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Preface

Light is an excellent carrier of information with the ability to transmit signals at
extraordinarily fast speeds, as exemplified by the global network of optical fibers.
Moreover, its spatiotemporal properties suggest the capability to perform a variety of
information processing and computation. Optical computing technologies have been
demonstrated to uniquely achieve high-speed, parallel, and massive computation,
which is becoming increasingly important in the era of the smart society.Accordingly,
optical computing is expected to serve as a crucial foundation for future information
technologies.

Artificial neural network models, such as those employed in deep learning, have
become a fundamental technology in information processing. These models were
originally inspired by biological neural networks in the brain, which achieve robust
and highly advanced information processing through the spatiotemporal dynamics
arising from a large number of unreliable elements, all while consuming remark-
ably low amounts of energy. The increasing demand for highly efficient computing
technologies highlights the importance of further development of brain-inspired
computing.

Given the potential of optical computing and brain-inspired computing, the devel-
opment of photonic neural networks is considered promising. A number of attempts
have already been made to develop photonic neural networks, through which it has
become clear that photonic neural networks should not merely be photonic imple-
mentations of existing neural network models. Instead, photonic neural networks
need to be developed as a fusion of optical computing and brain-inspired computing,
where the spatiotemporal aspects of light and the spatiotemporal dynamics of neural
networks are expected to play crucial roles.

This book presents an overview of recent advances in photonic neural networks
with spatiotemporal dynamics. It particularly focuses on the results obtained in the
research project “Computing Technology Based on Spatiotemporal Dynamics of
Photonic Neural Networks” (grant number JPMJCR18K2), which is conducted from
October 2018 to March 2024 in CREST Research Area “Technology for Computing
Revolution for Society 5.0” of Japan Science and Technology Agency (JST).
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vi Preface

The computing and implementation paradigms presented here are outcomes
of interdisciplinary studies by collaborative researchers from the three fields of
nonlinear mathematical science, information photonics, and integrated systems engi-
neering. This book offers novel multidisciplinary viewpoints on photonic neural
networks, illustrating recent advances in three types of computing methodologies:
fluorescence energy transfer computing, spatial-photonic spin system, and photonic
reservoir computing.

The book consists of four parts: The first part introduces the backgrounds of
optical computing and neural network dynamics; the second part presents fluores-
cence energy transfer computing, a novel computing technology based on nanoscale
networks of fluorescent particles; the third and fourth parts review the models and
implementation of spatial photonic spin systems and photonic reservoir computing,
respectively.

These contents can be beneficial to researchers in a broad range of fields, including
information science, mathematical science, applied physics, and engineering, to
better understand the novel computing concepts of photonic neural networks with
spatiotemporal dynamics.

This book would not have been possible without the invaluable contributions of
themembers of our project.Wewould like to thank the contributors for writing excel-
lent chapters: Ángel López García-Arias, Yuichi Katori, Takuto Matsumoto, Masaki
Nakagawa, Takahiro Nishimura, Yusuke Ogura, Jun Ohta, Kiyotaka Sasagawa,
Suguru Shimomura, Ryo Shirai, Sho Shirasaka, Michihisa Takeuchi, Masafumi
Tanaka, Naoya Tate, Takashi Tokuda, Hiroshi Yamashita, and Jaehoon Yu. We
especially appreciate the considerable assistance from Hiroshi Yamashita in coordi-
nating the manuscripts toward publication.We also thank Ken-ichi Okubo and Naoki
Watamura for their contributions in reviewing manuscripts.

Wewould like to express our gratitude to Prof. Shuichi Sakai, the supervisor of JST
CREST Research Area “Technology for Computing Revolution for Society 5.0,” for
his farsighted advice and encouragement to our project. We would also like to extend
our appreciation to the area advisors for their insightful comments: Shigeru Chiba,
Shinya Fushimi, Yoshihiko Horio, Michiko Inoue, Toru Shimizu, Shinji Sumimoto,
Seiichiro Tani, Yaoko Nakagawa, Naoki Nishi, and Hayato Yamana. We also thank
the editorial office of Springer for the opportunity to publish this book.
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Revival of Optical Computing

Jun Tanida

Abstract Optical computing is a general term for high-performance computing
technologies that effectively use the physical properties of light.With the rapid devel-
opment of electronics, its superiority as a high-performance computing technology
has diminished; however, there is momentum for research on new optical comput-
ing. This study reviews the history of optical computing, clarifies its diversity, and
provides suggestions for new developments. Among the methods proposed thus far,
those considered useful for utilizing optical technology in information systems are
introduced. Subsequently, the significance of optical computing in the modern con-
text is considered and directions for future development is presented.

1 Introduction

Optical computing is a general term for high-performance computing technologies
that make effective use of the physical properties of light; it is also used as the name
of a research area that attracted attention from the 1980s to the 1990s. This was
expected to be a solution for image processing and large-capacity information pro-
cessing problems that could not be solved by electronics at that time, and a wide
range of research was conducted, from computing principles to device development
and architecture design. Unfortunately, with the rapid development of electronics,
its superiority as a high-performance computing technology was lost, and the boom
subsided. However, as seen in the recent boom in artificial intelligence (AI), tech-
nological development has repeated itself. In the case of AI, the success of deep
learning has triggered another boom. It should be noted that technologies with com-
parable potential for further development have been developed in the field of optical
computing. Consequently, the momentum for research on new optical computing is
increasing.
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Computer Science

Neuroscience

Fourier Optical
Processing

Digital Optical Computing

Optical Neurocomputing Nanophotonic Computing

Optical Special
Purpose Processing

Before 1980’ s 1980-90’ s Current

Fig. 1 Relationship between research areas related to optical computing. Fourier optical processing
is a root of optical computing in the 1980s and the 1990s. Computer science and neuroscience
accelerated the research fields of optical digital computing and optical neurocomputing. Currently,
both research fields have been extended as optical special purpose processing and nanophotonic
computing

Optical computing is not a technology that emerged suddenly. Figure 1 shows
the relationship among the research areas related to optical computing. Its roots
are optical information processing, represented by a Fourier transform using lenses,
and technologies such as spatial filtering and linear transform processing. They are
based on the physical properties of light waves propagating in free space, where the
superposition of light waves is a fundamental principle. Light waves emitted from
different sources in space propagate independently and reach different locations. In
addition, light waves of different wavelengths propagate independently and can be
separated. Thus, the light-wave propagation phenomenon has inherent parallelism
along both the spatial and wavelength axes. Utilizing this property, large-capacity
and high-speed signal processing can be realized. In particular, optical information
processing has been researched as a suitable method for image processing. From
this perspective, optical information processing can be considered an information
technology specialized for image-related processing.

Optical computing in the 1980s and the 1990s was characterized by the realization
of general-purpose processing represented by digital optical computing. Compared
with previous computers, the development of the Tse computer [1], which processes
two-dimensional signals such as images in parallel, was a turning point. In the Tse
computer, the concept of parallelizing logical gates that compose a computer to pro-
cess images at high speed was presented. Inspired by this study, various parallel logic
gates based on nonlinear optical phenomena have been developed. The development
of optical computers composed of parallel logic gates has become a major challenge.
Several computational principles and system architectures were proposed. Two inter-
national conferences onOptical Computing (OC) and Photonic Switching (PS) were
started and held simultaneously. Notably, the proposal of optical neurocomputing
based on neural networks was one of the major achievements in optical computing
research during this period.



Revival of Optical Computing 5

At that time, optical computing showedconsiderable potential; however, the devel-
opment boom eventually waned because of the immaturity of peripheral technologies
that could support ideas, as well as the improvement of computational performance
supported by the continuous development of electronics. Nevertheless, the impor-
tance of light in information technology has increased with the rapid development
of optical communication. In addition, optical functional elements and spatial light
modulators, which have been proposed as devices for optical computing, continue to
be developed and applied in various fields. Consequently, the development of optical
computing technology in a wider range of information fields has progressed, and a
research area called information photonics has been formed. The first international
conference on Information Photonics (IP) was held in Charlotte, North Carolina, in
June 2005 [2] and has continued to date.

Currently, optical computing is in the spotlight again. Optical computing is
expected to play a major role in artificial intelligence (AI) technology, which is
rapidly gaining popularity owing to the success of deep learning. Interesting meth-
ods, such as AI processors using nonphotonic circuits [3] and optical deep networks
using multilayer optical interconnections [4], have been proposed. In addition, as a
variation of neural networks, a reservoir model suitable for physical implementation
was proposed [5], which increased the feasibility of optical computing. Reservoir
implementation by Förster resonant energy transfer (FRET) between quantum dots
was developed as a low-energy information processor [6]. In addition to AI com-
putation, optical technology is considered a promising implementation of quantum
computation.Owing to the potential capabilities of the optics and photonics technolo-
gies, optical computing is a promising solution for a wide range of high-performance
computations.

This study reviews the history of optical computing, clarifies its diversity, and
provides suggestions for future developments. Many methods have been developed
for optical computing; however, only a few have survived to the present day, for
various reasons. Here, the methods proposed thus far that are considered useful for
utilizing optical technology in information technology are introduced. In addition,
the significance of optical computing in themodern context is clarified, and directions
for future development are indicated. This study covers a part of works based on my
personal opinion and is not a complete review of optical computing as a whole.

2 Fourier Optical Processing

Shortly after the invention of lasers in the 1960s, a series of optical information-
processing technologies was proposed. Light, which is a type of electromagnetic
wave, has wave properties. Interference and diffraction are theoretically explained
as basic phenomena of light; however, they are based on the picture of light as an
ideal sinusoidal wave. Lasers have achieved stable light-wave generation andmade it
possible to perform various types of signal processing operations by superposing the
amplitudes of light waves. For example, the Fraunhofer diffraction, which describes
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the diffraction phenomenon observed at a distance from the aperture, is equivalent
to a two-dimensional Fourier transform. Therefore, considering that an infinite point
is equivalent to the focal position of the lens, a Fourier transform using a lens can be
implemented with a simple optical setup.

Figure 2 shows a spatial filtering system as a typical example of optical informa-
tion processing based on the optical Fourier transform. This optical system is known
as a telecentric or double diffraction system. For the input function f (x, y) given
as the transmittance distribution, the result of the convolution with the point spread
function h(x, y), whose Fourier transform H(μ, ν) is embodied as a filter with the
transmittance distribution at the filter plane, is obtained as the amplitude distribution
g(x, y) as follows:

g(x, y) =
∫∫

f (x ′, y′)h(x − x ′, y − y′)dx ′dy′. (1)

The following relationship is obtained using the Fourier transforms of Eq. (1), which
is performed at the filter plane of the optical system:

G(μ, ν) = F(μ, ν)H(μ, ν) (2)

where F(μ, ν) and G(μ, ν) are the spectra of the input and output signals, respec-
tively. The filter function H(μ, ν) is called the optical transfer function. The signal
processing and filter operations can be flexibly designed and performed in parallel
with the speed of light propagation. The Fourier transform of a lens is used effectively
in the optical system.

f f f f

y

xf(x,y) H(μ,ν) g(x,y)

ν

μ

y

x

Input image Spatial filterLens Lens Output image

Fig. 2 Spatial filtering in optical systems. The input image f (x, y) is Fourier transformed by the
first lens, and the spectrum is obtained at the filter plane. The spatial filter H(μ, ν) modulates the
spectrum and the modulated signal is Fourier transformed by the second lens. The output image
g(x, y) is observed as an inverted image because the Fourier transform is performed instead of an
inverse Fourier transform
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In this optical system, because the input and filter functions are given as transmit-
tance distributions, spatial lightmodulators, such as liquid crystal light bulbs (LCLV)
[7] and liquid crystals on silicon devices [8] which can dynamically modulate light
signals on a two-dimensional plane are introduced. In the spatial light modulator, the
amplitude or phase of the incident light over a two-dimensional plane is modulated
by various nonlinear optical phenomena. Spatial light modulators are important key
devices not only in Fourier optical processing but also in general optical computing.
Additionally, they are currently being researched and developed as universal devices
for a wide range of optical applications.

Pulse shaping has been proposed as a promising optical information technology
[9]. As shown in Fig. 3, the optical setup comprises symmetrically arranged gratings
and Fourier transform lenses. Because the Fourier time spectrum F(ν) of the incident
light f (t) is obtained at the spatial filter plane, the filter function located therein
determines the modulation properties. Subsequently, the shaped output pulse g(t) is
obtained after passing through the optical system.Note that the grating and cylindrical
lens perform a one-dimensional Fourier transform by dispersion, and that the series
of processes is executed at the propagation speed of light.

Fourier optical processing is also used in current information technologies such as
image encryption [10] and biometric authentication [11]. In addition, owing to their
capability to process ultrahigh-speed optical pulses, signal processing in photonic
networks is a promising application. Furthermore, in combination with holography,
which fixes the phase information of light waves through interference, high-precision
measurements and light-wave control can be achieved [12].

Input light
f(t)

Grading Grading
1D Fourier

transform lens
1D Fourier

transform lensSpatial filter

Output light
g(t)

Fig. 3 Pulse shaping technique. The input light f (t) is Fourier transformed in the time domain
by the first grating and cylindrical lens. The spectrum is modulated by the filter and the modulated
signal is Fourier transformed by the second cylindrical lens and grating to generate the output light
g(t)
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3 Digital Optical Computing

The significance of the Tse computer [1] is that it introduced the concept of digi-
tal arithmetic into optical computing. Optical information processing based on the
optical Fourier transform is typical of optical analog arithmetic. Digital operations
over analog operations are characterized by the elimination of noise accumula-
tion, arbitrary computational precision, and moderate device accuracy requirements
[13]. Although analog optical computing is suitable for specific processing, many
researchers have proposed digital optical computing for general-purpose processing.
The goal is to achieve computational processing of two-dimensional signals, such as
figures and images, with high speed and efficiency.

A Tse computer consists of Tse devices that process two-dimensional information
in parallel. Several prototype examples of the Tse devices are presented. In the
prototype system, the parallel logic gate is composed of logic gate elements mounted
on electronics, and the parallel logic gate is connected by fiber plates or optical
fiber bundles. In contrast, using free-space propagation of light, two-dimensional
information can be transmitted more easily. Various optical logic gate devices have
been developed as free-space optical devices. ATT Bell Labs developed a series of
optical logic gate devices calledSEED[14] to implement an optical switching system.
These developments directly contributed to the current optoelectronic devices and
formed the foundation of photonic technologies for optical communication.

Digital operations are designed by a combination of logical operations. Logical
operations on binary signals include logical AND, logical OR, exclusive logic, etc.,
and higher level functions such as flip-flops and adding circuits are realized by com-
bining them. Logical operations are nonlinear, and any type of nonlinear processing
is required for their implementation. Optoelectronic devices directly utilize nonlin-
ear optical phenomena. In addition, by replacing nonlinear operations with a type
of procedural process called spatial coding, a linear optical system can be used to
perform logical operations.

The authors proposed a method for performing parallel logical operations using
optical shadow casting [15]. As shown in Fig. 4, parallel logical operations between
two-dimensional signals were demonstrated by the spatial coding of the input signals
andmultiple projectionswith an array of point light sources. Using two binary images
as inputs, an encoded image was generated by replacing the combination of the
corresponding pixel values with a spatial code that is set in an optical projection
system. Subsequently, the optical signal provides the result of a logical operation
through the decoding mask on the screen. The switching pattern of the array of point
light sources enables all 16 types of logical operations, including logical AND and
OR operations, as well as operations between adjacent pixels.

