
Nonlinear Dynamics and Computing
in Recurrent Neural Networks

Hideyuki Suzuki

Abstract Nonlinearity is a key concept in the design and implementation of pho-
tonic neural networks for computing.This chapter introduces the fundamentalmodels
and concepts of recurrent neural networks, with a particular focus on their nonlinear
dynamics. We review several types of nonlinear dynamics that emerge in symmet-
rically connected recurrent neural networks, in which the energy function plays a
crucial role. In addition, we introduce the concepts of reservoir computing, covering
fundamental models and physical reservoir computing. Overall, this chapter pro-
vides a foundation for the theoretical aspects in the subsequent chapters of this book,
which explore a variety of photonic neural networks with nonlinear spatiotemporal
dynamics.

1 Introduction

Formore thanhalf a century, various artificial neural networkmodels havebeendevel-
oped and studied as abstractions of thought processes in the brain and as constructive
approaches to thinking machines [1, 2]. Artificial neural networks are currently a
fundamental technology in artificial intelligence, applied across various fields and
playing crucial roles in our daily lives.

Recurrent neural networks (RNNs) are a type of neural network that can be con-
trasted with feedforward neural networks, such as multilayer perceptrons (MLPs).
Unlike feedforward neural networks, which perform unidirectional information pro-
cessing from the input layer to the output layer, RNNs allow mutual interactions
among the constituent neuronmodels. These interactions typically induce spatiotem-
poral dynamics as the network state evolves over time, which performs various
computational tasks, such as processing time-sequence data, solving combinatorial
optimization problems, and generative statistical modeling.

H. Suzuki (B)
Graduate School of Information Science and Technology, Osaka University,
Osaka 565–0871, Japan
e-mail: hideyuki@ist.osaka-u.ac.jp

© The Author(s) 2024
H. Suzuki et al. (eds.), Photonic Neural Networks with Spatiotemporal Dynamics,
https://doi.org/10.1007/978-981-99-5072-0_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5072-0_2&domain=pdf
mailto:hideyuki@ist.osaka-u.ac.jp
https://doi.org/10.1007/978-981-99-5072-0_2

26 H. Suzuki

Nonlinearity is an indispensable property of neuronmodels, which naturally leads
to the emergence of nonlinear dynamics in RNNs. Thus, understanding and utilizing
their nonlinear dynamics is especially important for realizing energy-efficient, high-
speed, and large-scale implementations of RNNs using optical technologies.

Based on this motivation, this chapter introduces the fundamental models and
concepts of RNNs for computing, with a particular focus on their nonlinear dynam-
ics. In Sect. 2, we introduce the notion of the energy function in two fundamental
models of symmetrically connected RNNs: the Amari–Hopfield network and the
Boltzmann machine. We explore how these models exhibit computational functions
such as associative memory, combinatorial optimization, and statistical learning.
Section 3 presents an overview of various types of nonlinear dynamics that arise in
RNNs. We discuss how chaotic dynamics contributes to computation in models such
as the chaotic neural network and the chaotic Boltzmann machine. We also observe
the important roles of nonlinear dynamics in several types of Ising machines, which
serve as hardware solvers for combinatorial optimization problems. Moreover, we
introduce a sampling algorithm, known as the herding system, which exhibits com-
plex nonlinear dynamics related to the learning process of RNNs. Section 4 provides
a brief overview of reservoir computing, which is a lightweight approach that lever-
ages the rich nonlinear dynamics of RNNs for information processing. We introduce
the basic models and concepts of reservoir computing, such as the echo state network
and echo state property, and further discuss physical reservoir computing. Finally, in
Sect. 5, we explain how the concepts introduced in this chapter underlie the studies
covered in the subsequent chapters of this book, which explore various aspects of
photonic neural networks with nonlinear spatiotemporal dynamics.

2 Fundamental RNN Models and Energy Function

In this section, we introduce the two fundamental models of symmetrically con-
nected RNNs: the Amari–Hopfield network and the Boltzmannmachine.We provide
a brief overview of their definitions and behavior, highlighting the role of the energy
function. These models have computational functions such as associative memory,
combinatorial optimization, and statistical learning. Although their dynamics is fun-
damentally governed by the energy function, they lay the foundation for RNNmodels
with rich nonlinear dynamics as discussed in the following sections.

2.1 Amari–Hopfield Network with Binary States

The Amari–Hopfield network [3, 4] is an RNN model composed of binary
McCulloch–Pitts neurons [1] with symmetrical connections. The state of each i th
neuron at time t is represented by si (t) ∈ {0, 1}, with values corresponding to the rest-
ing and firing states, respectively. Note that a formulation that employs −1, instead

Nonlinear Dynamics and Computing in Recurrent Neural Networks 27

of 0, as the resting state is also widely used. The input to the i th neuron from the
j th neuron is assumed to be wi j s j (t), where wi j ∈ R denotes the synaptic weight.
The weights are assumed to be symmetric, wi j = w j i , and have no self-connections,
wi i = 0. The state of the i th neuron takes si = 1 if the total input, including constant
input (or bias) bi ∈ R, exceeds zero and si = 0 if otherwise. Hence, the update rule
for the i th neuron can be written as follows:

si (t + 1) = θ

⎛
⎝

N∑
j=1

wi j s j (t) + bi

⎞
⎠ , (1)

where N denotes the total number of neurons and θ(·) is the Heaviside unit step
function; i.e., θ(z) = 1 for z ≥ 0 and θ(z) = 0 for z < 0. According to this equation,
the state of the network, s(t) = (s1(t), s2(t), . . . , sN (t))�, evolves over time in the
state space {0, 1}N .

The key notion for understanding the behavior of the Amari–Hopfield network is
the energy function

H(s) = −1

2

N∑
i, j=1

wi j si s j −
N∑
i=1

bi si , (2)

which is guaranteed to decrease over time. Specifically, assume that only the i th
neuron is updated according to (1), while the states of the other neurons are kept
unchanged, i.e., s j (t + 1) = s j (t) for j �= i . Then, it holds that H(s(t + 1)) ≤
H(s(t)) because

H(s(t + 1)) − H(s(t)) = − (si (t + 1) − si (t))

⎛
⎝

N∑
j=1

wi j s j (t) + bi

⎞
⎠ ≤ 0 . (3)

Consequently, the network state s(t) evolves until it reaches a local minimum of
the energy function, which has no neighboring states with lower energy. These local
minima are considered attractors of the network because the network state eventually
converges to one of the local minima.

This behavior of Amari–Hopfield network can be interpreted as the process of
recalling memory stored within the network, which is referred to as associative
memory.Memory patterns can be stored as local minima of the network by designing
the weight parameters as follows:

wi j =
K∑

k=1

(2ξ (k)
i − 1)(2ξ (k)

j − 1) , (4)

28 H. Suzuki

where ξ (k) = (ξ
(k)
1 , . . . , ξ

(k)
N)� ∈ {0, 1}N is the kth memory pattern. This learning

rule, known as the Hebbian learning, strengthens the connections between neurons
that are simultaneously activated in the memory patterns.

TheAmari–Hopfield network is a simple but important foundation ofRNNmodels
with energy functions. Furthermore, recent studies have revealed that the general-
ization of the Amari–Hopfield network, such as the modern Hopfield network [5]
and the dense associative memory model [6], share similar attention mechanisms
present in modern neural network models, such as transformers and BERT. These
generalized models employ continuous state variables, as described below.

2.2 Amari–Hopfield Network with Continuous States

The Amari–Hopfield network with continuous variables [7, 8], proposed almost
simultaneously as the binary version, is an RNN model composed of symmetrically
connected leaky integrators. The continuous-timenonlinear dynamics of state xi (t)of
each i th neuron is expressed by the following ordinary differential equation (ODE):

dxi
dt

= − 1

τleak
xi +

N∑
j=1

wi jφ(x j) + bi , (5)

where τleak > 0 is a time constant and φ(x) is the sigmoid function

φ(x) = 1

1 + exp(−x/ε)
. (6)

The output from the neurons φ(x(t)) evolves in the hypercube [0, 1]N , where φ

operates on each component of vector x(t) = (x1(t), . . . , xN (t))�. In the limit ε →
0, where φ(x) is the Heaviside unit step function, the energy function (2) for the
discrete Amari–Hopfield network also applies to the continuous version with s =
φ(x). That is, H(φ(x(t))) decreases as the system evolves. Therefore, the network
state converges to a local minimum of the energy function, which is analogous to
that of the discrete model. Note that an energy function exists for ε > 0, while it
introduces an extra term to (2).

