, and photonic simulators [10–15].
Among these, the focus of this Chapter is on the classical ones. A classical physical
system subjected to thermal fluctuation exhibits a stationary distribution ps, known
as the Boltzmann distribution, which takes the following form [29]:

ps(x) = N exp (−V (x)/D) , x ∈ � , (3)

where x is the state of the physical system, � is the phase space, N ∈ R is the
normalization constant, V (x) ∈ R is the energy of the state x and D ∈ R is the
strength of the thermal fluctuation. The Boltzmann distribution tells us that the lower
energy states appear with higher probability, and the probability of obtaining the
ground state increases as the fluctuation strength is lowered. While reducing the
fluctuation strength can increase the probability of obtaining the ground state, it’s
not always advantageous to simply diminish the fluctuation. If the fluctuation is too
weak, the systemmay become trapped in local minima of the potential and be unable
to escape, which significantly increases the time it takes for the system to reach a
stationary distribution. To address this challenge, a process known as annealing is
often employed. In this process, the strength of the fluctuation is gradually reduced in
order to achieve a balance between reaching a stationary distribution and enhancing
the probability of finding the ground state. Thediscussion above leads to the following
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idea of a class of Isingmachines: if we implement a physical gradient systemwith the
potential V subject to the following conditions, and apply appropriate fluctuations to
it, we can find the ground state of the Ising Hamiltonian and thus solve combinatorial
optimization problems:

• There exists a set in the phase space � that can be regarded as spin configurations,
• The Ising Hamiltonian H is represented as the potential V evaluated at these spin
configurations,

• The minimum value of V coincides with the minimum value of H .

Even continuous-state dynamical systems can be harnessed in the implementation of
Ising machines. The Hopfield-Tank neural network [30] being a classical example,
and coherent Ising machines [11] implemented using optical parametric oscillators
and OIMs also belong to this group. Also, in addition to the method of utilizing
thermal fluctuations as discussed above, other approaches utilizing deterministic
chaotic fluctuations to implement Ising machines using classical continuous-state
dynamical systems have been proposed [31, 32].

3 Oscillator-Based Ising Machines

Oscillations are ubiquitous phenomena observed across the fields of natural science
and engineering [16, 17]. Coupled oscillator systems, which can be realized through
various physical phenomena, possess diverse information processing capacity and
hold promise for building ultra energy efficient, high frequency and density scalable
computing architecture [18, 19].

In this section, we will discuss the background of the operating principle of
oscillator-based Ising machines (OIMs) [22, 23]. This is summarized as follows:
Under the assumption that the interaction and external forcing are sufficiently
weak, network-coupled self-excited oscillators can universally be described using
the Kuramoto model, which consists of network-coupled phase oscillators. Given
certain symmetries in the topology and scheme of interaction, the Kuramoto model
becomes a gradient system. Moreover, sub-harmonic injection allows for the intro-
duction of spin configurations as a stable synchronized state within the phase space
of the phase oscillator system.

These properties suggest that a broad class of network-coupled self-excited oscil-
lator systems can be used to implement OIMs. OIMs have been experimentally
demonstrated using various physical systems, such as analog electronic, insulator-
to-metal phase transition, and spin oscillators [22, 24–26].
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3.1 Phase Oscillators

In this Subsection, we introduce the notion of the phase for a stable self-excited oscil-
lator and explain how its dynamics, when subjected to sufficiently weak fluctuation,
can be reduced to a one-dimensional dynamics of a phase oscillator.

Consider a smooth autonomous dynamical system of Nd-dimensional state x(t) ∈
R

Nd :
ẋ(t) = F(x(t)) , x(t) ∈ R

Nd , (4)

which has an exponentially stable limit-cycle χ : x̃0(t) with a natural period T
and frequency ω = 2π/T , satisfying x̃0(t) = x̃0(t + T ). We first introduce a phase
θ(x) ∈ [0, 2π) on χ , where 0 and 2π are considered identical. We can choose an
arbitrary point x̃0(0) on χ as the origin of phase, i.e., θ(x̃0(0)) = 0, and define
the phase of x̃0(t) as θ(x̃0(t)) = ωt (mod 2π). In the following, we reparametrize a
point on χ using θ instead of t . Specifically, we define x0(θ) := x̃0(t) for subsequent
discussions. Apparently, x0(θ) = x0(θ + 2π) holds.