Parallel operations based on spatial codes have been extended to parallel-
computing paradigms. Symbolic substitution [16, 17] is shown in Fig. 5 which illus-
trates the process in which a set of specific spatial codes is substituted with another
set of spatial codes. Arbitrary parallel logical operations can be implemented using
a substitution rule. In addition, a framework was proposed that extends parallel logic
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Source array

Coded image

Screen Decoding
mask

contact

contact

Coded
image A’

Coded
image B’

Input image
B

Input image
A

Spatial codes

0 1

0 1

aij

bij

Fig. 4 Optical shadow casting for parallel logical operations. Two binary images are encoded pixel
by pixel with spatial codes, and then, the coded image is placed in the optical projection system.
Each point light source projects the coded image onto the screen and the optical signals provide the
result of the logical operation through the decoding mask

operations using optical shadow casting to arbitrary parallel logic operations, called
optical array logic [18, 19]. These methods are characterized by data fragments dis-
tributed on a two-dimensional image and a parallel operation on the image enables
flexible processing of the distributed data in parallel. Similarly, cellular automaton
[20] and life games [21] are mentioned as methods of processing data deployed on
a two-dimensional plane. The parallel operations assumed in these paradigms can
easily be implemented optically, resulting in the extension of gate-level parallelism
to advanced data processing.

Construction of an optical computer is the ultimate goal of optical computing.
The Tse computer is a clear target for the development of digital optical logical oper-
ations, and other interesting architectures have been proposed for optical computers.
These architectures are categorized into gate-oriented architectures, in which paral-
lel logic gates are connected by optical interconnections; register-oriented architec-
tures, which combine processing on an image-by-image basis; and interconnection-
oriented architectures, in which electronic processors are connected by optical inter-
connections. The gate-oriented architecture includes an optical sequence circuit pro-
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Fig. 5 Symbolic
substitution. A specific
spatial pattern is substituted
with another spatial pattern
by the process of pattern
recognition and substitution.
A set of substitution rules
enables the system to
perform arbitrary parallel
logical operations such as
binary addition. Various
optical systems can be used
to implement the procedure

Jun Tanida

Logic
Unit

Pattern recognition + Pattern substitusion

Rule for binary addition

cessor [22] and a multistage interconnect processor [23]. The register-oriented archi-
tecture is exemplified by a Tse computer and parallel optical array logic system [24].
The interconnection-oriented architecture includes optoelectronic computer using
laser arrays with reconfiguration (OCULAR) systems [25] and a three-dimensional
optoelectronic stacked processor [26]. These systems were developed as small-scale
systems with proof-of-principle, but unfortunately, few have been extended to prac-
tical applications.

4 Optical Neurocomputing

Digital optical logic operations were a distinctive research trend that distinguished
optical computing in the 1980s from optical information processing. However, other
important movements were underway during the same period. Neurocomputing was
inspired by the neural networks of living organisms. As shown in Fig. 6, the neural
network connects the processing nodes modeled on the neurons and realizes a com-
putational task with signal processing over the network. Each node receives input
signals from other processing units and sends an output signal to the successive pro-
cessing node according to the response function. For example, when processing node
i receives a signal from processing node j (1 ≤ j ≤ N ), the following operations
are performed at the node:

ui =
N∑
j=1

wi, j x j (3)

x ′
i = f (ui ) (4)
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Fig. 6 Neural network.
Processing nodes modeled
on neurons of life organisms
are connected to form a
network structure. Each
processing node performs a
nonlinear operation for the
weighted sum of the input
signals and sends the output
signal to the next processing
node. Various forms of
networks can be made, and a
wide range of functionalities
can be realized

Input
layer

Hidden
layers

Output
layer

w1
x1

f(ui)x2

xN

xi’
w2

wN

......

Multi-layer nerual network

Processing node i

where ui is the internal state signal of processing node i ,wi, j is the connectionweight
from processing node j to node i , f (·) is the response function, and x ′

i is the output
signal of processing node i . All processing nodes perform the same operation, and the
processing achieved by the entire network is determined by the connection topology
of the processing node, connection weight of the links, and response function.

Therefore, neural networks are suitable for optical applications. Several same type
of processing nodesmust be operated in parallel and connected effectively, which can
be achieved using parallel computing devices and free-space optical interconnection
technology. Even if the characteristics of the individual processing nodes are diverse,
this is not a serious problem because the connection weight compensates for this
variation. In addition, if a free-space optical interconnection is adopted, physical
wiring is not required, and the connection weight can be changed dynamically.

Anamorphic optics was proposed as an early optical neural network system to
perform vector-matrix multiplication [27, 28]. The sum of the input signals for each
processing node given by Eq. (3) was calculated using vector-matrix multiplication.
As shown in Fig. 7, the input signals arranged in a straight line were stretched
vertically and projected onto a two-dimensional image, expressing the connection
weight as the transmittance. The transmitted signals were then collected horizontally
and detected by a one-dimensional image sensor. Using this optical system, the
weighted sum of the input signals to multiple processing nodes can be calculated
simultaneously. For the obtained signal, a response functionwas applied to obtain the
output signal sequence. If the output signals are fed back directly as the input signals
of successive processing nodes, a Hopfield type neural network is constructed. In this
system, the connectionweight is assumed to be trained and is set as a two-dimensional
image before optical computation.
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Fig. 7 Anamorphic optical
processor. Optical signals
emitted from the LED array
express vector x, and the
transmittance of the
two-dimensional filter
corresponds to matrix H. The
result of vector-matrix
multiplication, y = Hx, is
obtained on the
one-dimensional image
censor. Cylindrical lenses are
employed to stretch and
collect the optical signals
along one-dimensional
direction

Jun Tanida

x

H

y = Hx

LED array

2D filter

1D image
sensor

To implement a neural network, it is important to construct the required network
effectively. An optical implementation based on volumetric holograms was proposed
to address this problem. For example, a dynamic volumetric hologram using a non-
linear optical crystal, such as lithium niobate, is an interesting method in which the
properties of materials are effectively utilized for computation [29]. The application
of nonlinear optical phenomena is a typical approach in optical computing, which is
still an efficient method of natural computation.

Because of the recent success in deep neural networks, novel optical neuropro-
cessors have been proposed. One is the diffractive deep neural network (D2NN)
[4] which implements a multilayer neural network by stacking diffractive optical
elements in multiple stages. The other is the optical integrated circuit processor
[3] which is composed of beamsplitters and phase shifters by optical waveguides
and efficiently performs vector-matrix multiplications. This is a dedicated proces-
sor specialized in AI calculations. These achievements are positioned as important
movements in optical computing linked to the current AI boom.

Reservoir computing has been proposed as an approach opposite to multi-layered
and complex networks [30]. This is a neural network model composed of a reservoir
layer in which processing nodes are randomly connected and input and output nodes
to the reservoir layer, as shown in Fig. 8. Computational performance equivalent
to that of a recurrent neural network (RNN) can be achieved by learning only the
connection weight from the reservoir layer to the output node. Owing to unnecessary
changes in all connection weights, the neural network model is suitable for physical
implementation. Optical fiber rings [31], lasers with optical feedback and injection
[32], and optical iterative function systems [33] have also been proposed for the
implementation.
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Input layer Reservoir layer Output layer

Fig. 8 Aschematic diagramof reservoir computing.A neural network consisting of input, reservoir,
and output layers is employed. The reservoir layer contains multiple processing nodes connected
randomly, and the input and output layers are connected to the reservoir layer. Only by training the
connection weight between the reservoir and the output layers, Wout, equivalent performance to a
RNN can be achieved

5 Optical Special Purpose Processing

Electronics continued to develop far beyondwhatwas expectedwhen optical comput-
ing was proposed in the 1980s and the 1990s. Therefore, it is impractical to construct
an information processing system using only optical technology; therefore, a system
configuration that combines technologies with superiority is reasonable. Although
electronic processors provide sufficient computational performance, the superiority
of optical technology in signal transmission between processors is clear. Optical
technology, also known as optical interconnection or optical wiring, has been pro-
posed and developed along with optical computing. In particular, it has been shown
that the higher the signal bandwidth and the longer the transmission distance, the
more superior the optical interconnection becomes to that in electronics.

System architectures based on optical interconnection have encouraged the devel-
opment of smart pixels with optical input and output functions for semiconductor
processors. In addition, under the concept of a more generalized systemization tech-
nology called VLSI photonics, various kinds of systems-on-chips were considered in
the US Department of Defense, DARPA research program, and the deployment of
various systems has been considered [34]. In Japan, the element processor developed
for the optoelectronic computer using laser arrays with reconfiguration (OCULAR)
system [25] was extended to an image sensor with a processing function called
VisionChip [35]. Until now, semiconductor materials other than silicon, such as
GaAs, have been used as light-emitting devices. However, advances in silicon pho-
tonics have made it possible to realize integrated devices that include light-emitting
elements [36]. This is expected to lead to an optical interconnection at a new stage.

Visual cryptography is an optical computing technology that exploits human vis-
ibility [37], which is an important feature of light. This method applies logical oper-
ations using spatial codes and effectively encrypts image information. As shown
in Fig. 9, the method divides each pixel into 2×2 sub-pixels and assigns image



14 J. Tanida

Black WhitePixel to be encrypted

Subpixels for pixel data

Subpixels for decoding mask

Observed pixel

random selection random selection

Fig. 9 Procedure of visual cryptography. Each pixel to be encrypted is divided into 2×2 sub-pixels
selected randomly. To decode the pixel data, 2×2 sub-pixels of the corresponding decoding mask
must be overlapped correctly. Exactly arranged decoding masks are required to retrieve the original
image

Microlens array 

Signal separator

Image sensor

Unit

Fig. 10 The compound-eye imaging system TOMBO. The system is composed of a microlens
array, a signal separator, and an image sensor. The individual microlens and the corresponding area
of the image sensor form an imaging system called a unit. This system is a kind of multi-aperture
optical system and provides various functionalities associated with the post processing

information and a decoding mask to a couple of the spatial codes in the sub-pixels.
Owing to the arbitrariness of this combination, an efficient image encryption can be
achieved. Another method for realizing secure optical communication was proposed
by dividing logical operations based on spatial codes at the transmission and receiv-
ing ends of a communication system [38]. This method can be applied to information
transmission from Internet of Things (IoT) edge devices.

The authors proposed a compound-eye imaging system called thin observation
module by bound optics (TOMBO) which is inspired by a compound eye found in
insects [39]. As shown in Fig. 10, it is an imaging system in which a microlens array
is arranged in front of the image sensor, and a plurality of information is captured at
once. This is a kind ofmulti-aperture optical system and provides various interesting
properties. The system can bemade very thin, and by appropriately setting the optical
characteristics of each ommatidium and combining it with post-processing using a
computer, the object parallax, light beam information, spectral information, etc. can
be acquired. The presentation of TOMBOwas one of the triggers for the organization
of the OSATopical Meeting onComputational Optical Sensing and Imaging (COSI)
[40].
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The imaging technique used in COSI is called computational imaging. In conven-
tional imaging, the signal captured by the imaging device through an optical system
faithfully reproduces the subject information. However, when considering signal
acquisition for information systems such as machine vision, such requirements are
not necessarily important. Instead, by optimizing optical and arithmetic systems,
new imaging technologies beyond the functions and performance of conventional
imaging can be developed. This is the fundamental concept of computational imag-
ing, which combines optical encoding and computational decoding. This encoding
style enables various imaging modalities, and several imaging techniques beyond
conventional frameworks have been proposed [41, 42].

The task of optical coding in computational imaging is the same as that in optical
computing, which converts object information into a form that is easy to handle for
the processing system. This can be regarded as a modern form of optical computing
dedicated to information visualization [43]. In imaging and object recognition using
scattering media, new achievements have been made using deep learning [44, 45]. In
addition, the concept of a photonic accelerator was proposed for universal arithmetic
processing [46]. This concept is not limited to imaging and also incorporates optical
computing as a processing engine in high-performance computing systems. This
strategy is more realistic than that of the optical computers of the 1980s, which were
aimed at general-purpose computation. Furthermore, when considering a modern
computing systemconnected to a cloud environment, IoT edgedevices as the interface
to the real world will be the main battlefield of optical computing. If this happens, the
boundary between optical computing and optical coding in computational imaging
will become blurred, and a new optical computing image is expected to be built.

6 Nanophotonic Computing

A major limitation of optical computing is the spatial resolution limit due to the
diffraction of light. In the case of visible light, the spatial resolution of sub-μm
is much larger than the cell pitch of a semiconductor integrated circuit of several
nanometers. Near-field probes can be used to overcome this limitation and an inter-
esting concept has been proposed that uses the restriction imposed by the diffraction
of light [47]. This method utilizes the hierarchy in optical near-field interaction to
hide information under the concept of a hierarchical nanophotonic system, where
multiple functions are associated with the physical scales involved. Unfortunately, a
problem is associated with the near-field probe: the loss of parallelism caused by the
free-space propagation of light. To solve this problem, a method that combines opti-
cal and molecular computing has been proposed [48]. The computational scheme
is called photonic DNA computing which combines autonomous computation by
molecules and arithmetic control by light.

DNA molecules have a structure in which four bases, adenine, cytosine, guanine,
and thymine, are linked in chains. Because adenine specifically forms hydrogen
bonds with thymine and cytosine with guanine, DNA molecules with this com-
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Information
DNA

Laser beams for control of position

DNA cluster

Light-absorbing layer

Reaction sub-space
Laser beams for control of reaction

Fig. 11 A schematic diagram of photonic DNA computing. Similar to the conventional DNA
computing, DNA molecules are used for information media as well as an autonomous computing
engine. In this system, several reacting spaces are prepared to proceedmultiple sets ofDNAreactions
concurrently in the separated reacting spaces. Laser trappedmicro beads are employed to transfer the
information-encodedDNAover the reacting spaces.DNAdenaturation inducedby light illumination
is used to control the local reaction

plementary base sequence are synthesized in vivo, resulting in the formation of
a stable state called a double-stranded structure. This is the mechanism by which
DNA molecules store genetic information and can be referred to as the blueprint
of living organisms. The principle of DNA computing is to apply this property to
matching operations of information encoded as base sequences. Single-stranded
DNAmolecules with various base sequences are mixed, and the presence of specific
information is detected by the presence or absence of double-strand formation. This
series of processes proceeds autonomously; however, the processing content must
be encoded in the DNA molecule as the base sequence. Therefore, it is difficult to
perform large-scale complex calculations using naïve principles.

To solve this problem, the author’s group conceived photonic DNA computing
[48] which combines optical technology and DNA computing and conducted a series
of studies. It is characterized by the microfineness, autonomous reactivity, and large-
scale parallelism of DNAmolecules, as shown in Fig. 11. Photonic DNA computing
realizes flexible and efficient massive parallel processing by collectively manipulat-
ing the DNA molecules using optical signals. In this system, DNA molecules act
as nanoscale computational elements and optical technology provides an interface.
Because it is based onmolecular reactions, it has the disadvantage of slow calculation
speed; however, it is expected to be used as a nanoprocessor that can operate in vivo.