In the continuous Amari–Hopfield network, state xi (t) of each neuron takes a
continuous value that attenuates over time, according to (5). This model, known as
a leaky integrator, is the simplest neuron model that describes the behavior of the
membrane potentials of real neurons.

The Hopfield–Tank model [9] utilizes the dynamics of the Amari–Hopfield net-
work for finding approximate solutions to combinatorial optimization problems such
as the traveling salesman problem. Specifically, it is applicable to combinatorial opti-
mization problems that are formulated as theminimization of the energy function (2),
which is often referred to as quadratic unconstrained binary optimization (QUBO).

Nonlinear Dynamics and Computing in Recurrent Neural Networks 29

As the network state evolves, it converges to one of the local minima of the target
energy function. This provides an approximate solution to the optimization problem.
Once the network state is trapped in a local minimum, the search process terminates
as it can no longer escape to explore other solutions. The Hopfield–Tank model can
be considered the origin of recent studies on Ising machines (Sect. 3.3).

2.3 Boltzmann Machine

The Boltzmann machine [10] is an RNN model composed of binary stochastic neu-
rons with symmetrical connections. The construction of the model is essentially the
same as that of the Amari–Hopfield network with binary neurons, except that the
neurons behave stochastically. The update rule is given by the probability that the
i th neuron takes si = 1 in an update as follows:

Prob[si (t + 1) = 1] = 1

1 + exp(−zi (t)/T)
, zi (t) =

N∑
j=1

wi j s j (t) + bi , (7)

where T > 0 denotes the model temperature and zi (t) is the total input to the neuron
at time t . At the limit of T → 0, the update rule is equivalent to the McCulloch–Pitts
model; that is, the network dynamics is equivalent to that of the Amari–Hopfield
network. In the limit T → ∞, each neuron takes the states 0 and 1 with the same
probability 1/2, irrespective of the network configuration.

The state of the network s(t) = (s1(t), s2(t), . . . , sN (t))�, evolves over time in
the state space {0, 1}N . The sequence of states {s(t)}t eventually follows the Gibbs
distribution

P(s) = 1

Z
exp

(
− 1

T
H(s)

)
, Z =

∑
s

exp

(
− 1

T
H(s)

)
(8)

with respect to the energy function H(s) in (2), where Z is the normalizing con-
stant called the partition function. The Boltzmann machine is more likely to adopt
lower-energy states, and this tendency is more intense at lower temperatures. This
probabilistic model is essentially equivalent to the Ising model, which is an abstract
model of ferromagnetism in statistical mechanics.

Conversely, the Boltzmann machine can be considered to perform sampling from
the Gibbs distribution P(s). The Gibbs sampler, one of the Markov chain Monte
Carlo (MCMC) methods, yields a sample sequence by updating each variable si in
each step according to the conditional probability P(si | s\i) given the values s\i of
all the other variables. If applied to the Gibbs distribution P(s) in (8), the conditional
probability of si = 1 given s\i is as follows:

30 H. Suzuki

P(si = 1 | s\i) = P(s|si=1)

P(s|si=0) + P(s|si=1)
= 1

1 + exp(−(H(s|si=0) − H(s|si=1))/T)
,

(9)
where s|si={0,1} denotes the vector s whose i th variable is set to si = {0, 1}. This
probability is consistent with the update rule (7). Therefore, the Boltzmann machine
is equivalent to the Gibbs sampler applied to the Gibbs distribution P(s).

The Boltzmannmachine can be utilized to solve combinatorial optimization prob-
lems, following the same approach as the Hopfield–Tank model to minimize the
energy function. The stochasticity can help the network state escape the local min-
ima, which is a remarkable difference from the Hopfield–Tank model. This effect
is stronger at higher temperatures, whereas low-energy states are preferred at lower
temperatures. Therefore, we typically employ simulated annealing to solve combi-
natorial optimization problems [11, 12], which controls the stochasticity by starting
from a high temperature and gradually decreasing it to T = 0.

Another remarkable feature of the Boltzmann machine is its learning ability [10].
The learning is performed by tuning the parameters wi j and bi , such that the model
distribution P(s) ∝ exp(−H(s)) is close to the given data distribution. Here, we omit
temperature T by setting T = 1 without loss of generality.

The distance from the data distribution is quantified using the log-likelihood as
follows:

log L = 〈log P(s)〉data = −〈H(s)〉data − log Z , (10)

where 〈·〉data denotes the average over the data distribution. We can then derive the
learning rule as a gradient ascent on the log-likelihood as follows:

wi j (k + 1) = wi j (k) + α
∂

∂wi j
log L , (11)

bi (k + 1) = bi (k) + α
∂

∂bi
log L , (12)

where α > 0 is the learning rate. The gradients are given by:

∂

∂wi j
log L = 〈si s j 〉data − 〈si s j 〉model , (13)

∂

∂bi
log L = 〈si 〉data − 〈si 〉model , (14)

where 〈·〉model denotes the average over the model distribution P(s).
The expressive power of themodel distribution P(s) can be improved by introduc-

ing hidden units into the state variable s of the Boltzmann machine. Accordingly, the
state s = (v,h) is composed of the visible part v and hidden part h. The learning here
aims to minimize the distance between the data distribution and the marginal distri-
bution P(v) of the visible part of the Gibbs distribution P(v,h) ∝ exp(−H(v,h)).
The hidden units serve as additional latent variables that do not directly correspond
to the data, and describe the indirect interactions among the visible units. The intro-

Nonlinear Dynamics and Computing in Recurrent Neural Networks 31

duction of hidden units does not alter the learning rule (11)–(14), whereas only the
visible units are clamped to the data distribution in the averaging 〈·〉data.

In practice, learning a large-scale Boltzmann machine is challenging. Rigorous
computation of the average over P(s) is intractable as the size of the state space
{0, 1}N increases exponentially. This expectation can be approximated by averaging
over the sample sequence from the Boltzmann machine. However, obtaining an
accurate approximation requires massive computation to generate a sufficiently long
sample sequence, as the sampling process often gets stuck in local modes of the
Gibbs distribution.

The restricted Boltzmann machine (RBM) [13, 14] is an important model of a
Boltzmann machine with restricted connections. Specifically, an RBM is a two-layer
neural network comprising visible and hidden units, with no connections within
each layer. Because of its restricted structure, the RBM can be efficiently trained
using the contrastive divergence algorithm to obtain the gradient of log-likelihood.
The restricted structure accelerates the Gibbs sampling procedure, because it allows
for alternate block sampling of the visible units, given the hidden units, and vice
versa. The deep Boltzmann machine (DBM) [15, 16] is a Boltzmann machine with a
multilayer structure. It is a type of deep neural network consisting of multiple layers
of RBMs. Thus, RBMs and DBMs are important classes of the Boltzmann machine
that have led to recent developments in deep learning.

3 Nonlinear Dynamics in Symmetrically Connected RNNs

This section presents several RNNmodels with symmetrical connections that exhibit
various types of nonlinear dynamics effective for computing. First, we introduce the
chaotic neural network model and the chaotic Boltzmann machine, which are vari-
ants of the Amari–Hopfield network and Boltzmannmachine, respectively, involving
nonlinear chaotic dynamics. Then, we review several types of Ising machines that
employ more advanced approaches than the Hopfield–Tank model in utilizing their
nonlinear dynamics to solve combinatorial optimization problems. We also explore
the nonlinear dynamics that arises in the learning process of RNNs. As an example,
we introduce the herding system, which is a sampling algorithm with complex non-
linear dynamics that can also be regarded as an extreme case of Boltzmann machine
learning.

3.1 Chaotic Neural Network

The chaotic neural network [17] is a variation of the Amari–Hopfield network, which
incorporates relative refractoriness and a continuous activation function in the con-
stituent neurons. It exhibits spatiotemporal chaotic dynamics with the ability to per-
form parallel-distributed processing.

32 H. Suzuki

First, we introduce the refractoriness, which is a temporary reduction in excitabil-
ity after firing, into the Amari–Hopfield network (1). We update the state of the i th
neuron in the network as follows:

si (t + 1) = θ

⎛
⎝

N∑
j=1

wi j S
fb
j (t) − αSrefi (t) + bi

⎞
⎠ , (15)

where S{fb,ref}
i (t) = ∑t

r=0 k
r
{fb,ref}si (t − r) represents the accumulated past output of

the i th neuron with an exponential decay parameterized by kfb, kref ∈ (0, 1) for the
feedback connections and refractoriness, respectively. This model can be considered
as a restricted form of Caianiello’s neuronic equation [2]. The network dynamics
is described by a hybrid dynamical system [18], involving the continuous variables
S{fb,ref}
i (t) and a discontinuous function θ(·). The constituent neuron model with

refractoriness is called the Nagumo–Sato model. Its single-neuron dynamics has
been investigated by assuming the first term, which represents the input from other
neurons, is constant in time, and has been shown to exhibit a complex response with
a devil’s staircase [18–20].