To describe the dynamics when the system deviates from the periodic orbit χ due
to perturbation, we extend the definition of the phase beyond χ . Here, it’s important
to note that θ̇ = ω holds as long as x evolves on χ . Let us extend the definition of the
phase such that θ̇ = ω holds. With this extension, the phase difference between two
solutions of (4) starting from different initial conditions should remain constant over
time. The basin of attraction B ⊂ R

Nd is the set of initial conditions that converge to
χ . For smooth, exponentially stable limit-cycling system, the following holds [33]:
For any point x∗ ∈ B, there exists a unique initial condition x0(θ∗) on the periodic
orbit, which yields a solution that maintains a constant phase difference of zero with
the solution starting from x∗. Thus we can introduce a phase function θ(x) : B →
[0, 2π) that maps the system state to a phase value as

θ(x∗) = θ(x0(θ∗)) = θ∗ . (5)

For smooth systems, the phase function θ is also smooth, and thus

F(x) · ∇θ(x) = ω , ∀x ∈ B , (6)

holds due to the chain rule.
When an impulsive and sufficiently weak perturbation εk (|ε| � 1) is given to

the system at x0(θ∗), the response of the phase can be linearly approximated by
neglecting higher-order terms in ε as

θ(x0(θ∗) + εk) − θ∗ = ∇θ(x0(θ∗)) · εk . (7)

Thus, the gradient ∇θ(x0(θ∗)) of θ , evaluated at x = x0(θ∗) characterizes linear
response property of the oscillator phase to weak perturbations.∇θ(x0(θ∗)) is called
the phase sensitivity function (a.k.a. infinitesimal phase resetting curve, perturbation
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projection vector) [34–37]. The phase sensitivity function plays central roles in ana-
lyzing synchronization dynamics of oscillatory systems. In the following, we denote
the phase sensitivity function as Z(θ∗) := ∇θ(x0(θ∗)).

Consider a limit-cycle oscillator subjected to a weak perturbation, described by
the equation:

ẋ(t) = F(x(t)) + ε p(x, t) , p(x, t) ∈ R
Nd , (8)

where ε p represents a small perturbation ofmagnitude ε, i.e., |ε| � 1. The dynamics
of the phase θ(x(t)) can be obtained using the chain rule:

θ̇ (x(t)) = ∇θ(x(t)) · {F(x(t)) + ε p(x, t)} = ω + ε∇θ(x(t)) · p(x, t) . (9)

This equation is not yet closed in phase θ because ∇θ(x) depends on x. In order
to obtain an equation for θ , we used the fact that the perturbation is small and
O(ε), implying that the deviation of the state x from χ is also small and O(ε),
i.e., x(t) = x0(θ∗) + O(ε), where θ∗ = θ(x(t)). The gradient ∇θ at x can then be
expressed as∇θ(x(t)) = ∇θ(x0(θ∗)) + O(ε) and by substituting into (9), we obtain
an approximate phase equation for θ ,

θ̇ (t) = ω + εZ(θ) · p(x0(θ), t) , (10)

by neglecting the terms of O(ε2). This phase equation is now closed in θ and can
be solved for θ when the phase sensitivity function Z and perturbation ε p are given.
Thus the Nd-dimensional nonlinear dynamics of the oscillator is successfully reduced
the one-dimensional phase dynamics.

When the model of a dynamical system is known, a convenient method for cal-
culating the phase sensitivity function is the adjoint method [38–40]. The adjoint
method involves solving

ω
d

dθ
Y(θ) = −DF	(x0(θ))Y(θ) , Y(θ) ∈ R

Nd , (11)

where DF is the Jacobian matrix of F and 	 denotes the transposition. This
equation is solved backward in time with an initial condition Y(0) such that
F(x0(0)) · Y(0) 
= 0. It then converges to a periodic solution. Normalizing this solu-
tion using the condition F(x0(θ)) · Y(θ) = ω, which corresponds to (6), gives rise
to the phase sensitivity function. While this is a simple method, it requires the cal-
culation of the Jacobian matrix, which can often be challenging to use for high-
dimensional oscillatory systems. Therefore, methods to avoid the calculation of the
Jacobian matrix have also been proposed [41, 42].

The phase sensitivity functions can also be measured experimentally in model-
free manners [43–47]. Furthermore, the phase function (and thus its gradient) can
also be characterized by an eigenfunction of the associated Koopman operator for
dynamical systems [48]. The Koopman operator allows for a data-driven spectral
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decomposition method, known as dynamic mode decomposition, which is a rapidly
evolving field of study [49].

3.2 Second-Harmonic Injection Locking

An oscillator with a frequency ω can be entrained by an external periodic signal
having a frequency close to (l/k)ω, where k and l are natural numbers. This is
phenomenon is known as synchronization of order k : l. If k < l (resp. k > l), the
locking is referred to as sub-harmonic (resp. superharmonic) [16, 17]. The term
“second-harmonic injection locking” refers to 1 : 2 sub-harmonic synchronization.
Furthermore, when an oscillator is perturbed by an external second-harmonic injec-
tion signal, the phase difference between the oscillator and the injection signal settles
down to one of two values, separated byπ . This allows for the encoding of a spin state
of an Ising model into the phase difference, using the two steady states to represent
the spin down or up, respectively.