For accelerating computational speed restricted by molecular reactions, an arith-
metic circuit using Förster resonance energy transfer (FRET) has been developed
[49]. FRET is an energy-transfer phenomenon that occurs at particle intervals of sev-
eral nanometers, and high-speed information transmission is possible. Using DNA
molecules as scaffolds, fluorescent molecules can be arranged with nanoscale preci-
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Fig. 12 Logic gates
implemented by FRET. a
DNA scaffold logic using
FRET signal cascades. b A
fluorescence dye
corresponding to site i of a
DNA scaffold switches
between the ON and OFF
states according to the
presence of an input
molecule (input a). c
Configuration for the AND
logic operation. Fluorescent
molecules of a FRET pair are
assigned to neighboring sites,
i and j . d Configuration for
the OR logic operation.
Multiple input molecules can
deliver a fluorescent
molecule to a single site [49]
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sion to generate FRET. As shown in Fig. 12, AND, OR, and NOT gates are imple-
mented. By combining these gates, nanoscale arithmetic circuits can be constructed.
This technology is characterized by its minuteness and low energy consumption. In
contrast to a system configuration with precisely arranged fluorescent molecules, a
random arrangement method is also promising. Based on this concept, our group is
conducting research to construct a FRET network with quantum dots and use the
output signal in the space, time, and spectrum domains as a physical reservoir [6].
For more details, please refer to the other chapters of this book.

7 Toward Further Extension

First, the significance of optical computing technology in the 1980s and the 1990s is
considered. Despite the introduction of this study, explicit computing systems have
not yet been developed for several technologies. However, some technologies have
come to fruition as optical devices and technologies that support current information
and communication technologies. The exploration of nonlinear optical phenomena
has promoted the development of optoelectronics, and numerous results have been
obtained, including those for quantum dot optical devices. They are used in cur-
rent optical communications, and their importance is evident. Many researchers and
engineers involved in optical computing have contributed to the development of
general optical technologies. These fields have evolved into digital holography [50]
and information photonics [51]. From this perspective, it can be said that the previ-
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ous optical computing boom laid the foundation for the current optical information
technology.

However, considering computing tasks, research at that time was not necessarily
successful. One of the reasons for this is that they were too caught up in digital
arithmetic methods, for better or worse. The diffraction limit of light is in the order
of submicrometers, which is too large compared to the information density realized
using semiconductor integration technology. Therefore, a simple imitation or partial
application of digital arithmetic methods cannot demonstrate the uniqueness of com-
putation using light. In addition, the peripheral technologies that could constitute the
system are immature. Systematization requires not only elemental technologies but
also design theories and implementation technologies to bring them together and
applications that motivate their development. Unfortunately, the technical level at
that time did not provide sufficient groundwork for development.

What about neural networks based on analog arithmetic other than digital arith-
metic methods? As mentioned above, optical neural networks are architectures suit-
able for optical computing that can avoid these problems. However, the immaturity of
the elemental devices is similar, and it has been difficult to develop it into a practical
system that requires interconnections with a very large number of nodes. In addition,
studies on neural networks themselves are insufficient, and we must wait for the
current development of deep neural networks. Thus, the ingenious architecture at
that time was difficult to develop owing to the immaturity of peripheral technology,
and it did not lead to superiority over competitors. Furthermore, the problems that
require high-performance computing are not clear, and it can be said that the appeal
of the proposition of computing, including social demands, was insufficient.

Based on these circumstances, we will consider the current status of optical com-
puting. Now that the practical applications of quantum computing are on the horizon,
expectations for optical quantum computing are increasing [52]. Although not dis-
cussed in this article, quantum computing continues to be a promising application
of optical computing. In addition, optical coding in computational imaging can be
considered as a modern form of optical computing with limited use and purpose [43].
Computational imaging realizes highly functional and/or high-performance imaging
combined with optical coding and arithmetic decoding. In this framework, the opti-
cal coding that proceeds through the imaging process determines the function of the
entire process and enables high throughput. For optical coding, various methods,
such as point spread function modulation, called PSF engineering [53], object mod-
ulation by projecting light illumination [54], and multiplexing imaging by multiple
apertures [55], form the field of modern optical computing.

Optical computing, which is closer to practical applications, is neuromorphic
computing [56]. The superior connection capability of optical technology makes it
suitable for implementing neural networks that require many interconnections, and
many studies are underway. However, in the human brain, approximately 100 billion
neurons are connected by approximately 10 thousand synapses per neuron; there-
fore, a breakthrough is required to realize them optically. Deep learning models have
advanced computational algorithms; however, their implementation relies on existing
computers. The concept of a photonic accelerator is a realistic solution used specif-
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ically for processing in which light can exert superiority [46]. An optical processor
that performs multiply-accumulate operations necessary for learning processing can
be cited as a specific example [3].

Furthermore, nanophotonic computing, based on optical phenomena at themolec-
ular level, has significant potential. Reservoir computing can alleviate connectivity
problems and enable the configuration of more realistic optical computing systems
[57]. Our group is developing a reservoir computing system that utilizes a FRET
network, which is the energy transfer between adjacent quantum dots [6]. FRET
networks are expected to perform computational processing with an extremely low
energy consumption. The background of this research is the explosive increase in the
amount of information and arithmetic processing, which require enormous compu-
tational power, as represented by deep learning. Computing technologies that con-
sume less energy are expected to become increasingly important in the future. In
addition, cooperation between real and virtual worlds, such as metaverse [58] and
cyber-physical systems [59], is becoming increasingly important. As an interface,
optical computing is expected to be applied in IoT edge devices that exploit the
characteristics of optical technologies.

In conclusion, optical computing is by no means a technology of the past and
is being revived as a new computing technology. In addition, optical information
technology research areas that are not aimed at computing, such as digital holography
and information photonics, are being developed. By combining the latest information
technology with various optical technologies cultivated thus far, a new frontier in
information science is being opened.
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Nonlinear Dynamics and Computing
in Recurrent Neural Networks

Hideyuki Suzuki

Abstract Nonlinearity is a key concept in the design and implementation of pho-
tonic neural networks for computing.This chapter introduces the fundamentalmodels
and concepts of recurrent neural networks, with a particular focus on their nonlinear
dynamics. We review several types of nonlinear dynamics that emerge in symmet-
rically connected recurrent neural networks, in which the energy function plays a
crucial role. In addition, we introduce the concepts of reservoir computing, covering
fundamental models and physical reservoir computing. Overall, this chapter pro-
vides a foundation for the theoretical aspects in the subsequent chapters of this book,
which explore a variety of photonic neural networks with nonlinear spatiotemporal
dynamics.

1 Introduction

Formore thanhalf a century, various artificial neural networkmodels havebeendevel-
oped and studied as abstractions of thought processes in the brain and as constructive
approaches to thinking machines [1, 2]. Artificial neural networks are currently a
fundamental technology in artificial intelligence, applied across various fields and
playing crucial roles in our daily lives.

Recurrent neural networks (RNNs) are a type of neural network that can be con-
trasted with feedforward neural networks, such as multilayer perceptrons (MLPs).
Unlike feedforward neural networks, which perform unidirectional information pro-
cessing from the input layer to the output layer, RNNs allow mutual interactions
among the constituent neuronmodels. These interactions typically induce spatiotem-
poral dynamics as the network state evolves over time, which performs various
computational tasks, such as processing time-sequence data, solving combinatorial
optimization problems, and generative statistical modeling.
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Nonlinearity is an indispensable property of neuronmodels, which naturally leads
to the emergence of nonlinear dynamics in RNNs. Thus, understanding and utilizing
their nonlinear dynamics is especially important for realizing energy-efficient, high-
speed, and large-scale implementations of RNNs using optical technologies.

Based on this motivation, this chapter introduces the fundamental models and
concepts of RNNs for computing, with a particular focus on their nonlinear dynam-
ics. In Sect. 2, we introduce the notion of the energy function in two fundamental
models of symmetrically connected RNNs: the Amari–Hopfield network and the
Boltzmann machine. We explore how these models exhibit computational functions
such as associative memory, combinatorial optimization, and statistical learning.
Section 3 presents an overview of various types of nonlinear dynamics that arise in
RNNs. We discuss how chaotic dynamics contributes to computation in models such
as the chaotic neural network and the chaotic Boltzmann machine. We also observe
the important roles of nonlinear dynamics in several types of Ising machines, which
serve as hardware solvers for combinatorial optimization problems. Moreover, we
introduce a sampling algorithm, known as the herding system, which exhibits com-
plex nonlinear dynamics related to the learning process of RNNs. Section 4 provides
a brief overview of reservoir computing, which is a lightweight approach that lever-
ages the rich nonlinear dynamics of RNNs for information processing. We introduce
the basic models and concepts of reservoir computing, such as the echo state network
and echo state property, and further discuss physical reservoir computing. Finally, in
Sect. 5, we explain how the concepts introduced in this chapter underlie the studies
covered in the subsequent chapters of this book, which explore various aspects of
photonic neural networks with nonlinear spatiotemporal dynamics.

2 Fundamental RNN Models and Energy Function

In this section, we introduce the two fundamental models of symmetrically con-
nected RNNs: the Amari–Hopfield network and the Boltzmannmachine.We provide
a brief overview of their definitions and behavior, highlighting the role of the energy
function. These models have computational functions such as associative memory,
combinatorial optimization, and statistical learning. Although their dynamics is fun-
damentally governed by the energy function, they lay the foundation for RNNmodels
with rich nonlinear dynamics as discussed in the following sections.

2.1 Amari–Hopfield Network with Binary States

The Amari–Hopfield network [3, 4] is an RNN model composed of binary
McCulloch–Pitts neurons [1] with symmetrical connections. The state of each i th
neuron at time t is represented by si (t) ∈ {0, 1}, with values corresponding to the rest-
ing and firing states, respectively. Note that a formulation that employs −1, instead
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of 0, as the resting state is also widely used. The input to the i th neuron from the
j th neuron is assumed to be wi j s j (t), where wi j ∈ R denotes the synaptic weight.
The weights are assumed to be symmetric, wi j = w j i , and have no self-connections,
wi i = 0. The state of the i th neuron takes si = 1 if the total input, including constant
input (or bias) bi ∈ R, exceeds zero and si = 0 if otherwise. Hence, the update rule
for the i th neuron can be written as follows:

si (t + 1) = θ

⎛
⎝

N∑
j=1

wi j s j (t) + bi

⎞
⎠ , (1)

where N denotes the total number of neurons and θ(·) is the Heaviside unit step
function; i.e., θ(z) = 1 for z ≥ 0 and θ(z) = 0 for z < 0. According to this equation,
the state of the network, s(t) = (s1(t), s2(t), . . . , sN (t))�, evolves over time in the
state space {0, 1}N .

The key notion for understanding the behavior of the Amari–Hopfield network is
the energy function

H(s) = −1

2

N∑
i, j=1

wi j si s j −
N∑
i=1

bi si , (2)

which is guaranteed to decrease over time. Specifically, assume that only the i th
neuron is updated according to (1), while the states of the other neurons are kept
unchanged, i.e., s j (t + 1) = s j (t) for j �= i . Then, it holds that H(s(t + 1)) ≤
H(s(t)) because

H(s(t + 1)) − H(s(t)) = − (si (t + 1) − si (t))

⎛
⎝

N∑
j=1

wi j s j (t) + bi

⎞
⎠ ≤ 0 . (3)

Consequently, the network state s(t) evolves until it reaches a local minimum of
the energy function, which has no neighboring states with lower energy. These local
minima are considered attractors of the network because the network state eventually
converges to one of the local minima.

This behavior of Amari–Hopfield network can be interpreted as the process of
recalling memory stored within the network, which is referred to as associative
memory.Memory patterns can be stored as local minima of the network by designing
the weight parameters as follows:

wi j =
K∑

k=1

(2ξ (k)
i − 1)(2ξ (k)

j − 1) , (4)
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where ξ (k) = (ξ
(k)
1 , . . . , ξ

(k)
N )� ∈ {0, 1}N is the kth memory pattern. This learning

rule, known as the Hebbian learning, strengthens the connections between neurons
that are simultaneously activated in the memory patterns.

TheAmari–Hopfield network is a simple but important foundation ofRNNmodels
with energy functions. Furthermore, recent studies have revealed that the general-
ization of the Amari–Hopfield network, such as the modern Hopfield network [5]
and the dense associative memory model [6], share similar attention mechanisms
present in modern neural network models, such as transformers and BERT. These
generalized models employ continuous state variables, as described below.

2.2 Amari–Hopfield Network with Continuous States

The Amari–Hopfield network with continuous variables [7, 8], proposed almost
simultaneously as the binary version, is an RNN model composed of symmetrically
connected leaky integrators. The continuous-timenonlinear dynamics of state xi (t)of
each i th neuron is expressed by the following ordinary differential equation (ODE):

dxi
dt

= − 1

τleak
xi +

N∑
j=1

wi jφ(x j ) + bi , (5)

where τleak > 0 is a time constant and φ(x) is the sigmoid function

φ(x) = 1

1 + exp(−x/ε)
. (6)

The output from the neurons φ(x(t)) evolves in the hypercube [0, 1]N , where φ

operates on each component of vector x(t) = (x1(t), . . . , xN (t))�. In the limit ε →
0, where φ(x) is the Heaviside unit step function, the energy function (2) for the
discrete Amari–Hopfield network also applies to the continuous version with s =
φ(x). That is, H(φ(x(t))) decreases as the system evolves. Therefore, the network
state converges to a local minimum of the energy function, which is analogous to
that of the discrete model. Note that an energy function exists for ε > 0, while it
introduces an extra term to (2).

In the continuous Amari–Hopfield network, state xi (t) of each neuron takes a
continuous value that attenuates over time, according to (5). This model, known as
a leaky integrator, is the simplest neuron model that describes the behavior of the
membrane potentials of real neurons.

The Hopfield–Tank model [9] utilizes the dynamics of the Amari–Hopfield net-
work for finding approximate solutions to combinatorial optimization problems such
as the traveling salesman problem. Specifically, it is applicable to combinatorial opti-
mization problems that are formulated as theminimization of the energy function (2),
which is often referred to as quadratic unconstrained binary optimization (QUBO).
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As the network state evolves, it converges to one of the local minima of the target
energy function. This provides an approximate solution to the optimization problem.
Once the network state is trapped in a local minimum, the search process terminates
as it can no longer escape to explore other solutions. The Hopfield–Tank model can
be considered the origin of recent studies on Ising machines (Sect. 3.3).

2.3 Boltzmann Machine

The Boltzmann machine [10] is an RNN model composed of binary stochastic neu-
rons with symmetrical connections. The construction of the model is essentially the
same as that of the Amari–Hopfield network with binary neurons, except that the
neurons behave stochastically. The update rule is given by the probability that the
i th neuron takes si = 1 in an update as follows:

Prob[si (t + 1) = 1] = 1

1 + exp(−zi (t)/T )
, zi (t) =

N∑
j=1

wi j s j (t) + bi , (7)

where T > 0 denotes the model temperature and zi (t) is the total input to the neuron
at time t . At the limit of T → 0, the update rule is equivalent to the McCulloch–Pitts
model; that is, the network dynamics is equivalent to that of the Amari–Hopfield
network. In the limit T → ∞, each neuron takes the states 0 and 1 with the same
probability 1/2, irrespective of the network configuration.

The state of the network s(t) = (s1(t), s2(t), . . . , sN (t))�, evolves over time in
the state space {0, 1}N . The sequence of states {s(t)}t eventually follows the Gibbs
distribution

P(s) = 1

Z
exp

(
− 1

T
H(s)

)
, Z =

∑
s

exp

(
− 1

T
H(s)

)
(8)

with respect to the energy function H(s) in (2), where Z is the normalizing con-
stant called the partition function. The Boltzmann machine is more likely to adopt
lower-energy states, and this tendency is more intense at lower temperatures. This
probabilistic model is essentially equivalent to the Ising model, which is an abstract
model of ferromagnetism in statistical mechanics.