Next, we introduce a continuous activation function to obtain the chaotic neural
network model as follows:

si (t + 1) = φ

⎛
⎝

N∑
j=1

wi j S
fb
j (t) − αSrefi (t) + bi

⎞
⎠ , (16)

where the Heaviside unit step function θ(·) is replaced by the sigmoid function φ(·)
in (6).

The chaotic neural network exhibits spatiotemporal chaotic dynamics. Although
the energy function in (2) does not necessarily decrease, it helps us to understand
its dynamics. Unlike the Amari–Hopfield network, the state of the chaotic neural
network continues to move around in the phase space without becoming stuck at a
local minimum of the energy function. This is because if the network state remains at
a local minimum for a while, the accumulated effects of refractoriness destabilize the
local minimum, helping the state escape. Thus, the spatiotemporal chaotic dynam-
ics emerge from a combination of the stabilizing effect, resulting from the mutual
interactions in the network, and the destabilizing effect due to the refractoriness.

When applied to associative memory constructed by the Hebbian rule (4), the
chaotic neural network continues to visit stored patterns itinerantly [21]. Such asso-
ciative dynamics, which is characterized by chaotic itinerancy [22], has been demon-
strated for a large-scale network in [23].

The itinerant behavior of the chaotic neural network is useful for solving combina-
torial optimization problems [24], because the destabilizing effect helps the network
state escape from local minima, and the state continues to explore possible solutions.

For hardware implementation of the chaotic neural network, it is crucial to utilize
analog computation to simulate chaotic dynamics described by continuous variables.

Nonlinear Dynamics and Computing in Recurrent Neural Networks 33

Large-scale analog IC implementations of the chaotic neural network demonstrate
high-dimensional physical chaotic neuro-dynamics and offer efficient applications in
parallel-distributed computing, such as solving combinatorial optimization problems
[25–27].

3.2 Chaotic Boltzmann Machine

The chaotic Boltzmann machine [28, 29] is a continuous-time deterministic system
that utilizes nonlinear chaotic dynamics to function as a Boltzmann machine with-
out requiring randomness for the time evolution. This contrasts with the original
Boltzmann machine, comprising stochastic neurons updated at discrete-time steps.

Each neuron in the chaotic Boltzmannmachine is associated with an internal state
xi (t) ∈ [0, 1] besides the binary state si (t) ∈ {0, 1} of the Boltzmann machine. The
internal state xi evolves according to the differential equation

dxi
dt

= (1 − 2si)

(
1 + exp

(1 − 2si)zi
T

)
, (17)

where zi is the total input as defined in (7). State si of the i th neuron flips when xi
reaches 0 or 1 as follows:

si (t + 0) = 0 when xi (t) = 0 and si (t + 0) = 1 when xi (t) = 1 . (18)

The right-hand side of (17) is positive when si = 0 and negative when si = 1. There-
fore, the internal state xi continues to oscillate between 0 and 1. If the states of the
other neurons are fixed, the total input zi becomes constant, and the oscillation con-
tinues periodically. Specifically, si takes the value 0 for (1 + exp(zi/T))−1 unit time
as xi increases from 0 to 1, and si takes the value 1 for (1 + exp(−zi/T))−1 unit
time as xi decreases from 1 to 0. Accordingly, the probability of finding si = 1 at a
random instant is (1 + exp(−zi/T))−1, which is consistent with the update rule (7)
of the Boltzmann machine. Note that while this explanation provides intuitive valid-
ity to the equation, it does not necessarily imply that the network state s(t) follows
the Gibbs distribution P(s) ∝ exp(−H(s)/T).

Although the chaotic Boltzmann machine is completely deterministic, it exhibits
apparently stochastic behavior because of the chaotic dynamics that emerges from
equations (17) and (18),which canbe considered a hybrid dynamical system [18]with
continuous variables xi and discrete variables si . The entire system can be regarded
as a coupled oscillator system because each constituent unit oscillates between xi =
0 and 1, interacting with each other through the binary state si . This can also be
viewed as a pseudo-billiard [30] in the hypercube [0, 1]N , because the internal state
x(t) = (x1(t), . . . , xN (t))� moves linearly inside the hypercube, as shown in (17),
and changes its direction only at the boundary, as shown in (18).

34 H. Suzuki

It has been numerically demonstrated that the chaotic Boltzmann machine serves
as a deterministic alternative to the MCMC sampling from the Gibbs distribution,
P(s) ∝ exp(−H(s)/T). It can be used in simulated annealing to solve combinatorial
optimization problems and exhibits computing abilities comparable to those of the
conventional Boltzmann machine.

The chaotic Boltzmann machine enables an efficient hardware implementation of
the Boltzmannmachine, primarily because it eliminates the need for a pseudorandom
number generator and also because its mutual interactions are achieved digitally
via the binary states. These advantages contribute to large-scale, energy-efficient
hardware implementations of the chaotic Boltzmann machine, as demonstrated in
analog CMOS VLSI and digital FPGA implementations [31, 32].

3.3 Ising Machines

Ising machines [33] are a class of specialized hardware designed to solve combina-
torial optimization problems by finding the (approximate) ground state of the Ising
model, which is an abstract model of ferromagnetism in statistical mechanics. They
have attracted considerable attention in recent years because of their potential to
efficiently solve complex optimization problems.

The energy function of the Ising model is given by:

H(σ) = −1

2

N∑
i, j=1

Ji jσiσ j , (19)

where σi ∈ {−1,+1} denotes the i th Ising spin. As is evident from the energy func-
tion, the Ising model is almost equivalent to the Boltzmann machine. For simplicity,
we omit the linear bias term, which can be represented by introducing an additional
spin fixed at+1. Coefficient Ji j represents the coupling strength between spins i and
j , which is assumed to be symmetric Ji j = Jji .

Ising machines are designed to find a spin configuration σ = (σ1, . . . , σN)� that
approximately minimizes H(σ). To solve a combinatorial optimization problem
using an Ising machine, we need to formulate it as an Ising problem, in a way
analogous to the Hopfield–Tank model and the Boltzmann machine.

We provide a brief overview of three types of Ising machines: the coherent Ising
machine (CIM) [34], the simulated bifurcation machine (SBM) [35], and the oscilla-
tor Isingmachine (OIM) [36].We also introduce a continuous-time solver for boolean
satisfiability (SAT) problems [37].

Nonlinear Dynamics and Computing in Recurrent Neural Networks 35

3.3.1 CIM: Coherent Ising Machine

The coherent Ising machine (CIM) [34] is a network of optical parametric oscillators
(OPOs) designed to solve Ising problems.

The fundamental, noiseless dynamics of CIM can be described by the following
ordinary differential equation:

dxi
dt

= (−1 + p − x2i)xi +
N∑
j=1

Ji j x j , (20)

where xi is the amplitude of the i th OPOmode and p represents the pump rate. Intu-
itively, the dynamics of CIM can be viewed as a variant of the Hopfield–Tank model
with bistability introduced into each neuron. Basic dynamics of each OPO, without
the coupling term, undergoes a pitchfork bifurcation at p = 1. That is, for p < 1,
the equilibrium at xi = 0 is stable; however, for p > 1, xi = 0 becomes unstable and
two symmetric stable equilibria xi = ±√

p − 1 emerge. These two equilibria in each
OPO correspond to the binary state of spin σi ∈ {−1,+1}. Therefore, by gradually
increasing the pump rate p, we expect the state of the OPO network to converge to
a low-energy spin state, as each OPO is forced to choose one of the binary states
by the inherent bistability. Thus, the obtained low-energy state corresponds to an
approximate solution to the Ising problem.

3.3.2 SBM: Simulated Bifurcation Machine

The simulated bifurcation machine (SBM) [35] is an Ising machine described as an
Hamiltonian system, which is given by the following ordinary differential equations:

dxi
dt

=
yi , (21)

dyi
dt

= −(Kx2i − p +
)xi + ξ0

N∑
j=1

Ji j x j , (22)

where xi and yi denote the position and momentum of the i th unit, respectively, and

, K , and ξ0 are constants. Parameter p controls the bistability of each unit. This
Hamiltonian system conserves the Hamiltonian

HSB(x, y) =

2

N∑
i=1

y2i + V (x) , (23)

where the potential function V (x) is given by

36 H. Suzuki

V (x) =
∑
i

(

 − p

2
x2i + K

4
x4i

)
− ξ0

2

N∑
i, j=1

Ji j xi x j . (24)

The SBM employs the symplectic Euler method, a structure-preserving time-
discretization method, to conserve the Hamiltonian in simulating the Hamiltonian
dynamics. Unlike the CIM, the SBM wanders the state space according to the com-
plex Hamiltonian dynamics to explore low-energy states.