Let us provide a concrete discussion of this scenario. Consider a limit-cycle oscil-
lator with the frequencyω subjected to a weak, almost second-harmonic perturbation
of frequency ωs ≈ 2ω, described by the equation:

ẋ(t) = F(x(t)) + ε p(t) . (12)

We define ω − ωs/2 = �ω and the phase difference ψ between the oscillator and
the forcing as

ψ := θ − 1

2
ωst . (13)

The evolution of the phase difference is then given by

dψ

dt
= �ω + Z

(
1

2
ωst + ψ

)
· εq (ωst) , (14)

where q (ωst) := p(t). From the assumptions ωs ≈ 2ω, |ε| � 1, the right-hand side
of (14) is very small, andψ varies slowly. Hence, the averagingmethod [50] provides
an approximate dynamics of (14) as

dψ

dt
= �ω + ε
(ψ) , (15)


(ψ) = 1

2π

2π∫

0

dθZ(θ + ψ) · q(2θ) . (16)

Consider the Fourier series expansions of Z and q:
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Z(φ) =
[ ∞∑

k=−∞
Z1,ke

ikφ,

∞∑

k=−∞
Z2,ke

ikφ, · · · ,

∞∑

k=−∞
ZNd,ke

ikφ,

]	
, (17)

q(φ) =
[ ∞∑

l=−∞
q1,l e

ilφ,

∞∑

l=−∞
q2,l e

ilφ, · · · ,

∞∑

l=−∞
qNd,l e

ilφ,

]	
. (18)

Then,


(ψ) =
Nd∑

m=1

∞∑

l=−∞
Zm,−2lqm,l e

−2ilψ . (19)

If ε p(t) is a second-harmonic injection, i.e., qm,l = 0 for any |l| 
= 1, (19) simplifies
to


(ψ) = 2.0
Nd∑

m=1

Re
(
Zm,−2qm,1e

−2iψ
)

. (20)

This equation represents a second-harmonic wave. Therefore, when the mismatch
in the 1 : 2 frequency relation �ω is sufficiently small, the dynamics of the phase
difference (15) exhibits two stable and two unstable equilibria, each of which are
separatedπ . These stable equilibria can be utilized as the spin state of an Isingmodel.

Even if q is not a purely second-harmonic, as long as the frequency mismatch
condition is met, the DC component of (qm,0)

Nd
m=1 is small, and Zm,−2lqm,l (|l| ≥ 2)

do not create new equilibria, there continue to be only two stable equilibria separated
by π . This separation can again be utilized to represent the spin states.

3.3 Kuramoto Model

In this Subsection, we derive a variant of the Kuramoto model from a general system
of weakly coupled, weakly heterogeneous oscillators subjected to second-harmonic
forcing.

Consider

ẋi (t) = F(xi (t)) + f̃ i (xi (t)) +
N∑

j=1

Ji j g̃i j (xi (t), x j (t)) + p(t) . (21)

Here, F has a “standard” oscillator with a periodic orbit x̃0 of frequency ω, while
f̃ i characterizes the autonomous heterogeneity of the i th oscillator. J = (Ji j ) is the
adjacencymatrix of the coupling connectivity, and g̃i j represents the interaction from
oscillator j to i . p is the almost second-harmonic injection of frequency ωs ≈ 2ω.
We assume that the magnitudes of f̃ , g̃i j , and p are sufficiently small. We introduce
phase functions θi for the i th oscillator using the standard oscillator. We define �ω
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and ψi as in (13). Then we obtain

ψ̇i (t) = �ω + Z
(
1

2
ωst + ψi

)
·

⎡

⎣ f i

(
1

2
ωst + ψi

)
+

N∑

j=1

Ji j gi j

(
1

2
ωst + ψi ,

1

2
ωst + ψ j

)
+ q (ωst)

⎤

⎦ ,(22)

where x0(θ) := x̃0(t), f i (θ∗) := f̃ i (x0(θ∗)), gi j (θ∗, θ∗∗) := g̃i j (x0(θ∗), x0(θ∗∗)),
q (ωst) := p(t). Given the assumptions above, the right-hand side of (22) is very
small and the averaging approximation leads to

ψ̇i (t) = �ωi +
N∑

j=1

Ji j
i j (ψi − ψ j ) + 
(ψi ) , (23)

where �ωi := �ω + δωi and

δωi = 1

2π

2π∫

0

dθZ(θ + ψi ) · f i (θ + ψi ) , (24)


i j (ψi − ψ j ) = 1

2π

2π∫

0

dθZ(θ + ψi ) · gi j (θ + ψi , θ + ψ j ) , (25)


(ψi ) = 1

2π

2π∫

0

dθZ(θ + ψi ) · q(2θ) . (26)

Thus, the system of weakly coupled, weakly heterogeneous oscillators subjected to
second-harmonic forcing (21) can be universally reduced to the variant of Kuramoto
phase oscillator system (23). This type of Kuramoto model, which has an external
field term 
, is called the active rotator model [51–53].