Conversely, the Boltzmann machine can be considered to perform sampling from
the Gibbs distribution P(s). The Gibbs sampler, one of the Markov chain Monte
Carlo (MCMC) methods, yields a sample sequence by updating each variable si in
each step according to the conditional probability P(si | s\i ) given the values s\i of
all the other variables. If applied to the Gibbs distribution P(s) in (8), the conditional
probability of si = 1 given s\i is as follows:
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P(si = 1 | s\i ) = P(s|si=1)

P(s|si=0) + P(s|si=1)
= 1

1 + exp(−(H(s|si=0) − H(s|si=1))/T )
,

(9)
where s|si={0,1} denotes the vector s whose i th variable is set to si = {0, 1}. This
probability is consistent with the update rule (7). Therefore, the Boltzmann machine
is equivalent to the Gibbs sampler applied to the Gibbs distribution P(s).

The Boltzmannmachine can be utilized to solve combinatorial optimization prob-
lems, following the same approach as the Hopfield–Tank model to minimize the
energy function. The stochasticity can help the network state escape the local min-
ima, which is a remarkable difference from the Hopfield–Tank model. This effect
is stronger at higher temperatures, whereas low-energy states are preferred at lower
temperatures. Therefore, we typically employ simulated annealing to solve combi-
natorial optimization problems [11, 12], which controls the stochasticity by starting
from a high temperature and gradually decreasing it to T = 0.

Another remarkable feature of the Boltzmann machine is its learning ability [10].
The learning is performed by tuning the parameters wi j and bi , such that the model
distribution P(s) ∝ exp(−H(s)) is close to the given data distribution. Here, we omit
temperature T by setting T = 1 without loss of generality.

The distance from the data distribution is quantified using the log-likelihood as
follows:

log L = 〈log P(s)〉data = −〈H(s)〉data − log Z , (10)

where 〈·〉data denotes the average over the data distribution. We can then derive the
learning rule as a gradient ascent on the log-likelihood as follows:

wi j (k + 1) = wi j (k) + α
∂

∂wi j
log L , (11)

bi (k + 1) = bi (k) + α
∂

∂bi
log L , (12)

where α > 0 is the learning rate. The gradients are given by:

∂

∂wi j
log L = 〈si s j 〉data − 〈si s j 〉model , (13)

∂

∂bi
log L = 〈si 〉data − 〈si 〉model , (14)

where 〈·〉model denotes the average over the model distribution P(s).
The expressive power of themodel distribution P(s) can be improved by introduc-

ing hidden units into the state variable s of the Boltzmann machine. Accordingly, the
state s = (v,h) is composed of the visible part v and hidden part h. The learning here
aims to minimize the distance between the data distribution and the marginal distri-
bution P(v) of the visible part of the Gibbs distribution P(v,h) ∝ exp(−H(v,h)).
The hidden units serve as additional latent variables that do not directly correspond
to the data, and describe the indirect interactions among the visible units. The intro-
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duction of hidden units does not alter the learning rule (11)–(14), whereas only the
visible units are clamped to the data distribution in the averaging 〈·〉data.

In practice, learning a large-scale Boltzmann machine is challenging. Rigorous
computation of the average over P(s) is intractable as the size of the state space
{0, 1}N increases exponentially. This expectation can be approximated by averaging
over the sample sequence from the Boltzmann machine. However, obtaining an
accurate approximation requires massive computation to generate a sufficiently long
sample sequence, as the sampling process often gets stuck in local modes of the
Gibbs distribution.

The restricted Boltzmann machine (RBM) [13, 14] is an important model of a
Boltzmann machine with restricted connections. Specifically, an RBM is a two-layer
neural network comprising visible and hidden units, with no connections within
each layer. Because of its restricted structure, the RBM can be efficiently trained
using the contrastive divergence algorithm to obtain the gradient of log-likelihood.
The restricted structure accelerates the Gibbs sampling procedure, because it allows
for alternate block sampling of the visible units, given the hidden units, and vice
versa. The deep Boltzmann machine (DBM) [15, 16] is a Boltzmann machine with a
multilayer structure. It is a type of deep neural network consisting of multiple layers
of RBMs. Thus, RBMs and DBMs are important classes of the Boltzmann machine
that have led to recent developments in deep learning.

3 Nonlinear Dynamics in Symmetrically Connected RNNs

This section presents several RNNmodels with symmetrical connections that exhibit
various types of nonlinear dynamics effective for computing. First, we introduce the
chaotic neural network model and the chaotic Boltzmann machine, which are vari-
ants of the Amari–Hopfield network and Boltzmannmachine, respectively, involving
nonlinear chaotic dynamics. Then, we review several types of Ising machines that
employ more advanced approaches than the Hopfield–Tank model in utilizing their
nonlinear dynamics to solve combinatorial optimization problems. We also explore
the nonlinear dynamics that arises in the learning process of RNNs. As an example,
we introduce the herding system, which is a sampling algorithm with complex non-
linear dynamics that can also be regarded as an extreme case of Boltzmann machine
learning.

3.1 Chaotic Neural Network

The chaotic neural network [17] is a variation of the Amari–Hopfield network, which
incorporates relative refractoriness and a continuous activation function in the con-
stituent neurons. It exhibits spatiotemporal chaotic dynamics with the ability to per-
form parallel-distributed processing.
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First, we introduce the refractoriness, which is a temporary reduction in excitabil-
ity after firing, into the Amari–Hopfield network (1). We update the state of the i th
neuron in the network as follows:

si (t + 1) = θ

⎛
⎝

N∑
j=1

wi j S
fb
j (t) − αSrefi (t) + bi

⎞
⎠ , (15)

where S{fb,ref}
i (t) = ∑t

r=0 k
r
{fb,ref}si (t − r) represents the accumulated past output of

the i th neuron with an exponential decay parameterized by kfb, kref ∈ (0, 1) for the
feedback connections and refractoriness, respectively. This model can be considered
as a restricted form of Caianiello’s neuronic equation [2]. The network dynamics
is described by a hybrid dynamical system [18], involving the continuous variables
S{fb,ref}
i (t) and a discontinuous function θ(·). The constituent neuron model with

refractoriness is called the Nagumo–Sato model. Its single-neuron dynamics has
been investigated by assuming the first term, which represents the input from other
neurons, is constant in time, and has been shown to exhibit a complex response with
a devil’s staircase [18–20].

Next, we introduce a continuous activation function to obtain the chaotic neural
network model as follows:

si (t + 1) = φ

⎛
⎝

N∑
j=1

wi j S
fb
j (t) − αSrefi (t) + bi

⎞
⎠ , (16)

where the Heaviside unit step function θ(·) is replaced by the sigmoid function φ(·)
in (6).

The chaotic neural network exhibits spatiotemporal chaotic dynamics. Although
the energy function in (2) does not necessarily decrease, it helps us to understand
its dynamics. Unlike the Amari–Hopfield network, the state of the chaotic neural
network continues to move around in the phase space without becoming stuck at a
local minimum of the energy function. This is because if the network state remains at
a local minimum for a while, the accumulated effects of refractoriness destabilize the
local minimum, helping the state escape. Thus, the spatiotemporal chaotic dynam-
ics emerge from a combination of the stabilizing effect, resulting from the mutual
interactions in the network, and the destabilizing effect due to the refractoriness.

When applied to associative memory constructed by the Hebbian rule (4), the
chaotic neural network continues to visit stored patterns itinerantly [21]. Such asso-
ciative dynamics, which is characterized by chaotic itinerancy [22], has been demon-
strated for a large-scale network in [23].

The itinerant behavior of the chaotic neural network is useful for solving combina-
torial optimization problems [24], because the destabilizing effect helps the network
state escape from local minima, and the state continues to explore possible solutions.

For hardware implementation of the chaotic neural network, it is crucial to utilize
analog computation to simulate chaotic dynamics described by continuous variables.
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Large-scale analog IC implementations of the chaotic neural network demonstrate
high-dimensional physical chaotic neuro-dynamics and offer efficient applications in
parallel-distributed computing, such as solving combinatorial optimization problems
[25–27].

3.2 Chaotic Boltzmann Machine

The chaotic Boltzmann machine [28, 29] is a continuous-time deterministic system
that utilizes nonlinear chaotic dynamics to function as a Boltzmann machine with-
out requiring randomness for the time evolution. This contrasts with the original
Boltzmann machine, comprising stochastic neurons updated at discrete-time steps.

Each neuron in the chaotic Boltzmannmachine is associated with an internal state
xi (t) ∈ [0, 1] besides the binary state si (t) ∈ {0, 1} of the Boltzmann machine. The
internal state xi evolves according to the differential equation

dxi
dt

= (1 − 2si )

(
1 + exp

(1 − 2si )zi
T

)
, (17)

where zi is the total input as defined in (7). State si of the i th neuron flips when xi
reaches 0 or 1 as follows:

si (t + 0) = 0 when xi (t) = 0 and si (t + 0) = 1 when xi (t) = 1 . (18)

The right-hand side of (17) is positive when si = 0 and negative when si = 1. There-
fore, the internal state xi continues to oscillate between 0 and 1. If the states of the
other neurons are fixed, the total input zi becomes constant, and the oscillation con-
tinues periodically. Specifically, si takes the value 0 for (1 + exp(zi/T ))−1 unit time
as xi increases from 0 to 1, and si takes the value 1 for (1 + exp(−zi/T ))−1 unit
time as xi decreases from 1 to 0. Accordingly, the probability of finding si = 1 at a
random instant is (1 + exp(−zi/T ))−1, which is consistent with the update rule (7)
of the Boltzmann machine. Note that while this explanation provides intuitive valid-
ity to the equation, it does not necessarily imply that the network state s(t) follows
the Gibbs distribution P(s) ∝ exp(−H(s)/T ).

Although the chaotic Boltzmann machine is completely deterministic, it exhibits
apparently stochastic behavior because of the chaotic dynamics that emerges from
equations (17) and (18),which canbe considered a hybrid dynamical system [18]with
continuous variables xi and discrete variables si . The entire system can be regarded
as a coupled oscillator system because each constituent unit oscillates between xi =
0 and 1, interacting with each other through the binary state si . This can also be
viewed as a pseudo-billiard [30] in the hypercube [0, 1]N , because the internal state
x(t) = (x1(t), . . . , xN (t))� moves linearly inside the hypercube, as shown in (17),
and changes its direction only at the boundary, as shown in (18).
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It has been numerically demonstrated that the chaotic Boltzmann machine serves
as a deterministic alternative to the MCMC sampling from the Gibbs distribution,
P(s) ∝ exp(−H(s)/T ). It can be used in simulated annealing to solve combinatorial
optimization problems and exhibits computing abilities comparable to those of the
conventional Boltzmann machine.

The chaotic Boltzmann machine enables an efficient hardware implementation of
the Boltzmannmachine, primarily because it eliminates the need for a pseudorandom
number generator and also because its mutual interactions are achieved digitally
via the binary states. These advantages contribute to large-scale, energy-efficient
hardware implementations of the chaotic Boltzmann machine, as demonstrated in
analog CMOS VLSI and digital FPGA implementations [31, 32].

3.3 Ising Machines

Ising machines [33] are a class of specialized hardware designed to solve combina-
torial optimization problems by finding the (approximate) ground state of the Ising
model, which is an abstract model of ferromagnetism in statistical mechanics. They
have attracted considerable attention in recent years because of their potential to
efficiently solve complex optimization problems.

The energy function of the Ising model is given by:

H(σ ) = −1

2

N∑
i, j=1

Ji jσiσ j , (19)

where σi ∈ {−1,+1} denotes the i th Ising spin. As is evident from the energy func-
tion, the Ising model is almost equivalent to the Boltzmann machine. For simplicity,
we omit the linear bias term, which can be represented by introducing an additional
spin fixed at+1. Coefficient Ji j represents the coupling strength between spins i and
j , which is assumed to be symmetric Ji j = Jji .

Ising machines are designed to find a spin configuration σ = (σ1, . . . , σN )� that
approximately minimizes H(σ ). To solve a combinatorial optimization problem
using an Ising machine, we need to formulate it as an Ising problem, in a way
analogous to the Hopfield–Tank model and the Boltzmann machine.

We provide a brief overview of three types of Ising machines: the coherent Ising
machine (CIM) [34], the simulated bifurcation machine (SBM) [35], and the oscilla-
tor Isingmachine (OIM) [36].We also introduce a continuous-time solver for boolean
satisfiability (SAT) problems [37].
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3.3.1 CIM: Coherent Ising Machine

The coherent Ising machine (CIM) [34] is a network of optical parametric oscillators
(OPOs) designed to solve Ising problems.

The fundamental, noiseless dynamics of CIM can be described by the following
ordinary differential equation:

dxi
dt

= (−1 + p − x2i )xi +
N∑
j=1

Ji j x j , (20)

where xi is the amplitude of the i th OPOmode and p represents the pump rate. Intu-
itively, the dynamics of CIM can be viewed as a variant of the Hopfield–Tank model
with bistability introduced into each neuron. Basic dynamics of each OPO, without
the coupling term, undergoes a pitchfork bifurcation at p = 1. That is, for p < 1,
the equilibrium at xi = 0 is stable; however, for p > 1, xi = 0 becomes unstable and
two symmetric stable equilibria xi = ±√

p − 1 emerge. These two equilibria in each
OPO correspond to the binary state of spin σi ∈ {−1,+1}. Therefore, by gradually
increasing the pump rate p, we expect the state of the OPO network to converge to
a low-energy spin state, as each OPO is forced to choose one of the binary states
by the inherent bistability. Thus, the obtained low-energy state corresponds to an
approximate solution to the Ising problem.

3.3.2 SBM: Simulated Bifurcation Machine

The simulated bifurcation machine (SBM) [35] is an Ising machine described as an
Hamiltonian system, which is given by the following ordinary differential equations:

dxi
dt

= 
yi , (21)

dyi
dt

= −(Kx2i − p + 
)xi + ξ0

N∑
j=1

Ji j x j , (22)

where xi and yi denote the position and momentum of the i th unit, respectively, and

, K , and ξ0 are constants. Parameter p controls the bistability of each unit. This
Hamiltonian system conserves the Hamiltonian

HSB(x, y) = 


2

N∑
i=1

y2i + V (x) , (23)

where the potential function V (x) is given by
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V (x) =
∑
i

(

 − p

2
x2i + K

4
x4i

)
− ξ0

2

N∑
i, j=1

Ji j xi x j . (24)

The SBM employs the symplectic Euler method, a structure-preserving time-
discretization method, to conserve the Hamiltonian in simulating the Hamiltonian
dynamics. Unlike the CIM, the SBM wanders the state space according to the com-
plex Hamiltonian dynamics to explore low-energy states.

The SBM has been implemented on FPGA and GPUs, making it an efficient
hardware solver of the Ising problems.

3.3.3 OIM: Oscillator Ising Machine

The oscillator Ising machine (OIM) [36] is a coupled nonlinear oscillator system that
utilizes subharmonic injection locking (SHIL) to solve Ising problems. The dynamics
of the OIM is given by:

dφi

dt
= −

N∑
j=1

Ji j sin(φi − φ j ) − K sin(2φi ) , (25)

where φi denotes the phase of the i th oscillator. It has a global Lyapunov function,

E(φ) = −
N∑

i, j=1

Ji j cos(φi − φ j ) − K
∑
i

cos(2φi ) , (26)

which is guaranteed to never increase in time. The first term of the Lyapunov func-
tion corresponds to the Ising Hamiltonian, where the phase φi ∈ {0, π} modulo 2π
represents the Ising spin σi ∈ {+1,−1}. The second term enforces the phase φi to be
either 0 or π , where cos(2φi ) = 1. As a result, the oscillator phases evolve to mini-
mize the Ising Hamiltonian, converging toward a low-energy state that represents an
approximate solution to the Ising problem. Further details regarding the OIM can be
found in Chap. 9.