The SBM has been implemented on FPGA and GPUs, making it an efficient
hardware solver of the Ising problems.

3.3.3 OIM: Oscillator Ising Machine

The oscillator Ising machine (OIM) [36] is a coupled nonlinear oscillator system that
utilizes subharmonic injection locking (SHIL) to solve Ising problems. The dynamics
of the OIM is given by:

dφi

dt
= −

N∑
j=1

Ji j sin(φi − φ j) − K sin(2φi) , (25)

where φi denotes the phase of the i th oscillator. It has a global Lyapunov function,

E(φ) = −
N∑

i, j=1

Ji j cos(φi − φ j) − K
∑
i

cos(2φi) , (26)

which is guaranteed to never increase in time. The first term of the Lyapunov func-
tion corresponds to the Ising Hamiltonian, where the phase φi ∈ {0, π} modulo 2π
represents the Ising spin σi ∈ {+1,−1}. The second term enforces the phase φi to be
either 0 or π , where cos(2φi) = 1. As a result, the oscillator phases evolve to mini-
mize the Ising Hamiltonian, converging toward a low-energy state that represents an
approximate solution to the Ising problem. Further details regarding the OIM can be
found in Chap. 9.

3.3.4 Continuous-time Boolean Satisfiability Solver

A continuous-time dynamical system (CTDS) for solving Boolean satisfiability
(SAT) problems was proposed in [37]. This aims to find an assignment that satisfies
the given Boolean formula. Although the system is not an Ising machine designed
specifically for solving (quadratic) Ising problems, it seeks a set of binary states that
minimizes a given objective function, which can be understood as an Ising Hamilto-
nian with high-order terms.

http://dx.doi.org/10.1007/978-981-99-5072-0_9

Nonlinear Dynamics and Computing in Recurrent Neural Networks 37

The CTDS solver explores the assignment of Boolean variables X1, . . . , XN sat-
isfying the Boolean formula given in the conjunctive normal form (CNF). CNF is a
conjunction (AND) of clauses, where each clause is a disjunction (OR) of literals,
which can be a Boolean variable Xi or its negation ¬Xi .

Essentially, the CTDS solver is a gradient system of an objective function V (x),
defined on the search space x = (x1, . . . , xN)� ∈ [−1,+1]N , where the i th com-
ponent xi ∈ {−1,+1} corresponds to the Boolean variable Xi ∈ {False,True}. To
define the objective function V (x), the CNF is represented as a matrix [cmi]; each
component cmi takes +1 or −1 if the mth clause includes Xi or ¬Xi , respectively,
and cmi = 0 if neither is included. The objective function is defined as

V (x) =
M∑

m=1

amKm(x)2 , Km(x) =
N∏
i=1

1 − cmi xi
2

, (27)

where am > 0 is the weight coefficient of the unsatisfiedness Km(x) to the current
assignment x in the mth clause of the CNF. The objective function takes V (x) = 0
if the CNF is satisfied, and takes a positive value otherwise. Therefore, the states
with V (x) = 0 constitute global minima of the objective function, regardless of the
weight values am > 0. The CTDS solver is a gradient system of V (x) with time-
varying coefficients am defined as follows:

dx
dt

= −∇V (x) ,
dam
dt

= amKm(x) . (28)

If the mth clause is not satisfied, the weight am increases because of the positive
unsatisfiedness Km(x) > 0, which modifies the objective function V (x). This effect
helps the dynamics to escape from localminima, which is similar to the refractoriness
of chaotic neural networks. The CTDS solver exhibits a transient chaotic behavior
until it converges to a global minimum. The interaction dynamics of x and am was
investigated in [38].

Although the original CTDS solver is described as a gradient system of a time-
varying objective function, its variant is represented by a recurrent neural network
[39]. For efficient numerical simulation of the CTDS solver, structure-preserving
time discretization using the discrete gradient is effective in the gradient part of the
solver [40].

3.4 Herding System

The RNNs discussed in this section thus far have fixed connection weights and
exhibit nonlinear dynamics in their network states. In contrast, the learning process of
neural networks, whichmodifies the connectionweights through a learning rule, as in
(11) and (12), introduces nonlinear dynamics into the parameter space.

38 H. Suzuki

Herding is a deterministic sampling algorithm that can be viewed as an extreme
case of parameter learning in statistical models [41, 42]. It exhibits complex dynam-
ics, yielding sample sequences guaranteed to satisfy the predefined statistics asymp-
totically, which are useful for estimating other statistics of interest. Thus, statistical
learning and inference are combined in the single algorithm of herding.

In this section, we introduce the herding algorithm as the zero-temperature limit
of the Boltzmann machine learning. A more general and detailed description of
the herding algorithm is provided in Chap. 10. The learning rule of the Boltzmann
machine P(s) ∝ exp(−H(s)/T) including the temperature parameter T is given as
follows:

wi j (t + 1) = wi j (t) + α

T

(〈si s j 〉data − 〈si s j 〉model
)

, (29)

bi (t + 1) = bi (t) + α

T
(〈si 〉data − 〈si 〉model) . (30)

Let us consider the low-temperature limit, T → 0, which corresponds to the Amari–
Hopfield network. That is, the model distribution P(s) reduces to a point distribution
on the minimizer of the Hamiltonian argmins H(s). Because the minimizer is invari-
ant under the positive scalar multiplication of parameters, we can omit the scaling
factor α/T , without loss of generality, to obtain the following update rule:

wi j (t + 1) = wi j (t) + 〈si s j 〉data − si (t)s j (t) , (31)

bi (t + 1) = bi (t) + 〈si 〉data − si (t) , (32)

where s(t) = (s1(t), . . . , sN (t))� is theminimizer of the energy functionwith param-
eters at the t th iteration, that is,

s(t) = argmin
s

⎛
⎝−1

2

N∑
i, j=1

wi j (t)si s j −
N∑
i=1

bi (t)si

⎞
⎠ . (33)

Equations (31)–(33) describe the herding system applied to the Boltzmann machine,
which is a nonlinear dynamical system on the parameter space of wi j ’s and bi ’s.
In each update of the parameter values, we obtain a sample s(t). The sequence of
network states, {s(t)}t , can be considered as a sample sequence from the neural
network.

Interestingly, the idea of updating the parameters of the Amari–Hopfield network
away from the equilibrium state s(t) was proposed as “unlearning” by Hopfield et
al. [43]. Weakly updating the parameters suppresses spurious memories, which are
undesirable local minima that do not correspond to any of thememory patterns stored
through the Hebbian rule. Thus, the herding algorithm can be viewed as performing
strong unlearning within the Amari–Hopfield network.

The herding algorithm is described as a discrete-time nonlinear dynamical system
that belongs to the class of piecewise isometries. As with many piecewise isometries

http://dx.doi.org/10.1007/978-981-99-5072-0_10

Nonlinear Dynamics and Computing in Recurrent Neural Networks 39

[18, 44–46], the herding system typically exhibits complex dynamics with a fractal
attracting set [41, 42]. As the Lyapunov exponents of the dynamics are strictly zero,
the complexity originates only from the discontinuities of the piecewise isometry.
This non-chaotic dynamics of the herding system is closely related to chaotic billiard
dynamics [47].

As a sampling method, the herding algorithm exhibits a prominent convergence
rate O(1/τ), which is significantly faster than O(1/

√
τ) of random sampling algo-

rithms, such asMCMC. Specifically, for a sample sequence of length τ , the deviation
of the sample average of si (t)s j (t) from the target 〈si s j 〉data is given by:

1

τ

τ∑
t=1

si (t)s j (t) − 〈si s j 〉data = −1

τ
(wi j (τ) − wi j (0)) , (34)

which converges to zero as τ goes to infinity, at rate O(1/τ), becausewi j (t) is assured
to be bounded if the minimizer is obtained in each step (33).

The herded Gibbs sampling [48] is a deterministic sampling algorithm that incor-
porates the herding algorithm into theGibbs sampling. It can be used as an alternative
to the Gibbs sampling to promote efficient sampling from probabilistic models in
general situations. The convergence behavior of the herded Gibbs sampling has been
analyzed in detail [49].