3.4 Gradient Structure of the Kuramoto Model

In this Subsection, given certain assumptions about symmetries in the topology and
the schemeof interaction,we show that theKuramotomodel (23) is a gradient system.
Our discussion draws heavily on the material presented in Appendix C of [22], but
we slightly relax the assumption therein and extend the result.
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We assume that Ji j = Jji , 
i j = 
 j i and its antisymmetricity:


i j (x) = −
i j (−x) . (27)

Such antisymmetry appears when the interaction gi j is diffusive, i.e.,

gi j (ψi , ψ j ) = −gi j (ψ j , ψi ) . (28)

Note that, in [22], it is assumed that
i j = 
kl , i.e., the interaction scheme is uniform.
We only assume its symmetricity instead.

Let us introduce a potential function L as

L(ψ) := 1

2

N∑

i=1

N∑

j=1

{−1

N

[
�ωiψi + �ω jψ j

]

+ 1

2N

[
Is(2ψi ) + Is(2ψ j )

] + Ji j Ii j (ψi − ψ j )

}
, (29)

where

Ii j (x) := −
x∫

0


i j (y)dy + Ci j , (30)

Is(x) := −
x∫

0


(y)dy . (31)

Here Ci j ∈ R is a constant. Then we have

∂

∂ψl

{ N∑

i=1

N∑

j=1

−1

N

[
�ωiψi + �ω jψ j

] }
= − 1

N

N∑

i=1

N∑

j=1

[
�ωiδil + �ω jδ jl

]

= − 1

N

N∑

j=1

N∑

i=1

�ωiδil − 1

N

N∑

i=1

N∑

j=1

�ω jδ jl

= − 1

N

N∑

j=1

�ωl − 1

N

N∑

i=1

�ωl = −2�ωl , (32)

where δi j is the Kronecker delta. Also,
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∂

∂ψl

{
N∑
i=1

N∑
j=1

1

2N

[
Is (2ψi ) + Is

(
2ψ j

)]
}

= − 1

2N

N∑
i=1

N∑
j=1

[
2δil
 (2ψi ) + 2δ jl


(
2ψ j

)]

= − 1

N

N∑
j=1

N∑
i=1

δil
 (2ψi ) − 1

N

N∑
i=1

N∑
j=1

δ jl

(
2ψ j

)

= − 1

N

N∑
j=1


 (2ψl) − 1

N

N∑
i=1


 (2ψl) = −2
 (2ψl) , (33)

∂

∂ψl

{
N∑
i=1

N∑
j=1

Ji j Ii j
(
ψi − ψ j

)
}

= −
N∑
i=1

N∑
j=1

[
Ji j

(
δil − δ jl

)

i j

(
ψi − ψ j

)]

= −
[

N∑
j=1

N∑
i=1

δil Ji j
i j
(
ψi − ψ j

) −
N∑
i=1

N∑
j=1

δ jl Ji j
i j
(
ψi − ψ j

)
]

= −
[

N∑
j=1

Jl j
l j
(
ψl − ψ j

) −
N∑
i=1

Jil
il (ψi − ψl)

]

= −
[

N∑
j=1

Jl j
l j
(
ψl − ψ j

) +
N∑
j=1

Jl j
l j
(
ψl − ψ j

)
]

(∵ (27) and Jil = Jli , 
il = 
li )

= −2
N∑
j=1

Jl j
l j
(
ψl − ψ j

)
. (34)

Thus the Kuramoto model (23) is a gradient flow of L:

ψ̇ = −∇L(ψ) . (35)

3.5 Working Principle of OIMs

In this Subsection, we explain how an OIM explores the ground state of the Ising
Hamiltonian.

Consider a coupled oscillator system, where noisy fluctuation is introduced into
(23), as follows:
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ψ̇i (t) = �ωi − K
N∑

j=1

Ji j
i j (ψi − ψ j ) − Ks
(ψi ) + Knξi (t) , (36)

where ξi (t) is a white Gaussian noise with zero mean and unit variance, and
K , Ks, Kn represent the strength of each term. We interpret the stochastic inte-
gral of the Langevin equation (36) in the Strantonovich sense, as we are consid-
ering real and physical noises [54]. We assume that the symmetry assumptions (27),
Ji j = Jji , 
i j = 
 j i so that the associated deterministic system has a potential func-
tion:

L(ψ) := 1

2

N∑

i=1

N∑

j=1

{−1

N

[
�ωiψi + �ω jψ j

]