3.3.4 Continuous-time Boolean Satisfiability Solver

A continuous-time dynamical system (CTDS) for solving Boolean satisfiability
(SAT) problems was proposed in [37]. This aims to find an assignment that satisfies
the given Boolean formula. Although the system is not an Ising machine designed
specifically for solving (quadratic) Ising problems, it seeks a set of binary states that
minimizes a given objective function, which can be understood as an Ising Hamilto-
nian with high-order terms.

http://dx.doi.org/10.1007/978-981-99-5072-0_9
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The CTDS solver explores the assignment of Boolean variables X1, . . . , XN sat-
isfying the Boolean formula given in the conjunctive normal form (CNF). CNF is a
conjunction (AND) of clauses, where each clause is a disjunction (OR) of literals,
which can be a Boolean variable Xi or its negation ¬Xi .

Essentially, the CTDS solver is a gradient system of an objective function V (x),
defined on the search space x = (x1, . . . , xN )� ∈ [−1,+1]N , where the i th com-
ponent xi ∈ {−1,+1} corresponds to the Boolean variable Xi ∈ {False,True}. To
define the objective function V (x), the CNF is represented as a matrix [cmi ]; each
component cmi takes +1 or −1 if the mth clause includes Xi or ¬Xi , respectively,
and cmi = 0 if neither is included. The objective function is defined as

V (x) =
M∑

m=1

amKm(x)2 , Km(x) =
N∏
i=1

1 − cmi xi
2

, (27)

where am > 0 is the weight coefficient of the unsatisfiedness Km(x) to the current
assignment x in the mth clause of the CNF. The objective function takes V (x) = 0
if the CNF is satisfied, and takes a positive value otherwise. Therefore, the states
with V (x) = 0 constitute global minima of the objective function, regardless of the
weight values am > 0. The CTDS solver is a gradient system of V (x) with time-
varying coefficients am defined as follows:

dx
dt

= −∇V (x) ,
dam
dt

= amKm(x) . (28)

If the mth clause is not satisfied, the weight am increases because of the positive
unsatisfiedness Km(x) > 0, which modifies the objective function V (x). This effect
helps the dynamics to escape from localminima, which is similar to the refractoriness
of chaotic neural networks. The CTDS solver exhibits a transient chaotic behavior
until it converges to a global minimum. The interaction dynamics of x and am was
investigated in [38].

Although the original CTDS solver is described as a gradient system of a time-
varying objective function, its variant is represented by a recurrent neural network
[39]. For efficient numerical simulation of the CTDS solver, structure-preserving
time discretization using the discrete gradient is effective in the gradient part of the
solver [40].

3.4 Herding System

The RNNs discussed in this section thus far have fixed connection weights and
exhibit nonlinear dynamics in their network states. In contrast, the learning process of
neural networks, whichmodifies the connectionweights through a learning rule, as in
(11) and (12), introduces nonlinear dynamics into the parameter space.
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Herding is a deterministic sampling algorithm that can be viewed as an extreme
case of parameter learning in statistical models [41, 42]. It exhibits complex dynam-
ics, yielding sample sequences guaranteed to satisfy the predefined statistics asymp-
totically, which are useful for estimating other statistics of interest. Thus, statistical
learning and inference are combined in the single algorithm of herding.

In this section, we introduce the herding algorithm as the zero-temperature limit
of the Boltzmann machine learning. A more general and detailed description of
the herding algorithm is provided in Chap. 10. The learning rule of the Boltzmann
machine P(s) ∝ exp(−H(s)/T ) including the temperature parameter T is given as
follows:

wi j (t + 1) = wi j (t) + α

T

(〈si s j 〉data − 〈si s j 〉model
)

, (29)

bi (t + 1) = bi (t) + α

T
(〈si 〉data − 〈si 〉model) . (30)

Let us consider the low-temperature limit, T → 0, which corresponds to the Amari–
Hopfield network. That is, the model distribution P(s) reduces to a point distribution
on the minimizer of the Hamiltonian argmins H(s). Because the minimizer is invari-
ant under the positive scalar multiplication of parameters, we can omit the scaling
factor α/T , without loss of generality, to obtain the following update rule:

wi j (t + 1) = wi j (t) + 〈si s j 〉data − si (t)s j (t) , (31)

bi (t + 1) = bi (t) + 〈si 〉data − si (t) , (32)

where s(t) = (s1(t), . . . , sN (t))� is theminimizer of the energy functionwith param-
eters at the t th iteration, that is,

s(t) = argmin
s

⎛
⎝−1

2

N∑
i, j=1

wi j (t)si s j −
N∑
i=1

bi (t)si

⎞
⎠ . (33)

Equations (31)–(33) describe the herding system applied to the Boltzmann machine,
which is a nonlinear dynamical system on the parameter space of wi j ’s and bi ’s.
In each update of the parameter values, we obtain a sample s(t). The sequence of
network states, {s(t)}t , can be considered as a sample sequence from the neural
network.

Interestingly, the idea of updating the parameters of the Amari–Hopfield network
away from the equilibrium state s(t) was proposed as “unlearning” by Hopfield et
al. [43]. Weakly updating the parameters suppresses spurious memories, which are
undesirable local minima that do not correspond to any of thememory patterns stored
through the Hebbian rule. Thus, the herding algorithm can be viewed as performing
strong unlearning within the Amari–Hopfield network.

The herding algorithm is described as a discrete-time nonlinear dynamical system
that belongs to the class of piecewise isometries. As with many piecewise isometries

http://dx.doi.org/10.1007/978-981-99-5072-0_10
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[18, 44–46], the herding system typically exhibits complex dynamics with a fractal
attracting set [41, 42]. As the Lyapunov exponents of the dynamics are strictly zero,
the complexity originates only from the discontinuities of the piecewise isometry.
This non-chaotic dynamics of the herding system is closely related to chaotic billiard
dynamics [47].

As a sampling method, the herding algorithm exhibits a prominent convergence
rate O(1/τ), which is significantly faster than O(1/

√
τ) of random sampling algo-

rithms, such asMCMC. Specifically, for a sample sequence of length τ , the deviation
of the sample average of si (t)s j (t) from the target 〈si s j 〉data is given by:

1

τ

τ∑
t=1

si (t)s j (t) − 〈si s j 〉data = −1

τ
(wi j (τ ) − wi j (0)) , (34)

which converges to zero as τ goes to infinity, at rate O(1/τ), becausewi j (t) is assured
to be bounded if the minimizer is obtained in each step (33).

The herded Gibbs sampling [48] is a deterministic sampling algorithm that incor-
porates the herding algorithm into theGibbs sampling. It can be used as an alternative
to the Gibbs sampling to promote efficient sampling from probabilistic models in
general situations. The convergence behavior of the herded Gibbs sampling has been
analyzed in detail [49].

4 Reservoir Computing

In the previous sections,we focusedon the role of the energy function,which is crucial
for understanding the dynamics of symmetrically connected RNNs. However, this
approach is not applicable to RNNs with asymmetrical connections, which are more
likely to exhibit complex nonlinear dynamics, making training more challenging.
Reservoir computing is a lightweight approach that leverages the rich dynamics of
an RNN for information processingwithout training the RNN itself, which is referred
to as a reservoir. In this section, we present an overview of the fundamental models
and concepts of reservoir computing, illustrating how the nonlinear dynamics of
RNNs can be utilized in various computing applications.

4.1 Training Input–Output Relation of RNNs

In the RNNs presented in the previous sections, neurons do not receive explicit input
from outside the networks, whereas in some cases, inputs are implicitly provided as
the initial state for the autonomous dynamics of neural networks.

In this section, time-varying inputs are explicitly incorporated into neurons of an
RNN, and we consider the input–output relation of the network. While feedforward
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neural networks, such asmultilayer perceptrons (MLPs), learn input–output relations
for static information, RNNs can handle sequential information because the effects
of past inputs remain within the network and subsequently influence its current state
and output.

Let us consider an RNN model with time-varying inputs. The state xi (t + 1) of
the i th neuron at time t + 1 is given by

xi (t + 1) = f

⎛
⎝

N∑
j=1

wi j x j (t) +
K∑

k=1

win
ikuk(t + 1)

⎞
⎠ , (35)

where uk(t + 1) denotes the kth input at time t + 1, and wi j and win
ik are the synaptic

weights of recurrent and input connections, respectively. The activation function f
is assumed to be tanh throughout this section. For the sake of simplicity, the bias
term is omitted. The output from the lth output neuron is determined by

yl(t + 1) = f

(
N∑
i=1

wout
li xi (t + 1)

)
, (36)

where wout
li is the weight of the output (readout) connection from the i th neuron.

Next, we consider the training of the neural network using input–output relation
data. Specifically, given a pair of an input sequence

u(t) = (u1(t), . . . , uK (t))� , t = 1, . . . , τ, (37)

and the corresponding output sequence

d(t) = (d1(t), . . . , dL(t))
� , t = 1, . . . , τ, (38)

we adjust the connection weights in the network to minimize or decrease the output
error

E =
τ∑

t=1

‖d(t) − y(t)‖2 , (39)

where {y(t)}t is the output sequence from the RNN given the input sequence {u(t)}t .
The backpropagation through time (BPTT) [50] and real-time recurrent learn-

ing (RTRL) [51] are well-known gradient-based algorithms for training RNNs. In
computing the gradients of the output error E in (39), the gradients are recursively
multiplied at each time step due to the influence of past inputs on the outputs. This
often leads to the gradients either vanishing or exploding, which makes the gradient-
based learning of connection weights in RNNs challenging. Various techniques have
been proposed to address this problem. Consequently, recent RNN models, such as
long short-term memory (LSTM) [52], effectively handle sequential data, whereas
the computation of the gradients for training remains computationally expensive.
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4.2 Echo State Network

The echo state network (ESN) [53, 54] is a type of reservoir computing that employs
a different approach to training the input–output relations of RNNs. In ESNs, input
weights and recurrent weights are typically generated randomly and remain fixed,
while only the output connections are trained using a simple linear regression algo-
rithm. This makes ESNs computationally efficient and easy to train. Instead of the
nonlinear activation function in (36), the lth output from the ESN is obtained linearly
as

yl(t + 1) =
N∑
i=1

wout
li xi (t + 1) . (40)

The underlying principle is that the state of a random RNN, or a reservoir, reflects
the input sequence through nonlinear transformations. If the nonlinear dynamics of
the reservoir is sufficiently rich, inferences can be performed effectively using only
linear regression methods, such as ridge regression and FORCE (first-order reduced
and controlled error) learning.

Ridge regression is a batch algorithm that can be used to train the readout connec-
tion weights, which introduces an L2 regularization term, parameterized by α > 0,
into the error function as follows:

Eridge =
τ∑

t=1

‖d(t) − W outx(t)‖2 + α

2

L∑
l=1

N∑
i=1

|wout
li |2 . (41)

The readout connection weight W out = [wout
li ] that minimizes the error function is

given by:
W out = DX�(XX� + α I )−1 , (42)

where I is the identity matrix, and D = [d(1), . . . ,d(τ )] and X = [x(1), . . . , x(τ )].
The FORCE learning [55] is an online regression algorithm that updates W out

iteratively as follows:

P(t + 1) = P(t) − P(t)x(t)x(t)�P(t)

1 + x(t)�P(t)x(t)
, (43)

W out(t + 1) = W out(t) − e(t)x(t)�P(t)

1 + x(t)�P(t)x(t)
, (44)

e(t) = W out(t)x(t) − d(t) , (45)

where P(0) = I/α.
These linear regression algorithms require significantly less computation time

compared to conventional gradient-based learning methods for RNNs. However, as
these algorithms still involve the manipulation of large matrices, more lightweight



42 H. Suzuki

and biologically plausible learning algorithms [56, 57] can be employed for efficient
reservoir computing.

4.3 Echo State Property and Reservoir Design

The primary principle of reservoir computing is that only the readout weights are
trained.This implies that the performanceof reservoir computing is largely dependent
on the design of the reservoir.

The echo state property (ESP) is a concept that ensures a reservoir adequately
reflects the input sequence, which is crucial for further information processing.When
the inputs are transformed into reservoir states nonlinearly, it is important that the
reservoir state becomes independent of its initial state after a sufficient amount of
time has passed. This is critical because, without this property, the same input could
yield different outputs, which is undesirable for the reproducibility of information
processing. To prevent such inconsistencies, reservoirs are typically designed to
satisfy the ESP.

Let x(t) and x′(t) represent the reservoir states with different initial states x(0)
and x′(0), after receiving the same input sequence {u(t)}t . The ESP of a reservoir
is defined as satisfying limt→∞ ‖x(t) − x′(t)‖ = 0 for any pair of different initial
states x(0) and x′(0), and any input {u(t)}t .

Assuming tanh as the activation function, a sufficient condition for the ESP is
that the largest singular value of W = [wi j ] is less than 1. However, this condition
is known to be empirically overly restrictive. Instead, we often require that W has
the spectral radius of less than 1, which is expected to satisfy the ESP, though not
necessarily in all cases [53].

However, using connection weights W with an excessively small spectral radius
is undesirable, even though it indeed satisfies the ESP. If the spectral radius is small,
the past input information is rapidly lost from the reservoir, making it difficult to
effectively utilize a long input sequence for information processing. The memory
to retain past input information can be measured using the memory capacity [58].
Empirically, the spectral radius is set slightly below 1 to promote both richer memory
capacity and reservoir dynamics, expectedly without violating the ESP. Memory
effects can also be enhanced by introducing leaky integrators as the constituent
neurons.

The diversity of neuronal behavior is essential for the performance of reservoir
computing, as the output is generated through a linear combination of neuronal
activities in the reservoir. The diversity can be enhanced by introducing sparsity into
the connection weight matrixW , because a denseW makes the inputs to the neurons
become more similar. Increasing the number of neurons is also effective; however,
this in turn can lead to an increased computation time and a higher risk of overfitting.
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4.4 Neural Network Reservoirs

We have described basic concepts of reservoir computing using ESNs as a repre-
sentative model for implementing a reservoir. However, it is important to note that
reservoirs are not limited to this specific model.

Liquid state machines (LSMs) [59] are another important model of reservoir
computing, proposed almost simultaneously and independently of ESNs. In contrast
to ESNs, LSMs employ spiking neural network models, which are more biologically
plausible and adequate for themodeling of information processing in the brain. LSMs
also facilitate energy-efficient hardware implementations, such as FPGAs [60].

More generally, various RNNmodels, ranging from artificial neural networkmod-
els to biologically plausible models, can serve as reservoirs. As described in Sect. 3,
RNNs often exhibit chaotic dynamics.However, chaotic behavior is considered unde-
sirable in reservoir computing, as its sensitive dependence on initial conditions con-
tradicts the ESP. Therefore, attenuation mechanisms need to be introduced to ensure
consistency. For instance, in a study on reservoir computing based on the chaotic
neural networks [61], attenuation is achieved through connection weights W with a
small spectral radius. Similarly, the chaotic Boltzmann machine serves as a reservoir
by incorporating a reference clock towhich each component is attenuated [62].More-
over, an analog CMOS VLSI implementation of the chaotic Boltzmann machine has
been utilized for energy-efficient reservoir computing [31].