4 Reservoir Computing

In the previous sections,we focusedon the role of the energy function,which is crucial
for understanding the dynamics of symmetrically connected RNNs. However, this
approach is not applicable to RNNs with asymmetrical connections, which are more
likely to exhibit complex nonlinear dynamics, making training more challenging.
Reservoir computing is a lightweight approach that leverages the rich dynamics of
an RNN for information processingwithout training the RNN itself, which is referred
to as a reservoir. In this section, we present an overview of the fundamental models
and concepts of reservoir computing, illustrating how the nonlinear dynamics of
RNNs can be utilized in various computing applications.

4.1 Training Input–Output Relation of RNNs

In the RNNs presented in the previous sections, neurons do not receive explicit input
from outside the networks, whereas in some cases, inputs are implicitly provided as
the initial state for the autonomous dynamics of neural networks.

In this section, time-varying inputs are explicitly incorporated into neurons of an
RNN, and we consider the input–output relation of the network. While feedforward

40 H. Suzuki

neural networks, such asmultilayer perceptrons (MLPs), learn input–output relations
for static information, RNNs can handle sequential information because the effects
of past inputs remain within the network and subsequently influence its current state
and output.

Let us consider an RNN model with time-varying inputs. The state xi (t + 1) of
the i th neuron at time t + 1 is given by

xi (t + 1) = f

⎛
⎝

N∑
j=1

wi j x j (t) +
K∑

k=1

win
ikuk(t + 1)

⎞
⎠ , (35)

where uk(t + 1) denotes the kth input at time t + 1, and wi j and win
ik are the synaptic

weights of recurrent and input connections, respectively. The activation function f
is assumed to be tanh throughout this section. For the sake of simplicity, the bias
term is omitted. The output from the lth output neuron is determined by

yl(t + 1) = f

(
N∑
i=1

wout
li xi (t + 1)

)
, (36)

where wout
li is the weight of the output (readout) connection from the i th neuron.

Next, we consider the training of the neural network using input–output relation
data. Specifically, given a pair of an input sequence

u(t) = (u1(t), . . . , uK (t))� , t = 1, . . . , τ, (37)

and the corresponding output sequence

d(t) = (d1(t), . . . , dL(t))
� , t = 1, . . . , τ, (38)

we adjust the connection weights in the network to minimize or decrease the output
error

E =
τ∑

t=1

‖d(t) − y(t)‖2 , (39)

where {y(t)}t is the output sequence from the RNN given the input sequence {u(t)}t .
The backpropagation through time (BPTT) [50] and real-time recurrent learn-

ing (RTRL) [51] are well-known gradient-based algorithms for training RNNs. In
computing the gradients of the output error E in (39), the gradients are recursively
multiplied at each time step due to the influence of past inputs on the outputs. This
often leads to the gradients either vanishing or exploding, which makes the gradient-
based learning of connection weights in RNNs challenging. Various techniques have
been proposed to address this problem. Consequently, recent RNN models, such as
long short-term memory (LSTM) [52], effectively handle sequential data, whereas
the computation of the gradients for training remains computationally expensive.

Nonlinear Dynamics and Computing in Recurrent Neural Networks 41

4.2 Echo State Network

The echo state network (ESN) [53, 54] is a type of reservoir computing that employs
a different approach to training the input–output relations of RNNs. In ESNs, input
weights and recurrent weights are typically generated randomly and remain fixed,
while only the output connections are trained using a simple linear regression algo-
rithm. This makes ESNs computationally efficient and easy to train. Instead of the
nonlinear activation function in (36), the lth output from the ESN is obtained linearly
as

yl(t + 1) =
N∑
i=1

wout
li xi (t + 1) . (40)

The underlying principle is that the state of a random RNN, or a reservoir, reflects
the input sequence through nonlinear transformations. If the nonlinear dynamics of
the reservoir is sufficiently rich, inferences can be performed effectively using only
linear regression methods, such as ridge regression and FORCE (first-order reduced
and controlled error) learning.

Ridge regression is a batch algorithm that can be used to train the readout connec-
tion weights, which introduces an L2 regularization term, parameterized by α > 0,
into the error function as follows:

Eridge =
τ∑

t=1

‖d(t) − W outx(t)‖2 + α

2

L∑
l=1

N∑
i=1

|wout
li |2 . (41)

The readout connection weight W out = [wout
li] that minimizes the error function is

given by:
W out = DX�(XX� + α I)−1 , (42)

where I is the identity matrix, and D = [d(1), . . . ,d(τ)] and X = [x(1), . . . , x(τ)].
The FORCE learning [55] is an online regression algorithm that updates W out

iteratively as follows:

P(t + 1) = P(t) − P(t)x(t)x(t)�P(t)

1 + x(t)�P(t)x(t)
, (43)

W out(t + 1) = W out(t) − e(t)x(t)�P(t)

1 + x(t)�P(t)x(t)
, (44)

e(t) = W out(t)x(t) − d(t) , (45)

where P(0) = I/α.
These linear regression algorithms require significantly less computation time

compared to conventional gradient-based learning methods for RNNs. However, as
these algorithms still involve the manipulation of large matrices, more lightweight

42 H. Suzuki

and biologically plausible learning algorithms [56, 57] can be employed for efficient
reservoir computing.

4.3 Echo State Property and Reservoir Design

The primary principle of reservoir computing is that only the readout weights are
trained.This implies that the performanceof reservoir computing is largely dependent
on the design of the reservoir.

The echo state property (ESP) is a concept that ensures a reservoir adequately
reflects the input sequence, which is crucial for further information processing.When
the inputs are transformed into reservoir states nonlinearly, it is important that the
reservoir state becomes independent of its initial state after a sufficient amount of
time has passed. This is critical because, without this property, the same input could
yield different outputs, which is undesirable for the reproducibility of information
processing. To prevent such inconsistencies, reservoirs are typically designed to
satisfy the ESP.

Let x(t) and x′(t) represent the reservoir states with different initial states x(0)
and x′(0), after receiving the same input sequence {u(t)}t . The ESP of a reservoir
is defined as satisfying limt→∞ ‖x(t) − x′(t)‖ = 0 for any pair of different initial
states x(0) and x′(0), and any input {u(t)}t .

Assuming tanh as the activation function, a sufficient condition for the ESP is
that the largest singular value of W = [wi j] is less than 1. However, this condition
is known to be empirically overly restrictive. Instead, we often require that W has
the spectral radius of less than 1, which is expected to satisfy the ESP, though not
necessarily in all cases [53].

However, using connection weights W with an excessively small spectral radius
is undesirable, even though it indeed satisfies the ESP. If the spectral radius is small,
the past input information is rapidly lost from the reservoir, making it difficult to
effectively utilize a long input sequence for information processing. The memory
to retain past input information can be measured using the memory capacity [58].
Empirically, the spectral radius is set slightly below 1 to promote both richer memory
capacity and reservoir dynamics, expectedly without violating the ESP. Memory
effects can also be enhanced by introducing leaky integrators as the constituent
neurons.

The diversity of neuronal behavior is essential for the performance of reservoir
computing, as the output is generated through a linear combination of neuronal
activities in the reservoir. The diversity can be enhanced by introducing sparsity into
the connection weight matrixW , because a denseW makes the inputs to the neurons
become more similar. Increasing the number of neurons is also effective; however,
this in turn can lead to an increased computation time and a higher risk of overfitting.

Nonlinear Dynamics and Computing in Recurrent Neural Networks 43

4.4 Neural Network Reservoirs

We have described basic concepts of reservoir computing using ESNs as a repre-
sentative model for implementing a reservoir. However, it is important to note that
reservoirs are not limited to this specific model.

Liquid state machines (LSMs) [59] are another important model of reservoir
computing, proposed almost simultaneously and independently of ESNs. In contrast
to ESNs, LSMs employ spiking neural network models, which are more biologically
plausible and adequate for themodeling of information processing in the brain. LSMs
also facilitate energy-efficient hardware implementations, such as FPGAs [60].

More generally, various RNNmodels, ranging from artificial neural networkmod-
els to biologically plausible models, can serve as reservoirs. As described in Sect. 3,
RNNs often exhibit chaotic dynamics.However, chaotic behavior is considered unde-
sirable in reservoir computing, as its sensitive dependence on initial conditions con-
tradicts the ESP. Therefore, attenuation mechanisms need to be introduced to ensure
consistency. For instance, in a study on reservoir computing based on the chaotic
neural networks [61], attenuation is achieved through connection weights W with a
small spectral radius. Similarly, the chaotic Boltzmann machine serves as a reservoir
by incorporating a reference clock towhich each component is attenuated [62].More-
over, an analog CMOS VLSI implementation of the chaotic Boltzmann machine has
been utilized for energy-efficient reservoir computing [31].