− Ks

2N

[
Is(2ψi ) + Is(2ψ j )

] − K Ji j Ii j (ψi − ψ j )

}
. (37)

As discussed in Subsect. 3.2, the second-harmonic injection aids in creating two
stable equilibria that are separated by π . Without loss of generality, we can consider
these equilibria as 0 and π . This is because ψ represents the phase difference with
respect to the second-harmonic injection, and the origin of the phase of the injection
can be chosen arbitrarily. Assuming small phase mismatches �ωi and that all ψi

have settled to either 0 or π , the potential energy can be approximated as

L(ψ) ≈ −NKs

2
Is(0) − 1

2

N∑

i=1

N∑

j=1

K Ji j Ii j (ψi − ψ j ) . (38)

We used the fact that Is(0) = Is(2π). As
i j is antisymmetric, Ii j is symmetric, hence
Ii j (π) = Ii j (−π). Thus, if we can choose Ci j in (30) such that

Ii j (0) = −Ii j (π) = C , (39)

where C ∈ R≥0 is a constant independent of i, j , we obtain

L(ψ) ≈ −NKs

2
Is(0) − KC

2

N∑

i=1

N∑

j=1

Ji j s̃(ψi )s̃(ψ j ) , (40)

where s̃(0) = 1, s̃(π) = s̃(−π) = −1. Thus, the potential function evaluated at π -
separated stable equilibria created by second-harmonic injection matches the Ising
Hamiltonian (2), up to a constant offset and a constant scaling factor. Since the
deterministic part of (36) has the gradient structure, the stationary distribution for ψ

is given by the Boltzmann distribution:
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ps(ψ) = N exp

(
− 2

K 2
n

L(ψ)

)
. (41)

In this stationary distribution, states with lower potential energy are more likely
to occur. Therefore, when the second-harmonic injection establishes π -separated
equilibria, the OIM effectively searches for the ground state of the IsingHamiltonian.

4 Experiments

In this Section, we conduct numerical investigations to explore the relationship
between the performance and properties of OIMs. Our focus is on the MAX-CUT
problem, an important problem that is straightforwardlymapped onto the Isingmodel
and is classified as NP-complete. Additionally, we delve into some aspects related
to higher harmonics and time discretization, which have remained unexplored thor-
oughly in the existing literature.

4.1 MAX-CUT Problem

The MAX-CUT problem asks for the optimal decomposition of a graph’s vertices
into two groups, such that the number of edges between the two groups is maximized.
The MAX-CUT problem is NP-complete for non-planar graphs [55].

In this Chapter, we consider the MAX-CUT problem for unweighted, undirected
graphs. The problemcanbe formulated as follows:Given a simple graphG = (V, E),
where V is the set of vertices and E is the set of edges. Find a partition of V into
two disjoint subsets V1 and V2 such that the number of edges between V1 and V2 is
maximized. Let us assign each vertex i ∈ V a binary variable si ∈ {−1, 1}. If i ∈ V1

(resp. V2), we set si = 1 (resp. si = −1). The term 1 − si s j is 2 if vertices i and j
are in different subsets (and thus contribute to the cut), and 0 otherwise. Then, the
sum of (1 − si s j )/2 over the graph provides the cut value:

c := 1

4

∑

i∈V

∑

j∈V
Ai j (1 − si s j ) = |E |

2
− 1

4

∑

i∈V

∑

j∈V
Ai j si s j . (42)

Therefore, theMAX-CUTproblemcan bewritten asmaxs{− 1
2

∑
i∈V

∑
j∈V Ai j si s j },

which is eqivalent to

min
s

⎧
⎨

⎩−1

2

∑

i∈V

∑

j∈V
Ji j si s j

⎫
⎬

⎭ , (43)
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by setting J := −A. Thus, by defining J := −A, theMAX-CUTproblem ismapped
to the Ising model (2).

In this work, we use MAX-CUT problems associated with Möbius ladder graphs
in order to demonstrate the performance and characteristics of OIMs. Figure 1(a)
depicts a Möbius ladder graph of size 8 along with its MAX-CUT solution. Möbius
ladder graphs are non-planar and have been widely employed as benchmarking Ising
machines [9, 11, 13, 14, 22, 24–26, 32]. Note that the weighted MAX-CUT prob-
lem on Möbius ladder graphs has recently been classified as “easy,” falling into the
complexity class P (NP-completeness does not imply all instances are hard) [56].
However, our focus is not on the qualitative side, such as the pursuit of polynomial
scaling of required time to reach optimal or good solutions for NP-complete prob-
lems. Instead, by understanding the impact of the quantitative physical properties of
OIMs, particularly the magnitudes and schemes of interaction and injection denoted
by 
i j and 
, we aim to lay the groundwork that could eventually lead to the deriva-
tion of effective design principles for physical rhythm elements, thus potentially
enhancing the performance of OIMs.