As demonstrated in these examples, the fundamental concept of reservoir comput-
ing, which does not require manipulation of the reservoir itself, increases flexibility
and enables efficient hardware implementations.

4.5 Physical Reservoir Computing

Furthermore, the concept of reservoir computing is not limited to utilizing RNNs
as reservoirs. As there is no need to train the reservoir itself, any physical system
exhibiting rich nonlinear dynamics can potentially be utilized as reservoirs.

The approach that leverages physical devices andphenomena as reservoirs, instead
of using simulated models, is referred to as physical reservoir computing [63]. The
nonlinear dynamics of the reservoir implemented physically is expected to be used
for high-speed and energy-efficient computation.

A physical reservoir transforms the input to the reservoir state using its nonlinear
dynamics. The output is obtained through a readout linear transformation of the
measurements from the reservoir. As only the readout weights are trained, we do not
have to manipulate the reservoir itself, which enables us to utilize various physical
devices for computing. However, as in the case of ESNs, the performance of physical
reservoir computing largely depends on the characteristics of the reservoir such as
nonlinearity and memory effects. Building and tuning the physical reservoir, which
may be sensitive to various environmental factors such as noise, can be challenging.
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Therefore, it is crucial to select appropriate physical phenomena depending on the
tasks performed by the reservoir.

Various types of physical devices and phenomena have been applied to reser-
voir computing [63]. Even if limited to photonic devices [64], there have been
various studies utilizing optical node arrays [65, 66], optoelectric oscillators with
delayed feedback [67–69], etc., aswell as quantumdot networks [70] and optoelectric
iterative-function systems [71] as presented in Chaps. 4 and 11 of this book.

5 Towards Photonic Neural Network Computing

We have seen how the nonlinear dynamics of RNNs can be utilized for computing.
These basic models and concepts should serve as an important foundation for the
implementation of neural networks using optical computing technologies.

Chapters in Part II of this book discuss fluorescence energy transfer (FRET)
computing based on nanoscale networks of fluorescent particles, referred to as FRET
networks. This can be considered as a type of physical reservoir computing in which
FRET networks are employed as reservoirs.

Part III is devoted to spatial-photonic spin systems and is primarily related to
Sect. 3 of this chapter. The spatial-photonic Ising machine (SPIM) introduced in
Chap. 8 is an optical system capable of efficiently computing the energy function of
the Isingmodel (19) using spatial lightmodulation. Recently, a new computingmodel
for the SPIM has been proposed that improves its applicability to a variety of Ising
problems and enables statistical learning as a Boltzmann machine [72]. Chapters 9
and 10 discuss the details of the herding system and OIM, which have been briefly
introduced in this chapter.

Part IV consists of chapters discussing recent topics related to reservoir com-
puting and its photonic implementation. In Chap. 11, a reservoir-computing system
utilizing an electronic-optical implementation of iterated function systems (IFSs)
as a reservoir is introduced. Chapter 12 introduces the hidden-fold network, which
achieves high parameter efficiency by, in a sense, introducing the idea of reservoir
computing into deep MLPs. Chapter 13 discusses brain-inspired reservoir comput-
ing, in which multiple reservoirs are hierarchically structured to model predictive
coding for multimodal information processing.
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Fluorescence Energy Transfer
Computing

Takahiro Nishimura

Abstract This chapter presents the concept and implementation of fluorescence
energy transfer computing, specifically utilizing Förster resonance energy transfer
(FRET) between molecular fluorophores and quantum dots. FRET is a non-radiative
form of excitation energy transfer that depends on the configuration and optical
properties of molecular fluorophores and quantum dots. By designing energy flows
through FRET, signal processing can be implemented to perform desired opera-
tions. Because the phenomenon occurs at the nanometer scale, miniaturization of
information devices can be expected. This chapter reviews the concepts of FRET
computing and the implementation of FRET computing devices. Then, a framework
ofDNAscaffold logic, which systematically handles FRET-based logic operations, is
described. Finally, the idea of a FRETnetwork is discussed as amethod for enhancing
FRET computing performance.

1 Fluorescence Energy Transfer

Nanoscale fluorophores such as molecular fluorophores and quantum dots serve as
interfaces between the nano- andmacro-worlds using optical excitation and emission
[1]. Fluorescence imaging provides informationwith nanoscale spatial resolution [2].
Molecular beacons, which modulate the fluorescence properties in response to input
stimuli in a molecular environment, have been widely used in biomedical measure-
ments [3]. Designing combinations of input stimuli and fluorescencemodulation also
enables the fabrication of nanoscale devices including photonic wires [4] logic gates
[5], and memory [6]. The integration of these diverse nanoscale devices is expected
to enable sophisticated information exchange between the nanoscale and macroscale
[7]. In systems that use the propagation of light, the spatial resolution and processing
density are often limited by the diffraction of light [8]. Nanoscale fluorophores are
advantageous for optical systems with resolutions beyond the diffraction limit [9].
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Fig. 1 Schematic illustration of energy diagram of a excitation of single fluorescent molecule and
b FRET

The excited state energy of nanoscale fluorophores can be relaxed through vari-
ous processes (Fig. 1a) [1]. In addition to radiative processes such as fluorescence,
non-radiative processes such as thermal dissipation can also be involved in relax-
ation. Another feature of the relaxation process is fluorescence energy transfer, which
allows the excitation energy to move non-radiatively between nearby fluorophores
(Fig. 1b). Förster resonance energy transfer (FRET) is a dipole-dipole interaction-
based fluorescence energy transfer technique that has been widely applied in various
bio-applications [10, 11].

FRET is a phenomenon inwhich excitation energy is transferred fromonemolecu-
lar fluorophore or quantumdot to a nearbymolecular fluorophore [12, 13] or quantum
dot [14]. The energy transfer rate constant k is expressed as follows [1]:

k = 9000(ln10)

128π5η4NAτa
· φaκ

2

R6

∫
fa(λ)εb(λ)λ4dλ, (1)

where η is the refractive index of the medium, NA is Avogadro’s number, τa is the
donor fluorescence lifetime, φa is the donor fluorescence quantum yield, κ is the
orientation factor, fa(λ) is the normarized fluorescence spectrum of the donor, εb(λ)

is the absorption spectrum of the acceptor, R is the distance between the donor and
acceptor, and ν is the frequency. The distance R at which k becomes 0.5 is known
as the Förster radius and can be expressed as [1]

R0 = 0.211[κ2φaη
−4

∫
fa(λ)εb(λ)λ4dλ]1/6. (2)

R0 is typically between 5 and 10 nm [12, 15].
From Eq. (1), FRET occurs when the donor is in close proximity to the ground-

state acceptor and the acceptor’s absorption spectrum significantly overlaps with the
donor’s emission spectrum. Figure 2 shows an example of FRET. FRET serves as one
of the relaxation pathways for the excited donor. The excitation energy transferred to
the acceptor undergoes a relaxation process, including acceptor fluorescence, result-
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Fig. 2 FRET between Alexa 488 and Alexa 568. a Molecular fluorophores. b Absorption and
fluorescence spectra of Alexa 488 and Alexa 568. c Fluorescence with and without FRET

ing in a signal with a wavelength different from that of the donor fluorescence. The
FRET pathway competes with the natural fluorescence process, reducing the flu-
orophore’s excitation state lifetime and fluorescence probability. FRET modulates
the fluorescence intensity and lifetime signals. The probability of FRET depends on
the absorption and emission properties and the relative positions of the fluorescent
molecules, indicating that fluorescence signals can be modulated by FRET.

Fluorescence signal modulation through FRET using the relative positions of
fluorescent molecules is widely used in biomolecular sensing and measurement [16,
17] (Fig. 3a). The FRET technique has been applied to molecular beacons by linking
binding reactions in molecular sensing to changes in the positions of donor acceptors
[18]. Molecular rulers have been proposed based on the fact that the donor–acceptor
distance affects the FRET efficiency [19]. This allows nanometer-scale information
to be read as a fluorescence signal. In addition, by using fast FRET measurements,
molecular conformational changes can be monitored [20].

Another technique, fluorescence modulation based on FRET, can be achieved
by changing the absorption of an acceptor molecule through light irradiation [21,
22] (Fig. 3b). According to Eq. (1), the efficiency of energy transfer in FRET is
also determined by the degree of overlap between the fluorescence spectrum of the
donor molecule and the absorption spectrum of the acceptor molecule. Photorespon-
sive proteins and photoswitchable fluorescent molecules can change their absorption
spectra upon light irradiation through induced changes in their molecular structures
or binding to functional groups. These molecules allow on/off switching of signal
transmission through FRET in response to optical signals. Another method involves
inhibiting the excitation transition from the donor by optically exciting the acceptor
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Fig. 3 Fluorescence signal modulation. FRET control using a relative positions of fluorescence
molecules, b photoswitchable fluorescent molecules, and c multi-step transfers

to an excited state [23]. This technique usually requires high-power irradiation to
saturate the acceptor.

FREToccurs inmultiple steps betweenmultiple phosphors [1, 24] (Fig.3c).Multi-
step FRET (cascade of FRET) can also be understood in principle using Förster
theory. Multi-step FRET has been experimentally demonstrated between fluorescent
molecules [4] arranged in one dimension and between quantum dots [25]. Compared
to simple single-step FRET, energy can be transferred across longer ranges and
more diverse fluorescence signal generation is possible [26]. Furthermore, FRET
can also occur when quantum dots of the same or multiple species are arranged in
two dimensions [27]. Theoretical analyses are underway, and diverse fluorescence
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signal modulations have been experimentally verified [28, 29] and theoretically [30].
Applications of computing utilizing this fluorescence signal modulation are also
being studied [31].

2 FRET-Based Device

Controlling energy flow through FRET enables the implementation of nanoscale
signal processing devices. In FRET control, the distance between the fluorescent
molecules is a key parameter. DNA self-assembly is a useful method for position-
ing fluorescent molecules to achieve FRET control. This method has been used to
align multiple fluorescent molecules and quantum dots and to design FRET path-
ways between them. Dynamic FRET pathways can be established based on the
binding/dissociation switches of fluorescent molecules using DNA reactions. Other
important factors that may influence FRET-based devices include overlap and exci-
tation states. This section reviews FRET-based devices that use DNA self-assembly.

2.1 DNA for FRET Devices

DNA is a polymer molecule composed of four types of nucleotides: adenine (A),
guanine (G), cytosine (C), and thymine (T),which are linked together (Fig. 4a). Based
on theWatson–Crick complementarity, as shown in Fig. 4b, A pairs specifically with
T and G pairs specifically with C through hydrogen bonding. Single-stranded DNA
with complementary sequences can selectively bind together to form a double-helix
structure, as shown in Fig. 4c. Typically, double-strandedDNAhas a diameter of 2 nm
and contains 10.5 base pairs (bp) per helical turn, corresponding to a length of 3.4 nm
[32]. By using appropriate sequence design, double-stranded DNA structures can be
programmed. Various two- and three-dimensional nanostructures have been created
using this approach [33]. Additionally, other functional molecules can be conjugated

Fig. 4 a Adenine (A),
Thymine (T), Guanine (G),
Cytosine (C). b
Complementary binding.
c Structure and size. d DNA
hybridization reaction
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to DNA to introduce new functions. Fluorescent molecules and quantum dots can
be attached to the ends of DNA to control the nanoscale arrangement, enabling the
implementation of fluorescent configurations to control FRET efficiency [20].

2.2 FRET-Based Photonic Wire

Nanoscale photonic wires are of particular interest for nanoscale information devices
because of their ability to control energy transfer via FRET and deliver light energy.
The simplest andmost commonphotonicwire design ismulti-step FRETwith a linear
array of phosphors [26]. Such wires exhibit a linear array of dye absorption and emis-
sion that changes from blue to red, creating an energy landscape of downward energy
transfer within the structure [34]. Photonic wires have been constructed using up to
seven dye molecules sequentially arranged on DNA scaffolds [34]. Nanoscale pho-
tonic wires have also been realized using FRET between quantum dots and between
QD-dye [35].

2.3 FRET-Based Photonic Switch

TheFREToptical switch enables on/off control of the energy transfer along the FRET
pathway and selection of the pathway. Control of the FRET pathway via light irradi-
ation can be utilized for light access from macro- to nanoscale information devices.
An optical switching technique using energy transfer between quantum dots and the
saturation of the excitation level has been proposed [36]. Similar approaches have
been employed for FRET pathway manipulation using fluorescent molecules [23].
In these techniques, the excitation levels of the acceptors are exclusively occupied
to inhibit FRET and adopt a different FRET pathway from that in the non-excited
state. Other techniques use the optical control of molecular separation or cleavage
to regulate the distance between fluorescent molecules [37]. Although most of these
methods are based on permanent changes, their application to high-density optical
storage has been proposed [38].

2.4 FRET-Based Logic Gate

Logic gates based on FRET are interesting not only in terms of expanding the appli-
cations of information processing technology, but also for achieving on-site informa-
tion processing in the nano-world. Several approaches have been proposed for logic
gates based on FRET [39–41]. The inputs are represented by pH, molecules, and
light stimulation, whereas the outputs are represented by the responsible fluorescent
signals [42].
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3 Scaffold DNA Logic

Scaffold DNA logic has been proposed as a method for systematically constructing
information systems using FRET [43]. This is a molecular computing system that
accepts molecules, such as nucleic acids, as inputs and processes them using signal
processing based on FRET in an intra-single DNA structure. Molecular circuits
design and implement complex molecular reaction systems to construct molecular
signal systems, so that the desired processing is executed against the inputs. This
section presents the scaffold DNA logic.

3.1 Basic Concept

The energy transfer efficiency of FRET depends on the type and spatial arrange-
ment of the fluorescent molecules, and FRET transfer can be controlled by selecting
and manipulating them. As shown in Fig. 5, by arranging or removing fluorescent
molecules on scaffold DNA in response to the input, on/off switching of signal trans-
mission via FRET can be achieved. When fluorescent molecules of FRET pairs are
arranged on the scaffold DNA within the FRET-allowable distance, FRET occurs,
and the signal transmission is turned on. On the other hand, when they are removed
from the scaffold DNA, FRET does not occur, and the signal is not transmitted.

Because input signals are assumed to bemolecular inputs, it is necessary to control
the arrangement of fluorescentmolecules on the scaffoldDNA in response to the input
molecule and to obtain the calculation results through signal processing based on
FRET-based signal processing constructed on the scaffold DNA. An overview of
this process is shown in Fig. 6. When the fluorescent molecule is excited, the output
is represented by 1 or 0, depending on whether the output fluorescent molecule is
excited via FRET. If the input signal meets these conditions, the FRET circuit is

Fig. 5 FRET signal control through positional control of fluorophores



58 T. Nishimura

Fig. 6 FRET cascade control through positional control of fluorescent molecules

complete, the output fluorescent molecule is excited, and the fluorescent signal is
the output. This state is defined as an output of 1. If the given logical conditions
are not satisfied, the FRET pathway is not completely constructed, and the output
fluorescent molecule is not excited. This state is defined as an output of 0. Local
FRET phenomena on the scaffold DNA allow the necessary signal processing for
the execution of logical operations.