As demonstrated in these examples, the fundamental concept of reservoir comput-
ing, which does not require manipulation of the reservoir itself, increases flexibility
and enables efficient hardware implementations.

4.5 Physical Reservoir Computing

Furthermore, the concept of reservoir computing is not limited to utilizing RNNs
as reservoirs. As there is no need to train the reservoir itself, any physical system
exhibiting rich nonlinear dynamics can potentially be utilized as reservoirs.

The approach that leverages physical devices andphenomena as reservoirs, instead
of using simulated models, is referred to as physical reservoir computing [63]. The
nonlinear dynamics of the reservoir implemented physically is expected to be used
for high-speed and energy-efficient computation.

A physical reservoir transforms the input to the reservoir state using its nonlinear
dynamics. The output is obtained through a readout linear transformation of the
measurements from the reservoir. As only the readout weights are trained, we do not
have to manipulate the reservoir itself, which enables us to utilize various physical
devices for computing. However, as in the case of ESNs, the performance of physical
reservoir computing largely depends on the characteristics of the reservoir such as
nonlinearity and memory effects. Building and tuning the physical reservoir, which
may be sensitive to various environmental factors such as noise, can be challenging.

44 H. Suzuki

Therefore, it is crucial to select appropriate physical phenomena depending on the
tasks performed by the reservoir.

Various types of physical devices and phenomena have been applied to reser-
voir computing [63]. Even if limited to photonic devices [64], there have been
various studies utilizing optical node arrays [65, 66], optoelectric oscillators with
delayed feedback [67–69], etc., aswell as quantumdot networks [70] and optoelectric
iterative-function systems [71] as presented in Chaps. 4 and 11 of this book.

5 Towards Photonic Neural Network Computing

We have seen how the nonlinear dynamics of RNNs can be utilized for computing.
These basic models and concepts should serve as an important foundation for the
implementation of neural networks using optical computing technologies.

Chapters in Part II of this book discuss fluorescence energy transfer (FRET)
computing based on nanoscale networks of fluorescent particles, referred to as FRET
networks. This can be considered as a type of physical reservoir computing in which
FRET networks are employed as reservoirs.

Part III is devoted to spatial-photonic spin systems and is primarily related to
Sect. 3 of this chapter. The spatial-photonic Ising machine (SPIM) introduced in
Chap. 8 is an optical system capable of efficiently computing the energy function of
the Isingmodel (19) using spatial lightmodulation. Recently, a new computingmodel
for the SPIM has been proposed that improves its applicability to a variety of Ising
problems and enables statistical learning as a Boltzmann machine [72]. Chapters 9
and 10 discuss the details of the herding system and OIM, which have been briefly
introduced in this chapter.

Part IV consists of chapters discussing recent topics related to reservoir com-
puting and its photonic implementation. In Chap. 11, a reservoir-computing system
utilizing an electronic-optical implementation of iterated function systems (IFSs)
as a reservoir is introduced. Chapter 12 introduces the hidden-fold network, which
achieves high parameter efficiency by, in a sense, introducing the idea of reservoir
computing into deep MLPs. Chapter 13 discusses brain-inspired reservoir comput-
ing, in which multiple reservoirs are hierarchically structured to model predictive
coding for multimodal information processing.

Acknowledgements The author appreciates valuable comments from Professor Yuichi Katori and
Dr. Hiroshi Yamashita.

http://dx.doi.org/10.1007/978-981-99-5072-0_4
http://dx.doi.org/10.1007/978-981-99-5072-0_11
http://dx.doi.org/10.1007/978-981-99-5072-0_8
http://dx.doi.org/10.1007/978-981-99-5072-0_9
http://dx.doi.org/10.1007/978-981-99-5072-0_10
http://dx.doi.org/10.1007/978-981-99-5072-0_11
http://dx.doi.org/10.1007/978-981-99-5072-0_12
http://dx.doi.org/10.1007/978-981-99-5072-0_13

Nonlinear Dynamics and Computing in Recurrent Neural Networks 45

References

1. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5(4), 115–133 (1943). https://doi.org/10.1007/bf02478259

2. E.R. Caianiello, Outline of a theory of thought-processes and thinkingmachines. J. Theor. Biol.
1, 204–235 (1961). https://doi.org/10.1016/0022-5193(61)90046-7

3. S. Amari, Learning patterns and pattern sequences by self-organizing nets of threshold ele-
ments. IEEE Trans. Comput. C-21, 1197–1206 (1972). https://doi.org/10.1109/T-C.1972.
223477

4. J.J. Hopfield, Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

5. H. Ramsauer, B. Schäfl, J. Lehner, P. Seidl, M. Widrich, L. Gruber, M. Holzleitner, T. Adler,
D. Kreil, M.K. Kopp, G. Klambauer, J. Brandstetter, S. Hochreiter, Hopfield networks is all you
need, in International Conference on Learning Representations (2021). https://openreview.net/
forum?id=tL89RnzIiCd

6. D. Krotov, J.J. Hopfield, Large associative memory problem in neurobiology and machine
learning, in International Conference on Learning Representations (2021). https://openreview.
net/forum?id=X4y_10OX-hX

7. S. Amari, Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst.
Man Cybern. SMC-2, 643–657 (1972). https://doi.org/10.1109/tsmc.1972.4309193

8. J.J. Hopfield, Neurons with graded response have collective computational properties like those
of two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984). https://doi.org/10.1073/
pnas.81.10.3088

9. J.J. Hopfield, D.W. Tank, “Neural” computation of decisions in optimization problems. Biol.
Cybern. 52, 141–152 (1985). https://doi.org/10.1007/bf00339943

10. D.H. Ackley, G.E. Hinton, T.J. Sejnowski, A learning algorithm for Boltzmann machines.
Cogn. Sci. 9, 147–169 (1985). https://doi.org/10.1016/S0364-0213(85)80012-4

11. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220,
671–680 (1983). https://doi.org/10.1126/science.220.4598.671

12. J.H.M. Korst, E.H.L. Aarts, Combinatorial optimization on a Boltzmann machine. J. Parallel
Distrib. Comput. 6, 331–357 (1989). https://doi.org/10.1016/0743-7315(89)90064-6

13. P. Smolensky, Information processing in dynamical systems: foundations of harmony theory,
in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, ed. by
D.E. Rumelhart, J.L. McClelland (MIT Press, Cambridge, 1986)

14. G.E. Hinton, Training products of experts by minimizing contrastive divergence. Neural Com-
put. 14, 1771–1800 (2002). https://doi.org/10.1162/089976602760128018

15. R. Salakhutdinov, G. Hinton, Deep Boltzmannmachines, in The 12th International Conference
on Artificial Intelligence and Statistics (AISTATS 2009), vol. 5 of Proceedings of Machine
Learning Research, eds. by D. van Dyk, M. Welling (2009), pp. 448–455. https://proceedings.
mlr.press/v5/salakhutdinov09a.html

16. R. Salakhutdinov, G. Hinton, An efficient learning procedure for deep Boltzmann machines.
Neural Comput. 24, 1967–2006 (2012). https://doi.org/10.1162/NECO_a_00311

17. K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks. Phys. Lett. A 144, 333–340 (1990).
https://doi.org/10.1016/0375-9601(90)90136-C

18. K. Aihara, H. Suzuki, Theory of hybrid dynamical systems and its applications to biological
and medical systems. Philos. Trans. R. Soc. A 368(1930), 4893–4914 (2010). https://doi.org/
10.1098/rsta.2010.0237

19. J. Nagumo, S. Sato, On a response characteristic of a mathematical neuron model. Kybernetik
10, 155–164 (1972). https://doi.org/10.1007/BF00290514

20. M. Hata, Dynamics of Caianiello’s equation. J. Math. Kyoto Univ. 22, 155–173 (1982). https://
doi.org/10.1215/kjm/1250521865