The computational capability of OIMs for MAX-CUT problems, such as exper-
imentally observed polynomial scaling, has been somewhat explained by exploring
connections with rank-2 semidefinite programming (SDP) relaxation of MAX-CUT
problems [57]. In this regard, the construction of physical coupled oscillator systems
that could effectively integratewith randomized rounding [58]would be an intriguing
research direction.

4.2 Experimental Setting and Evaluation Metrics

Unless otherwise specified, (36) is integrated over time using the Euler-Heun
method [59] under the parameters listed in Table 1.

The waveforms of 
i j and 
 are normalized so that

2π∫

0

|
i j (ψ)|dψ =
2π∫

0

| sinψ |dψ ,

2π∫

0

|
(ψ)|dψ =
2π∫

0

| sin 2ψ |dψ , (44)

hold.
We define how to interpret the phase difference ψ as a spin state when it takes

values other than 0, π . We extend the definition of s̃(ψ) in (40) to [0, 2π) as s̃(ψ) :=
sign(cos(ψ)).

Figure 1(b–e) illustrates the time evolution of the state of OIMs solving theMAX-
CUT problem and the corresponding cut values. (b) corresponds to weak coupling
andweak noise. (c–f) are related to amoderate level of coupling, where (c) represents
tiny noise, (d) somewhat weak noise, (e) moderate noise, and (f) excessively strong
noise. In situations like (e), characterized by moderate coupling and noise intensity,
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Fig. 1 (a) Möbius ladder graph of size 8 and its MAX-CUT solution. (b–e) Time evolution
of the OIM state (top panel) and the corresponding cut value (bottom panel). The parameters
for each plot are as follows: (b) (Ks, Kn) = (0.1, 0.01); (c) (Ks, Kn) = (13.5, 0.01);
(d) (Ks, Kn) = (13.5, 1.25); (e) (Ks, Kn) = (13.5, 1.85); and (f) (Ks, Kn) = (13.5, 5.27)

it has been observed that even if the initial conditions do not lead to the spin con-
figuration of the ground state (in this case, with a cut value of 10), the system can
effectively navigate to the ground state due to the noise, subsequently sustaining this
state for a certain time interval. Excessively strong noise (f) can also guide the OIM
toward an instantaneous realization of the ground state. If we were to consider this
as an achievement of the ground state, it would imply that the search performance
could be infinitely improved by conducting exploration with pure white noise with
unbounded strength and using unbounded frequency measurements, independent of
the dynamical properties of OIMs. This is of course unphysical. In this study, we
explore the performance of OIMs within the range where the dynamical charac-
teristics of them matter. Specifically, when an OIM reaches a particular value of an
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Table 1 Default parameters for the numerical integration of an OIM

Parameter Setting

Number of oscillators (N ) 8

Frequency mismatches (�ω) 0

Coupling strength (K ) 1.0

Coupling matrix (J) Adjacency matrix of a size 8 Möbius ladder
graph
negatively weighted with a value of –1

Time step size (dt) 0.1

Coupling function (
i j ) sin(·)
Injection coupling function (
) sin(2·)
Integration time interval [0, 20π ]
Initial condition distribution Uniform distribution over [0, 2π)N

Number of initial conditions 100

IsingHamiltonian and remains at that value for a time duration of τduration or more, we
determine that this Ising Hamiltonian value has been achieved.We set τduration = π/4
in this study.

We examine the performance of OIMs using Monte Carlo experiments with ran-
domly generated initial conditions. We define the cut value for each trial as

max {cut value | cut value persists for a time duration of τduration or more} . (45)

Note that we do not merely use the cut value at the end point of the time integration
interval.

Time-to-solution (TTS) metric is a standard quantitative measure of performance
used for Ising machines [9]. TTS is introduced as follows: Consider a Monte Carlo
experiment where the time taken for a single trial is denoted by τ . Assume that, after
r trials, it is found that an acceptable performance can be achieved with probability
pacc. The probability that an acceptable performance is achieved at least once in r
trials can be estimated as 1 − (1 − pacc)r . Let us denote the number of trials required
to achieve a desired probability, typically set to 99%, as r∗. TTS refers to the time
required to conduct r∗ trials, represented as τr∗, and can be expressed as follows:

TTS(τ ) = ln 0.01

ln (1 − pacc)
τ . (46)

TTS metric exhibits a nonlinear dependence on τ due to the nonlinear relationship
of pacc with τ . Therefore, in practice, TTS is defined to be

TTS = min
τ

TTS(τ ) . (47)
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In this study, a trial is deemed to exhibit an acceptable performance if it yields a cut
value greater than 0.9 times the best cut value discovered in the experiment. For the
Möbius ladder graph of size 8, the maximum cut value is 10. Therefore, in this case,
the acceptance probability corresponds to the ground state probability of the Ising
model.