3.2 Arrangement Control of Fluorescent Molecules

The positioning of the fluorescent molecules on the scaffold DNA is controlled
using connecting DNA (Fig. 7a) and disconnecting DNA (Fig. 7b). The connecting
and disconnecting DNA are modified with fluorescent molecules and are composed
of recognition and address regions. The recognition region recognizes the input
molecule, and the address region specifies binding to the prepared sites on the scaffold
DNA. In the absence of an input molecule, the connecting DNA forms a closed
hairpin structure. In this state, the address region is covered and the connecting
DNA maintains a dissociated state from the scaffold DNA. Therefore, fluorescent
molecules were not positioned on the scaffold DNA. In the presence of an input
molecule, the connecting DNA (Fig. 7a) binds to the input molecule, and the hairpin
structure opens. In this state, the address region is in a single-stranded state and
binds to the scaffold DNA. As a result, the fluorescent molecules are positioned
at the site specified on the scaffold DNA. The disconnecting DNA (Fig. 7b) binds
to the specified site within the scaffold DNA when the input molecule is absent.
In the presence of the input molecule, it forms a linear structure by binding to the
recognition region, resulting in its dissociation from the scaffold DNA. Using these
configurations, the positioning/removal of fluorescent molecules can be controlled
depending on the presence or absence of the input molecule.



Fluorescence Energy Transfer Computing 59

Fig. 7 Fluorescentmolecule control onDNAscaffold using a connectingDNAand b disconnecting
DNA. Reproduced with permission from Appl. Phys. Lett. 101, 233703 (2012). Copyright 2012,
AIP Publishing LLC

3.3 Design of Logic Operations

By constructing connecting or disconnecting DNA, it is possible to pre-specify the
input molecule species, placement of fluorescent molecules, and placement sites
on the scaffold DNA. Through these combinations, it is possible to establish FRET
pathways on the scaffold DNA for the input molecules. Placing FRET pair molecules
on adjacent sites corresponds to connecting the FRET pathways in series, enabling
the implementation of theANDoperation (Fig. 8a). In contrast, placing the same type
of fluorescent molecule at the same site for multiple inputs represented by different
molecular species corresponds to connecting the FRET transmission pathways in
parallel. This enables the implementation of the OR operation (Fig. 8b). In addition,
the NOT operation can be implemented by utilizing the relationship between the
input and signal transmission through the disconnecting DNA (Fig. 7b). Because any
logical expression represented in a conjunctive normal form can be implemented, any
logical operation can theoretically be performed. The following sections provide an
overview of each operational experiment. For details on the experiments, including
the DNA sequences, please refer to [43].

3.4 AND Operation

To confirm the AND operation, I1 ∧ I2 operation was performed using two types
of single-stranded DNA, strands I1 and I2, as input molecules. Figure 9 shows the
reaction scheme. FAM and Alexa 546 were used as FRET pairs. Strand C1 detects
strand I1 and positions FAM at site 1. Strand C2 recognizes strand I2 and positions
Alexa 546 at site 2. When the input (1, 1) is present, FAM and Alexa 546 bind to the
DNA scaffold. The distance between the modification positions of FAM and Alexa
546 is 13 bp, which is calculated to be 4.6 nm. Because the Förster radius of FAM
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Fig. 8 Implementation of a AND and b OR operations. Reproduced with permission from Appl.
Phys. Lett. 101, 233703 (2012). Copyright 2012, AIP Publishing LLC

Fig. 9 aDesign and b results for I1 ∧ I2 operation. Reproduced with permission fromAppl. Phys.
Lett. 101, 233703 (2012). Copyright 2012, AIP Publishing LLC

and Alexa 546 is 6.4 nm, they are sufficiently close for FRET to occur. At this point,
the excitation energy is transferred from FAM to Alexa 546 via FRET, resulting in
an output of 1. In other cases, at least one of FAM and Alexa 546 is not bound to the
scaffold DNA, and FRET does not occur, resulting in Alexa 546 not being excited.
This state results in an output of 0.

Figure 9a shows the reaction scheme for I1 ∧ I2 operation. The fluorescence
intensity of FAMdecreased only in the case of (1, 1), and that of Alexa 546 increased.
The decrease in FAM fluorescence intensity in the case of (1, 0) may be attributed
to the quenching effect of the DNA bases. The fluorescence output was evaluated as
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Fig. 10 a Design and b results for I1 ∧ (I2 ∨ I3) operation. Reproduced with permission from
Appl. Phys. Lett. 101, 233703 (2012). Copyright 2012, AIP Publishing LLC

the change in intensity before and after the input at the fluorescence peak wavelength
of the output molecule. The results are shown in Fig. 9b. The fluorescence output
significantly increased in the case of (1, 1). The reason for the negative values could
be the decrease in concentration due to the sample volume increase caused by the
input. These results demonstrate that an appropriate AND operation can be achieved
by positioning the FRETpair of fluorescentmolecules at adjacent sites using different
input molecules.

3.5 OR Operation

To confirm theOR operation, three types of strands, I1, I2, and I3, were used as inputs
to perform I1 ∧ (I2 ∨ I3). The reaction scheme is shown in Fig. 10a. Strand C3,
which recognizes strand I3 and places Alexa 546 at site 2, was added to the reaction
system used for I1 ∧ I2. When strands I2 or I3 are present, Alexa 546 is placed at
site 2. This allows OR operations on I2 and I3. When (1, 1, 0), (1, 0, 1), or (1, 1,
1) are input, FAM and Alexa 546 bind to the scaffold DNA. Only in this case does
the excited energy transfer from FAM to Alexa 546 through FRET, resulting in the
excitation of Alexa 546, which is defined as an output of 1. In other cases, because
neither FAM nor Alexa 546 binds to the scaffold DNA, FRET does not occur, and
Alexa 546 is not excited, which is defined as an output of 0.

The fluorescence outputs of each input are shown in Fig. 10b. The fluorescence
output increases significantly for the (1, 1, 0), (1, 0, 1), and (1, 1, 1) cases. However, in
the other cases, the fluorescence output is almost zero, indicating that I1 ∧ (I2 ∨ I3)
is accurately performed.
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Fig. 11 a Design and b results for ¬I1 ∧ I2. Reproduced with permission from Appl. Phys. Lett.
101, 233703 (2012). Copyright 2012, AIP Publishing LLC

3.6 NOT Operation

The NOT operation was implemented using disconnecting DNA. The system for
¬I1 ∧ I2 is illustrated in Fig. 11a. Strand C1 used in the reaction system for I1 ∧ I2
is replaced with strand D1. Strand D1 releases FAM from site 1 when it recognizes
strand I1, enabling the execution of the NOT operation. In this case, the fluorescence
output increases significantly via FRET for the (0, 1) case. The fluorescence outputs
for each input are shown in Fig. 11b. The fluorescence output increases significantly
in the (0, 1) case, whereas it is almost zero in the other cases. Thus, logic operations,
including NOT operations, can be performed accurately using disconnecting DNA.

3.7 Extended FRET Connection

To confirm that the FRET connections could be extended, I1 ∧ I2 ∧ I3 was imple-
mented usingmulti-stage FRET. The reaction system used for this operation is shown
in Fig. 12a. The fluorescent molecules used were FAM, Alexa 546, and Alexa 594.
For the reaction system used in I1 ∧ I2, we changed strand S1 to strand S2, which
has three sites. We also introduced strand C4, which places Alexa 594 at site 3 when
recognizing strand I1. As shown in Fig. 12b, the output intensity increases for the
input (1, 1, 1). It was demonstrated that circuit expansion is possible by utilizing
multi-stage FRET. The slight increase in the output intensity in the cases of (0, 1,
1) and (1, 0, 1) may be due to the excitation of Alexa 546 and the FRET between
FAM and Alexa 594, which can be improved by adjusting the fluorescent molecule
composition and excitation wavelength.
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Fig. 12 a Design and b results for I1 ∧ I2 ∧ I3. Reproduced with permission from Appl. Phys.
Lett. 101, 233703 (2012). Copyright 2012, AIP Publishing LLC

4 Optical Program of DNA Scaffold Logic

Optical input can be incorporated into the framework of the DNA scaffold logic. The
use of fluorescent molecules that can reversibly change their fluorescence proper-
ties upon light irradiation is effective. In this subsection, we introduce light control
using cyanine-based fluorescent molecules, as well as their applications in the optical
control of the FRET pathway and optically programmable DNA scaffold logic.

4.1 Optical Control of FRET

According to Eq. (1), the energy transfer efficiency in FRET depends on the overlap
between the fluorescence spectrum of the donor molecule and the absorption spec-
trum of the acceptor molecule. Photoresponsive proteins and fluorescent molecules
are molecules whose absorption spectra change because of changes in their molec-
ular structure induced by light irradiation or binding with functional groups [44].
Using these molecules, it is possible to switch the on/off state of signal transmission
via FRET in response to light signals [45]. Here, we utilize optical control based
on cyanine-based fluorescent molecules as an example of absorption spectrum mod-
ulation. Cyanine-based fluorescent molecules are light-controllable molecules that
can control their fluorescent or bleached state through light irradiation [44]. This
mechanism is based on a photochemical reaction that induces the binding and dis-
sociation of the thiols of the cyanine dye [44]. Additionally, when other fluorescent
molecules (activators) are present near the cyanine-based molecules, the dissociation
of the cyanine-based molecules and thiols can be controlled by their excitation [46,
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Fig. 13 Schematic
illustration of optical control
of FRET

47]. This means that the wavelength of the activated light can be set by selecting the
fluorescent molecules to be placed nearby. Without synthesizing special fluorescent
molecules or fluorescent proteins, it is possible to control the fluorescence properties
using light at various wavelengths by selecting fluorescent molecules to be placed
nearby.

Figure 13 shows an overview of the optical control of FRET. Fluorescent
molecules with three different functions (donors, acceptors, and activators) are pre-
pared. Cyanine-based fluorescent molecules are used as acceptors, and activators are
placed near the cyanine molecules. When the acceptor is strongly excited, it changes
to a dark state. In this state, the excitation of the donor does not cause FRET to the
acceptor. When the activator is excited, the acceptor recovers its fluorescent state,
enabling FRET from the donor to the acceptor. Thus, FRET can be switched on and
off using light irradiation.

4.2 Optical Control of FRET Pathway

FRET pathways are controlled by using cyanine-based fluorescent molecules, as
shown in Fig. 14 [48]. Two sets of acceptor and activator molecules are arranged on
the DNA scaffold. Because the absorption peak wavelengths of acceptors 1 and 2 are
different, photoactivatable fluorescent molecules in these systems can be indepen-
dently controlled using external light of different wavelengths. When only acceptor
1 is activated, FRET occurs only in pathway 1. Conversely, when only acceptor 2 is
activated, FRET occurs only in pathway 2. Therefore, by independently switching
each system, it is possible to change the energy transfer pathway. When the activa-
tion light for pathway 1 is irradiated, the fluorescence intensity of pathway 1 mainly
increases, while that of pathway 2 decreases. This indicates that FRET occurs more
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Fig. 14 Optical control of FRET pathway

frequently in pathway 1 than in pathway 2. In contrast, when applying the activation
light for pathway 2, more FRET occurs in pathway 2 than in pathway 1. These results
demonstrate that systems using different activators can be independently activated
at the corresponding wavelengths and that FRET efficiency can be controlled.

4.3 Optically Programmable DNA Scaffold Logic

The optical control of a FRET molecular logic circuit has been demonstrated using a
FRET pathway optical selection technique [49]. This enables the execution and tim-
ing of molecular logic operations to be controlled solely by light irradiation, without
altering the solution environment. This approach is expected to enable the processing
of spatiotemporal information from dynamically changing molecular information,
which is difficult to implement in conventional DNA logic circuits that execute oper-
ations based solely on molecular reactions.

Molecular logic operations are executed by controlling the arrangement of fluo-
rescentmolecules using changes in theDNAstructure in response tomolecular inputs
and utilizing the formation of the FRET pathway, as shown in Fig. 15. Fluorescent
molecules are attached to the scaffold DNA based on self-organizing reactions using
DNA complementarity. FRET pathways are designed to extend from the initiating
dye to the reporting dye when the given logical conditions are satisfied. Multiple
FRET pathways with different programming operations are prepared on the scaffold
DNA.The selected pathway is then controlled bymanipulating the activation or deac-
tivation of the light-sensitive fluorescent molecules using light irradiation.Molecular
logic operations are executed based on the selected pathway and its timing.
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Fig. 15 Schematic illustration of optically programmable DNA scaffold logic. Reproduced with
permission from Appl. Phys. Lett. 107, 013701 (2015). Copyright 2015, AIP Publishing LLC

Fig. 16 Schematic illustration for optical switch I1∧I2 and I1∧I3 executions

To demonstrate time control of molecular information processing, we designed a
FRET molecular logic circuit with light-controlled execution timing for I1∧I2 and
I1∧I3 (Fig. 16). Functional DNA regulates the binding of fluorescent molecules to
scaffold DNA according to the input molecular information. I1∧I2 and I1∧I3 are
assigned to FRET pathways 1 and 2, respectively. To selectively induce FRET in
each pathway, activator molecules (pathway 1: Alexa 405, pathway 2: Cy3) with
different absorption spectra are pre-arranged on the scaffold DNA. By irradiating
light at wavelengths corresponding to each activator molecule (pathway 1: 405 nm,
pathway 2: 450 nm), the FRET pathway is selected, and the assigned operation is
executed.

In the experiment, reportermoleculeswith different fluorescence spectra (pathway
1: Cy5, pathway 2: Cy5.5) were used to distinguish outputs. Input molecules I1, I2,
and I3 were sequentially added to represent the time variation of the molecular
information in the solution. The fluorescence intensity significantly increased only
when the input molecular information satisfied the logical condition assigned to the
light-selected pathway (Fig. 17). This result demonstrates that the timingofmolecular
logical operations can be controlled by light signals.
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Fig. 17 Time courses of light irradiation signals and fluorescence output of I1∧I2 and I1∧I3, in
response of inputs

5 FRET Network-Based Computation

Sections 3.3 and 3.4 described a FRET device capable of performing simple logic
operations at the molecular level (below 10 nm). FRET pathways are controlled
by the placement of particles and molecules, energy level saturation control, and
molecular property changes, implemented by a pre-designed FRET computational
device. Although scaling up FRET computing devices that apply microfabrication
technologies, such as DNA nanotechnology, has been anticipated, the number of
FRET cascades is limited owing to the red-shifted FRET. Large-scale computation
using FRET devices has not yet been implemented.

As a potential solution to this issue, a signal processing device employing FRET
networks has been proposed [30]. This device operates by learning the input/output
characteristics of FRET network devices, which comprise a variety of quantum dots
randomly arranged at a high density [28, 50]. The input signals are encoded as light
signals using time and wavelength. Utilizing a high-density random FRET network
device alone does not achieve efficient signal processing to provide the desired output.
However, recent breakthroughs in machine learning have facilitated the estimation of
object information and the attainment of desired optical responses from input/output
data, even for cases in which optical modeling is challenging. By adopting this
approach, the input–output characteristics of a densely aggregated FRET network
device with the disorder can be learned, allowing for the implementation of the
desired optical transformation, and thereby enabling micro-scale and large-scale
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optical signal processing, which was previously hindered by physical constraints in
using the designed FRET pathways.

By using machine learning techniques to impart the desired function to the
FRET network device, a wide range of signal processing techniques, including input
light signal distribution, product operation, and amplification, can be implemented
through the control of single-step FRET with light. Despite the random distribution
of quantum dots within the FRET network device, they respond to light control and
modulate the fluorescence signals [51]. Applying machine learning algorithms to
the input/output response of the FRET network device allows programming of the
FRET network device using a control light, enabling the desired signal modulation of
input/output signals, such as processing for neural networks or reservoir computing.