21. M. Adachi, K. Aihara, Associative dynamics in a chaotic neural network. Neural Netw. 10,
83–98 (1997). https://doi.org/10.1016/s0893-6080(96)00061-5

https://doi.org/10.1007/bf02478259
https://doi.org/10.1016/0022-5193(61)90046-7
https://doi.org/10.1109/T-C.1972.223477
https://doi.org/10.1109/T-C.1972.223477
https://doi.org/10.1073/pnas.79.8.2554
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=X4y_10OX-hX
https://openreview.net/forum?id=X4y_10OX-hX
https://doi.org/10.1109/tsmc.1972.4309193
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1007/bf00339943
https://doi.org/10.1016/S0364-0213(85)80012-4
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/0743-7315(89)90064-6
https://doi.org/10.1162/089976602760128018
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://proceedings.mlr.press/v5/salakhutdinov09a.html
https://doi.org/10.1162/NECO_a_00311
https://doi.org/10.1016/0375-9601(90)90136-C
https://doi.org/10.1098/rsta.2010.0237
https://doi.org/10.1098/rsta.2010.0237
https://doi.org/10.1007/BF00290514
https://doi.org/10.1215/kjm/1250521865
https://doi.org/10.1215/kjm/1250521865
https://doi.org/10.1016/s0893-6080(96)00061-5

46 H. Suzuki

22. K. Kaneko, I. Tsuda, Chaotic itinerancy. Chaos 13, 926–936 (2003). https://doi.org/10.1063/
1.1607783

23. M. Oku, K. Aihara, Associative dynamics of color images in a large-scale chaotic neural
network. Nonlinear Theory Appl. IEICE 2, 508–521 (2011). https://doi.org/10.1587/nolta.2.
508

24. M. Hasegawa, T. Ikeguchi, K. Aihara, Combination of chaotic neurodynamics with the 2-opt
algorithm to solve traveling salesman problems. Phys. Rev. Lett. 79, 2344–2347 (1997). https://
doi.org/10.1103/PhysRevLett.79.2344

25. Y. Horio, K. Aihara, O. Yamamoto, Neuron-synapse IC chip-set for large-scale chaotic neural
networks. IEEE Trans. Neural Netw. 14, 1393–1404 (2003). https://doi.org/10.1109/tnn.2003.
816349

26. Y. Horio, T. Ikeguchi, K. Aihara, A mixed analog/digital chaotic neuro-computer system for
quadratic assignment problems. Neural Netw. 18, 505–513 (2005). https://doi.org/10.1016/j.
neunet.2005.06.022

27. Y. Horio, K. Aihara, Analog computation through high-dimensional physical chaotic neuro-
dynamics. Physica D 237, 1215–1225 (2008). https://doi.org/10.1016/j.physd.2008.01.030

28. H. Suzuki, J. Imura, Y. Horio, K. Aihara, Chaotic Boltzmann machines. Sci. Rep. 3, 1610
(2013). https://doi.org/10.1038/srep01610

29. H. Suzuki, Monte Carlo simulation of classical spin models with chaotic billiards. Phys. Rev.
E 88, 052144 (2013). https://doi.org/10.1103/PhysRevE.88.052144

30. M. Blank, L. Bunimovich, Switched flow systems: pseudo billiard dynamics. Dyn. Syst. 19,
359–370 (2004). https://doi.org/10.1080/14689360412331304309

31. M. Yamaguchi, Y. Katori, D. Kamimura, H. Tamukoh, T.Morie, A chaotic Boltzmannmachine
working as a reservoir and its analog VLSI implementation, in 2019 International Joint Con-
ference on Neural Networks (IJCNN) (2019). https://doi.org/10.1109/ijcnn.2019.8852325

32. I. Kawashima, T. Morie, H. Tamukoh, FPGA implementation of hardware-oriented chaotic
Boltzmann machines. IEEE Access 8, 204360–204377 (2020). https://doi.org/10.1109/access.
2020.3036882

33. N. Mohseni, P.L. McMahon, T. Byrnes, Ising machines as hardware solvers of combinatorial
optimization problems. Nat. Rev. Phys. 4, 363–379 (2022). https://doi.org/10.1038/s42254-
022-00440-8

34. T. Inagaki,Y.Haribara,K. Igarashi, T. Sonobe, S.Tamate,T.Honjo,A.Marandi, P.L.McMahon,
T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K.-I. Kawarabayashi, K. Inoue,
S. Utsunomiya, H. Takesue, A coherent Ising machine for 2000-node optimization problems.
Science 354, 603–606 (2016). https://doi.org/10.1126/science.aah4243

35. H. Goto, K. Tatsumura, A.R. Dixon, Combinatorial optimization by simulating adiabatic bifur-
cations in nonlinear Hamiltonian systems. Sci. Adv. 5, eaav2372 (2019). https://doi.org/10.
1126/sciadv.aav2372

36. T. Wang, J. Roychowdhury, OIM: Oscillator-based Ising machines for solving combinatorial
optimisation problems, in Unconventional Computation and Natural Computation (UCNC
2019), eds. by I. McQuillan, S. Seki (2019), pp. 232–256. https://doi.org/10.1007/978-3-030-
19311-9_19

37. M. Ercsey-Ravasz, Z. Toroczkai, Optimization hardness as transient chaos in an analog
approach to constraint satisfaction. Nat. Phys. 7, 966–970 (2011). https://doi.org/10.1038/
nphys2105

38. H. Yamashita, K. Aihara, H. Suzuki, Timescales of Boolean satisfiability solver using
continuous-time dynamical system. Commun. Nonlinear Sci. Numer. Simul. 84, 105183
(2020). https://doi.org/10.1016/j.cnsns.2020.105183

39. B. Molnar, Z. Toroczkai, M. Ercsey-Ravasz, Continuous-time neural networks without local
traps for solving boolean satisfiability, in 13th International Workshop on Cellular Nanoscale
Networks and their Applications. (IEEE, 2012). https://doi.org/10.1109/cnna.2012.6331411

40. H. Yamashita, K. Aihara, H. Suzuki, Accelerating numerical simulation of continuous-time
Boolean satisfiability solver using discrete gradient. Commun. Nonlinear Sci. Numer. Simul.
102, 105908 (2021). https://doi.org/10.1016/j.cnsns.2021.105908

https://doi.org/10.1063/1.1607783
https://doi.org/10.1063/1.1607783
https://doi.org/10.1587/nolta.2.508
https://doi.org/10.1587/nolta.2.508
https://doi.org/10.1103/PhysRevLett.79.2344
https://doi.org/10.1103/PhysRevLett.79.2344
https://doi.org/10.1109/tnn.2003.816349
https://doi.org/10.1109/tnn.2003.816349
https://doi.org/10.1016/j.neunet.2005.06.022
https://doi.org/10.1016/j.neunet.2005.06.022
https://doi.org/10.1016/j.physd.2008.01.030
https://doi.org/10.1038/srep01610
https://doi.org/10.1103/PhysRevE.88.052144
https://doi.org/10.1080/14689360412331304309
https://doi.org/10.1109/ijcnn.2019.8852325
https://doi.org/10.1109/access.2020.3036882
https://doi.org/10.1109/access.2020.3036882
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1038/s42254-022-00440-8
https://doi.org/10.1126/science.aah4243
https://doi.org/10.1126/sciadv.aav2372
https://doi.org/10.1126/sciadv.aav2372
https://doi.org/10.1007/978-3-030-19311-9_19
https://doi.org/10.1007/978-3-030-19311-9_19
https://doi.org/10.1038/nphys2105
https://doi.org/10.1038/nphys2105
https://doi.org/10.1016/j.cnsns.2020.105183
https://doi.org/10.1109/cnna.2012.6331411
https://doi.org/10.1016/j.cnsns.2021.105908

Nonlinear Dynamics and Computing in Recurrent Neural Networks 47

41. M. Welling, Herding dynamical weights to learn, in Proceedings of the 26th Annual Inter-
national Conference on Machine Learning (ACM, 2009). https://doi.org/10.1145/1553374.
1553517

42. M.Welling, Y. Chen, Statistical inference using weak chaos and infinite memory. J. Phys. Conf.
Ser. 233, 012005 (2010). https://doi.org/10.1088/1742-6596/233/1/012005

43. J.J. Hopfield, D.I. Feinstein, R.G. Palmer, ‘Unlearning’ has a stabilizing effect in collective
memories. Nature 304(5922), 158–159 (1983). https://doi.org/10.1038/304158a0

44. A. Goetz, Dynamics of piecewise isometries. Illinois J. Math. 44, 465–478 (2000). https://doi.
org/10.1215/ijm/1256060408

45. H. Suzuki, K. Aihara, T. Okamoto, Complex behaviour of a simple partial-discharge model.
Europhys. Lett. 66, 28–34 (2004). https://doi.org/10.1209/epl/i2003-10151-x

46. H. Suzuki, S. Ito, K. Aihara, Double rotations. Discrete Contin. Dyn. Syst. A 13, 515–532
(2005). https://doi.org/10.3934/dcds.2005.13.515