4.3 Effect of Properties of Noisy Fluctuation and Coarse
Time Discretization

Figure 2(a) (resp. (d)) shows the color maps of the mean cut value of the OIM (resp.
acceptance probability pacc) when changing the ratio of injection strength to coupling
strength Ks/K and noise intensity Kn, for a time discretization step of dt = 0.01.
Figure 2(c, f) depicts those for a default time discretization step of dt = 0.1. It is
observable that the mean cut values and acceptance probabilities have significantly
improved by coarsening the time discretization step. Table 2 shows that by coarsening
the time discretization step, the maximum of acceptance probabilities has improved
by more than four times.

Discussing factors such as the coarsening of the time discretization step might
initially appear artificial and tangential for physically implemented Ising machines.
However, if we are able to identify a physical equivalent to this coarsening effect,
these insights could serve as valuable guides to enhance the efficiency of OIMs.

Figure 2(b, e) plots the color maps for the OIM for a fine time discretization step
of dt = 0.01, driven by random pulse inputs at coarse time intervals dt̃ = 0.1 instead
of the Wiener process. Here, each pulse follows an independent normal distribution,
and its variance is taken to be K 2

n dt̃ , that is, identical to the quadratic variation of
the Wiener process at the coarse time interval dt̃ . Similar to the case where the time
discretization step was coarsened, an improvement in performance can be observed.

In this way, it is conceivable that a solver with effects similar to coarsening the
time discretization step can be physically implemented. Given its physical relevance,
in this research, we have chosen to default to a coarser time discretization step.

Interestingly, performance improvements through coarsening the time discretiza-
tion step have also been reported for Ising machines utilizing not stochastic fluc-
tuation but deterministic chaotic fluctuations [60]. It is intriguing to explore effects
equivalent to such coarse-graining from both deterministic and probabilistic perspec-
tives.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 (a) (resp. (d)) the mean cut value of the OIM (resp. acceptance probability pacc) when
varying the ratio of injection strength to coupling strength Ks/K and noise intensity Kn, for a time
discretization step of dt = 0.01. (b) (resp. (e)) the same metrics for the OIM subjected to random
pulse inputs at coarse time intervals dt̃ = 0.1 instead of theWiener process of the identical variance,
with a fine time discretization step of dt = 0.01. (c) (resp. (f)) these measures for the OIM with
a coarse time discretization step dt = 0.1. The horizontal and vertical axes of the color map are
presented in a logarithmic scale

Table 2 Maximum mean cut value and maximum acceptance probability obtained from each
simulation setting presented in Fig. 2

Timestep size Random fluctuation Maximum mean cut
value

Maximum pacc

dt = 0.01 Wiener process 7.8 0.11

dt = 0.01 Random pulses of
dt̃ = 0.1 Interval

8.7 0.24

dt = 0.1 Wiener process 9.3 0.48

4.4 Effect of Injection and Noise Strength

Figure 3 shows color maps of the mean cut value, the best cut value, the acceptance
probability pacc, and the time to solution when altering the ratio of injection strength
to coupling strength Ks/K and noise intensity Kn, using the default parameter setting.

In situations where the relative injection strength is small, the best cut value does
not reach themaximum cut value 10, indicating that theOIMdoes not converge to the
ground state. Increasing the injection strength stabilizes the ground state, allowing
the OIM to reach the ground state without requiring noise, if the initial condition is
set within its basin of attraction (as shown in Fig. 1(c)).
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(a) (b)

(c) (d)

Fig. 3 Performance measures of the OIM when varying the ratio of injection strength to coupling
strength Ks/K and noise intensity Kn using the default parameter setting. The horizontal and vertical
axes of the color map are presented in a logarithmic scale. (a) Mean cut value. (b) Best cut value.
(c) Acceptance probability. (d) Time to solution

However, once the ground state is stabilized, if the noise strength remains low,
noise-driven exploration occurs infrequently (as depicted in Fig. 1(d)). Figure 3(c,
d) shows that, within certain ranges of Kn, both pacc and TTS show no significant
improvement. There is an optimal level of noise magnitude that optimizes perfor-
mance (as shown in Fig. 1(e)). Increasing the noise beyond this optimal level results
in an inability to maintain the quasi-steady state, as observed in Fig. 1(f).

It should be noted that an excessively strong injection strength stabilizes all pos-
sible spin configurations [57], thereby degrading the performance of OIMs.

4.5 Effect of Higher Harmonics in Coupling and Injection
Schemes

In [22], it was reported that the performance of the OIMs improves when a square
wave type coupling function 
i j is used. However, there has been no comprehensive
study investigating which types of coupling functions 
i j are effective, nor has there
been research into the effectiveness of various injection schemes 
.