47. H. Suzuki, Chaotic billiard dynamics for herding. Nonlinear Theory Appl. IEICE 6, 466–474
(2015). https://doi.org/10.1587/nolta.6.466

48. Y. Chen, L. Bornn, N. de Freitas, M. Eskelin, J. Fang, M. Welling, Herded Gibbs sampling. J.
Mach. Learn. Res. 17(10), 1–29 (2016). http://jmlr.org/papers/v17/chen16a.html

49. H. Yamashita, H. Suzuki, Convergence analysis of herded-Gibbs-type sampling algorithms:
effects of weight sharing. Stat. Comput. 29, 1035–1053 (2019). https://doi.org/10.1007/
s11222-019-09852-6

50. P.J. Werbos, Backpropagation through time: what it does and how to do it. Proc. IEEE 78,
1550–1560 (1990). https://doi.org/10.1109/5.58337

51. R.J. Williams, D. Zipser, A learning algorithm for continually running fully recurrent neural
networks. Neural Comput. 1, 270–280 (1989). https://doi.org/10.1162/neco.1989.1.2.270

52. S.Hochreiter, J. Schmidhuber, Long short-termmemory.Neural Comput. 9, 1735–1780 (1997).
https://doi.org/10.1162/neco.1997.9.8.1735

53. H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks, GMD
Report 148, GMD Forschungszentrum Informationstechnik (2001). https://doi.org/10.24406/
publica-fhg-291111

54. H. Jaeger, H. Haas, Harnessing nonlinearity: predicting chaotic systems and saving energy in
wireless communication. Science 304(5667), 78–80 (2004). https://doi.org/10.1126/science.
1091277

55. D. Sussillo, L.F. Abbott, Generating coherent patterns of activity from chaotic neural networks.
Neuron 63, 544–557 (2009). https://doi.org/10.1016/j.neuron.2009.07.018

56. G.M. Hoerzer, R. Legenstein, W. Maass, Emergence of complex computational structures
from chaotic neural networks through reward-modulated hebbian learning. Cereb. Cortex 24,
677–690 (2012). https://doi.org/10.1093/cercor/bhs348

57. M. Nakajima, K. Inoue, K. Tanaka, Y. Kuniyoshi, T. Hashimoto, K. Nakajima, Physical deep
learning with biologically inspired training method: gradient-free approach for physical hard-
ware. Nat. Commun. 13, 7847 (2022). https://doi.org/10.1038/s41467-022-35216-2

58. H. Jaeger, Short termmemory in echo state networks, GMDReport 152, GMDForschungszen-
trum Informationstechnik (2001). https://doi.org/10.24406/publica-fhg-291107

59. W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new
framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560
(2002). https://doi.org/10.1162/089976602760407955

60. B. Schrauwen, M. D’Haene, D. Verstraeten, J.V. Campenhout, Compact hardware liquid state
machines on FPGA for real-time speech recognition. Neural Netw. 21, 511–523 (2008). https://
doi.org/10.1016/j.neunet.2007.12.009

61. Y. Horio, Chaotic neural network reservoir, in 2019 International Joint Conference on Neural
Networks (IJCNN) (2019). https://doi.org/10.1109/IJCNN.2019.8852265

62. Y. Katori, H. Tamukoh, T. Morie, Reservoir computing based on dynamics of pseudo-billiard
system in hypercube, in 2019 International Joint Conference on Neural Networks (IJCNN)
(2019). https://doi.org/10.1109/IJCNN.2019.8852329

https://doi.org/10.1145/1553374.1553517
https://doi.org/10.1145/1553374.1553517
https://doi.org/10.1088/1742-6596/233/1/012005
https://doi.org/10.1038/304158a0
https://doi.org/10.1215/ijm/1256060408
https://doi.org/10.1215/ijm/1256060408
https://doi.org/10.1209/epl/i2003-10151-x
https://doi.org/10.3934/dcds.2005.13.515
https://doi.org/10.1587/nolta.6.466
http://jmlr.org/papers/v17/chen16a.html
https://doi.org/10.1007/s11222-019-09852-6
https://doi.org/10.1007/s11222-019-09852-6
https://doi.org/10.1109/5.58337
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.24406/publica-fhg-291111
https://doi.org/10.1126/science.1091277
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1093/cercor/bhs348
https://doi.org/10.1038/s41467-022-35216-2
https://doi.org/10.24406/publica-fhg-291107
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.neunet.2007.12.009
https://doi.org/10.1016/j.neunet.2007.12.009
https://doi.org/10.1109/IJCNN.2019.8852265
https://doi.org/10.1109/IJCNN.2019.8852329

48 H. Suzuki

63. G. Tanaka, T. Yamane, J.B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D.
Nakano, A. Hirose, Recent advances in physical reservoir computing: a review. Neural Netw.
115, 100–123 (2019). https://doi.org/10.1016/j.neunet.2019.03.005

64. G. Van der Sande, D. Brunner, M.C. Soriano, Advances in photonic reservoir computing.
Nanophotonics 6, 561–576 (2017). https://doi.org/10.1515/nanoph-2016-0132

65. K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten, R. Baets, P. Bienstman, J.V. Camp-
enhout, Toward optical signal processing using photonic reservoir computing. Opt. Express
16, 11182 (2008). https://doi.org/10.1364/oe.16.011182

66. K. Vandoorne, P. Mechet, T.V. Vaerenbergh, M. Fiers, G. Morthier, D. Verstraeten, B.
Schrauwen, J. Dambre, P. Bienstman, Experimental demonstration of reservoir computing on
a silicon photonics chip. Nat. Commun. 5, 3541 (2014). https://doi.org/10.1038/ncomms4541

67. L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B.
Schrauwen, C.R. Mirasso, I. Fischer, Information processing using a single dynamical node as
complex system. Nat. Commun. 2, 468 (2011). https://doi.org/10.1038/ncomms1476

68. L. Larger, M.C. Soriano, D. Brunner, L. Appeltant, J.M. Gutierrez, L. Pesquera, C.R. Mirasso,
I. Fischer, Photonic information processing beyond Turing: an optoelectronic implementation
of reservoir computing. Opt. Express 20, 3241 (2012). https://doi.org/10.1364/oe.20.003241

69. Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, S. Massar, Opto-
electronic reservoir computing. Sci. Rep. 2, 287 (2012). https://doi.org/10.1038/srep00287

70. N. Tate, Y. Miyata, S. Sakai, A. Nakamura, S. Shimomura, T. Nishimura, J. Kozuka, Y. Ogura,
J. Tanida, Quantitative analysis of nonlinear optical input/output of a quantum-dot network
based on the echo state property. Opt. Express 30, 14669–14676 (2022). https://doi.org/10.
1364/OE.450132

71. N. Segawa, S. Shimomura, Y. Ogura, J. Tanida, Tunable reservoir computing based on iterative
function systems. Opt. Express 29, 43164 (2021). https://doi.org/10.1364/oe.441236

72. H. Yamashita, K. Okubo, S. Shimomura, Y. Ogura, J. Tanida, H. Suzuki, Low-rank combina-
torial optimization and statistical learning by spatial photonic Ising machine. Phys. Rev. Lett.
131, 063801 (2023). https://doi.org/10.1103/PhysRevLett.131.063801

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1515/nanoph-2016-0132
https://doi.org/10.1364/oe.16.011182
https://doi.org/10.1038/ncomms4541
https://doi.org/10.1038/ncomms1476
https://doi.org/10.1364/oe.20.003241
https://doi.org/10.1038/srep00287
https://doi.org/10.1364/OE.450132
https://doi.org/10.1364/OE.450132
https://doi.org/10.1364/oe.441236
https://doi.org/10.1103/PhysRevLett.131.063801
http://creativecommons.org/licenses/by/4.0/

	 Nonlinear Dynamics and Computing in Recurrent Neural Networks
	1 Introduction
	2 Fundamental RNN Models and Energy Function
	2.1 Amari–Hopfield Network with Binary States
	2.2 Amari–Hopfield Network with Continuous States
	2.3 Boltzmann Machine

	3 Nonlinear Dynamics in Symmetrically Connected RNNs
	3.1 Chaotic Neural Network
	3.2 Chaotic Boltzmann Machine
	3.3 Ising Machines
	3.4 Herding System

	4 Reservoir Computing
	4.1 Training Input–Output Relation of RNNs
	4.2 Echo State Network
	4.3 Echo State Property and Reservoir Design
	4.4 Neural Network Reservoirs
	4.5 Physical Reservoir Computing

	5 Towards Photonic Neural Network Computing
	References