Figure 4 shows performancemetrics of the OIMwhen either the coupling scheme,
the injection scheme, or both are implemented as square waves. The overall trend
remains similar to that in Fig. 3. However, when the coupling scheme is implemented
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 (a, d, g) Performance metrics of the OIM with a square wave coupling scheme and second-
harmonic sinusoidal injection scheme. (b, e, h) The same metrics for the OIM with a sinusoidal
coupling scheme and square wave injection scheme. (c, f, i) The corresponding metrics for the OIM
with both square wave coupling and injection schemes

as a square wave, it is observed that the ground state becomes stable even when
the injection strength is small (as shown in Fig. 4(d, f)), and there is a significant
improvement in performance metrics at optimal parameters, as shown in Table 3. In
particular, TTS remains almost invariant over various magnitudes of noise intensity,
and thus is largely dominated bywhether the initial conditions belong to the attraction
region of the ground state. However, when the coupling scheme is a square wave and
the injection scheme is a sine wave, it can be observed that there is an improvement
in TTS due to noise exploration, as shown in Table 3. This minimum TTS is attained
at Ks/K = 15, Kn = 1.43.

To explore how optimal the square wave coupling is and what constitutes a good
injection scheme, we conducted the following experiments using the parameter set
Ks/K = 15, Kn = 1.43.We consider the following coupling and injection schemes:
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Table 3 Optimal performance metrics obtained from each simulation setting presented in Figs. 3
and 4

Coupling scheme Injection scheme Maximum mean
cut value

Maximum pacc Minimum TTS

Default Default 9.33 0.48 196.5

Square wave Default 9.48 0.61 188.5

Default Square wave 9.2 0.44 196.5

Square wave Square wave 9.28 0.5 196.5

(a) (b)

Fig. 5 TTS against the cosine similarity between a square wave and (a) the coupling scheme, and
(b) the injection scheme


i j (ψ) = Nc

[
sinψ +

5∑

k=2

lk
k
sin kψ

]
, l ∈ {−1, 0, 1}4 , (48)


(ψ) = Ns

[
sin 2ψ +

5∑

k=2

lk
2k

sin 2kψ

]
, l ∈ {−1, 0, 1}4 , (49)

whereNc,Ns are normalization constants to satisfy (44). Figure 5 shows TTS calcu-
lated for all combinations of the above coupling and injection schemes. The results
are plotted against the cosine similarity between each scheme and a square wave.
No clear correlation is observed between the similarity to a square wave and the
performance of the coupling/injection scheme. Furthermore, a number of schemes
demonstrate a TTS smaller than that achieved with a square wave coupling scheme,
suggesting that the square wave scheme is not optimal. Most notably, we observed
combinations of schemes that reached the ground state in every trial, resulting in
a TTS of zero. Figure 6 shows the coupling and injection schemes that achieved
a zero TTS. The results suggest that a sawtooth wave is more suitable as the cou-
pling scheme than a square wave, and a triangular wave is effective for the injection
scheme.
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(a) (b)

Fig. 6 (a) The coupling scheme, and (b) the injection scheme that achieved a zero TTS

5 Summary

Oscillations are ubiquitous phenomena observed across various fields of natural
science and engineering. Coupled oscillator systems, manifested through diverse
physical phenomena, exhibit significant information processing capabilities. These
systems hold potential for the development of ultra energy efficient, high frequency,
and density scalable computing architectures.

Oscillator-based Ising machines (OIMs) have shown great versatility, offering
new paradigms for information processing. Although the inherent nonlinearity in
spontaneously oscillating systems presents challenges in analysis and optimization,
the application of phase reduction techniques can simplify the analysis and facilitate
the optimization of the performance of the system.

The key to designing effective OIMs lies in several factors:

(i) Tuning the strengths of coupling, injection, and noise.
(ii) Designing good coupling and injection schemes: The choice of coupling and

injection schemes, especially their higher harmonics, can greatly affect the per-
formance of OIMs.

(iii) Properties of the driving stochastic process: The choice of the stochastic process,
beyond the Wiener process, can have a significant impact on the performance of
the OIM.

Related to (iii), exploring the physical implementations of performance-enhancing
effects, which emerge from the coarse-graining of time discretization, in both deter-
ministic and probabilistic aspects, presents an intriguing research direction. While
not discussed in this Chapter, it is known that heterogeneity in the frequency of
oscillators can degrade the performance of OIMs [22]. Additionally, performing
appropriate annealing is also important [22, 24]. These factors highlight the com-
plexity of designing effective OIMs and the need for a comprehensive approach that
considers all these aspects.
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These advancements together form the foundation for further improvements and
innovations in the development of efficient computing architectures in a versatile
manner using coupled oscillator systems.
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