The FRET network-based approach holds the potential to enable a fast and effi-
cient optical implementation for predicting and recognizing spatiotemporal data
using reservoir computing. This technology haswide-ranging applicability to various
types of spatiotemporal data, including images, sounds, and videos, and is poised to
contribute significantly to the development of new computing devices.
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Quantum-Dot-Based Photonic Reservoir
Computing

Naoya Tate

Abstract Reservoir computing is a novel computational framework based on the
characteristic behavior of recurrent neural networks. In particular, a recurrent neural
network for reservoir computing is defined as a reservoir, which is implemented as a
fixed and nonlinear system. Recently, to overcome the limitation of data throughput
between processors and storage devices in conventional computer systems during
processing, known as the Von Neumann bottleneck, physical implementations of
reservoirs have been actively investigated in various research fields. The author’s
group has been currently studying a quantumdot reservoir, which consists of coupled
structures of randomly dispersed quantum dots, as a physical reservoir. The quantum
dot reservoir is driven by sequential signal inputs using radiation with laser pulses,
and the characteristic dynamics of the excited energy in the network are exhibitedwith
the corresponding spatiotemporal fluorescence outputs.Wehave presented the funda-
mental physics of a quantum dot reservoir. Subsequently, experimental methods have
been introduced to prepare a practical quantumdot reservoir. Next, we have presented
the experimental input/output properties of our quantum dot reservoir. Here, we
experimentally focused on the relaxation of fluorescence outputs, which indicates the
characteristics of optical energy dynamics in the reservoir, and qualitatively discussed
the usability of quantum dot reservoirs based on their properties. Finally, we have
presented experimental reservoir computing based on spatiotemporal fluorescence
outputs from a quantum dot reservoir. We consider that the achievements of quantum
dot reservoirs can be effectively utilized for advanced reservoir computing.

1 Introduction

Reservoir computing [1, 2] is one of the most popular paradigms in recent machine
learning and is especially well-suited for learning sequential dynamic systems.
Even when systems display chaotic [3] or complex spatiotemporal phenomena [4],
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which are considered as exponentially complicated problems, an optimized reservoir
computer can handle them efficiently.

On the other hand, von Neumann-type architecture is known as one of the most
familiar computer architectures, which consists of a processing unit, a control unit,
memory, external data storage, and input/output mechanisms. While such archi-
tecture is now widely utilized, in the conventional von Neumann-type architec-
ture, bottlenecks between the processing unit andmemory are inevitable when imple-
menting the parallel operation of sequential processing [5]. Hence, the development
of a physical reservoir using various physical phenomena that can act as a non-
von Neumann-type architecture is required. Unlike other types of neural network
models, reservoir models are expected to be suitable for physical implementation as
their inner dynamics are fixed as a general definition and do not need to be modi-
fied during processing. Thus far, various methods for the physical implementation
of reservoirs, such as electrochemical cells [5], analog VLSI [6], and memristive
nanodevices [7], have been actively discussed.

We focused on the energy propagation between dispersed quantumdots (QDs) as a
phenomenon for implementing a physical reservoir. QDs are nanometer-sized struc-
tures that confine the motion of charge carriers in all three spatial directions, leading
to discrete energy levels based on quantum size effects. In general, the emission
properties of QD can be adjusted by changing their sizes and structures. In addition,
since QDs are typically fabricated using semiconductor materials, they exhibit good
stability and durability. Recently, QDs have been incorporated into semiconductor
devices, such as light-emitting diodes [8, 9], lasers [8, 10], and field-effect transis-
tors [11]. Our QD reservoir (QDR) consists of randomly connected transfer paths
of optical energy between the QDs and reveals the spatiotemporal variation in the
fluorescence output. Recently, we experimentally demonstrated short-term memory
capacity as a physical reservoir [12].

In this Chapter, we have discussed the fundamentals of QDR and the experi-
mental protocol for preparing QDR samples. Moreover, the results of actual reser-
voir computing based on the spatiotemporal fluorescence outputs of QDR samples
have been shown. Generally, a reservoir requires large amounts of computational
resources during the learning process. Using the spatiotemporal data obtained from
the nonlinear transformation from an optical input signal to the fluorescence output
via QDR, learning without calculating the individual states of all the nodes in the
reservoir layer is possible. As a result, by physically implementing the reservoir layer
and learning based on spatiotemporal data, we expect to solve the target problemwith
a lower reservoir power consumption than other existing implementations.
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2 Quantum-Dot-Based Physical Reservoir

2.1 Basics

As shown in Fig. 1, a QDR consists of randomly dispersed QDs. The optical input
to the QDR was determined by the incidence of the laser pulse, and some QDs were
excited by this incident light.While the excited electron energy behaves as a localized
optical energy, it can be directly relaxed to the ground energy level with/without fluo-
rescence radiation. Another typical phenomenon of such a localized optical energy
transfer, based on the Förster resonance energy transfer (FRET) mechanism, is that
a QD, initially in its electronic excited state, may transfer energy to a neighboring
QD through nonradiative dipole–dipole coupling. Generally, the fluorescence and
absorption spectra of QD partially overlap; thus, FRET is probabilistically allowed.
Furthermore, if the FRET network consists of different types of QDs, each type of
QDs is defined as a donor or acceptor. FRET from an acceptor-QD to a donor-QD is
prohibited, and an acceptor-QD often acts as a destination in each network. During
the energy transfer, optical energy percolates in the FRET network, which can be
regarded as the optical input being partially memorized with subsequent forgetting.

In particular, in our scheme for realizing the optical input/output of QDR, the light
pulses are spatially incident on the QD network in parallel and excite multiple QDs.
For the excitation of theQDs, the optical energy of the input lightmust be greater than
the bandgap energy of each QDs. The excited QDs probabilistically emit fluorescent
photons with optical energy similar to the bandgap energy. In contrast, part of the
optical energy is transferred from one excited QD to another QD based on the FRET

Fig. 1 Schematic of the inner dynamics of a QDR by sequential incidence of light pulses occurring
due to localized transfer and temporal stagnation of optical energy during periodic irradiation of
light pulses
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mechanism. After single or multiple steps of energy transfer, some of the optical
energy in the network is emitted from the destination QD. Generally, light emissions
via multiple energy transfers necessarily occur later than that involving no energy
transfer. Consequently, the fluorescence output from the QDR can be sequentially
obtained by sparsely counting fluorescence photons.

Additionally, as shown in the lower half of Fig. 1, when the next light pulse
is input to the QDR during the temporal stagnation of the inner optical energy,
the transfer process and corresponding emission of fluorescence photons reveal a
different tendency from the previous condition of the network because of the different
internal state of the QDR from the previous condition; namely, unlike the upper half
of Fig. 1, some QDs are already excited. Here, a saturated situation in which all the
QDs are excited is not anticipated. Consequently, in such cases, the optical outputs
in response to sequential optical inputs cannot be predicted using a simple linear
sum of a single input/output. Therefore, the non-linearity of an input/output can be
quantitatively evaluated by comparing the linear sum of a single input/output. In
other words, such a setup works as a fusion-type setup of the processor and storage
device, which maintains the inner states during multiple optical inputs and outputs
and can directly read out its output as fluorescence via complicated signal processing
in the network.

2.2 Experimental Demonstration: Randomly-Dispersed QDR

For the experimental preparation of QDR sample, we used two types of QDs as
components of the QD network: CdS dots (NN-labs, CS460; peak wavelength of
the emission: 465–490 nm, 3.0 nmol/mg, represented in catalog) and CdS/ZnS dots
(NN-labs, CZ600; peak wavelength of the emission: 600–620 nm, 1.0 nmol/mg,
represented in catalog) with toluene solutions. In this case, the CdS and CdS/ZnS
dots acted as donors and acceptors, respectively. Additionally, polydimethylsiloxane
resins (PDMS; Dow Corning, Sylgard184) were used as base materials to fix and
protect the inner QDR. The basic procedure for preparing a QD sample using these
materials is shown in Fig. 2a and is as follows.

Fig. 2 a Schematic of experimental process. b Appearance of three QD samples under UV light
illumination
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First, the two QD solutions were mixed with 1,000μL of PDMS base solution. To
control the configuration of theQDR, the CdS andCdS/ZnS dots weremixed in ratios
of 3:1, 1:1, and 0:1 for Samples A, B, and C, respectively. After mixing, eachmixture
was heated for evaporating toluene. Then, 100μL of polymerization initiator PDMS
was added to the mixture, and the resulting solution was dropped on the cover glass.
The mixture was spread on a cover glass using a spin coater (MIKASA, MS-B100,
rotational speed: 3,000 rpm) for 100 s to randomly disperse the QDs in the resin,
and the respective QDR was expected to be formed. The assumed thickness of the
samples was less than 1 μm. After the mixtures were thinned, to fix the alignments
of the QDs in each mixture, the thinned samples were heated on a hot plate (EYELA,
RCH-1000) at 150 °C for 600 s. The prepared samples appeared transparent under
ambient light; however, they emitted fluorescence under UV illumination, as shown
in Fig. 2b.

2.3 Experimental Demonstration: Electrophoresis

Electrophoretic deposition (EPD) was applied as another method to prepare QDR
sample [13–16]. The EPD of the QD layer was accomplished by applying a voltage
between two conductive electrodes suspended in a colloidalQD solution. The electric
field established between the electrodes drives QD deposition onto the electrodes.
EPD, as a manufacturing process, efficiently uses the starting colloidal QD solutions.

To start the EPD process, two GZO glasses coated with a Ga-doped ZnO layer
were secured 1.0 cm apart with their conductive sides parallel and facing one another,
as illustrated in Fig. 3a. An electric field of 15 V/cm was then applied, and the
electrodes were placed in the QD solution. After a few minutes, the electrodes were
QD-rich toluene droplets that left uneven QD deposits after being dried from the
surface using compressed air. In this demonstration, we used CdSe/ZnS dots (Ocean
Nanotech,QSR580; peakwavelength of emission: 580 nm, 10mg/mL, represented in
the catalog) with a toluene solution. Owing to their emission and absorption spectra,
the CdSe/ZnS dots can function as both donors and acceptors. Figure 3b, c show
the appearance of the negative and positive electrodes under UV light illumination,
respectively. As the fluorescence of the QD layer can be observed by the eye only on
the negative electrodes under UV light, the QD layer was confirmed to be deposited
by the EPD process and not by any other phenomenon.

Here, we prepared three samples using the EPD method under 10, 20, and 60
min of deposition time, which we define as 10, 20, and 60 M samples, respectively.
Figure 4a–c show fluorescence microscopic images under UV irradiation. As shown,
the coverage rate of each sample by deposited-QDs was varied from 49.8 to 76.1%
by increasing deposition time from 10 to 60 min. Atomic force microscopy (AFM)
topography images of the QD layers on the GZO anodes are shown in Fig. 5a–c. The
resulting QD layer apparently consisted of aggregated QD components, and the size
of each unit component was 100–500μm. The number of QD components increased
with an increase in the deposition time.



76 N. Tate

Fig. 3 a Schematic of the EPD process. A voltage applied between two parallel, conducting elec-
trodes spaced 1.0 cm apart drives the deposition of the QDs. Appearance of b negative and c positive
electrodes after 60 min of EPD process under UV light illumination

Fig. 4 Fluorescence microscopic images of the surface of an electrophoretically deposited QD
layer on a 10 M sample, b 20 M sample, and c 60 M sample, respectively

Fig. 5 AFM topography images of the surface of an electrophoretically deposited QD layer on
a 10 M sample, b 20 M sample, and c 60 M sample, respectively
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3 Non-linearity of the QD Reservoir

3.1 Experimental Setup

We focused on the fluorescence relaxation from acceptor QDs for verifying the non-
linearity of our QDR. Here, photons emitted from each QD were necessarily output
at various times, regardless of whether the photons are emitted via energy transfers.
In other words, the results of photon counting, which are triggered by the timing of
the optical input, indicate the characteristics of QDR.

For experimental verification, we used a Ti:Al2O3 laser (Spectra Physics,MaiTai),
which emitted optical pulses with a pulse length of 100 fs, an optical parametric
amplifier (Spectra Physics, TOPAS-prime), and a wavelength converter (Spectra
Physics, NirUVis) as the light sources for irradiating the QD samples. The oscillation
frequency and wavelength were set as 1 kHz and 457 nm, respectively. The laser
power and polarization were appropriately controlled for exciting the QD samples
and effectively counting the fluorescent photons, as shown in Fig. 6.

The delay line generated a time lag�t between the first and second pulses incident
on the QDR sample. The range of �t was set at 0.64–7.4 ns, and the corresponding
optical length was controlled by a stage controller driven by a stepping motor with a
position resolution of 20 μm/step. Fluorescence photons induced by optical excita-
tion of the QDR samples passed through the focusing lens again and were reflected
in the detection setup using a Glan–Thompson polarizer. After passing through a
bandpass filter (UQG Optics, G530, transmission wavelength: 620 ± 10 nm), the
fluorescent photons were propagated to a photon detector (Nippon Roper, NR-K-
SPD-050-CTE). Since the irradiated light passed through the polarizers, only the

Fig. 6 Schematic of experimental photon-counting setup to identify characteristic of the QDR
sample
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fluorescence photons from the acceptor-QDs were selectively obtained by the single-
photon detector. Then, by synchronizingwith the trigger signal using a Si-PIN photo-
diode (ET-2030) on a time-to-amplitude converter (TAC; Becker and Hickl GMbH,
SPC-130EMN), the time-resolved intensities were obtained, and the results were
collated using PC software (Becker and Hickl GMbH, SPC-130 MN) as the lifetime
of each fluorescence. Here, excitation power was set as 5.0 μW, which was enough
to suppress and did not induce saturated situation of QD excitations.

Before verifying the non-linearity, the fluorescence relaxation due to multiple
incident laser pulseswas experimentally verified in the setup as the basic specification
of our three samples: Samples A, B, and C. The left-hand side of Fig. 7 shows an
example of the obtained photon-counting result from the acceptor QDs in response
to double incident laser pulses, which were obtained at a certain area in Sample A. As
shown, two rising phases were recognized, which were due to the first and second
incident laser pulses. The time lag �t between the two pulses was 7.4 ns. Under
these conditions, the second pulse was irradiated before the induced optical energy
was dissipated, and the corresponding photons were counted in response to the first
incident pulse, which corresponded to the stagnation time of the QDR induced by
the first incident pulse. Therefore, we focused on photon counting after the second
incident pulse, which was extracted from the right side of Fig. 7.

Todiscuss the spatial variation of theQDnetworks in each sample, three individual
areaswere irradiated in the three samples, and thefluorescence photonswere counted.
Toquantitatively compare thefluorescence relaxation of each sample, the resultswere
fitted using an exponential equation:

C(t) = A + Be−t / τ , (1)

whereA andB are individual positive constants, and τ denotes the time constant of the
fluorescence lifetime. The values of these parameters were selected to appropriately
match the experimental results. As a result, τ was calculated to be 168–315, 129–
257, and 99–212 ps for Samples A, B, and C, respectively. Clear differences were
observed in the results for each sample. For SampleC,which contained no donorQDs

Fig. 7 Experimentally
obtained photon counting
result of a QDR sample
under irradiation by double
pulses with time difference
�t of 7.4 ns
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and a smaller total number of QDs, energy transfer between QDs rarely occurred,
and the QDs excited by the laser pulse directly emitted photons without any energy
transfer. Therefore, Sample C revealed the shortest τ . In contrast, since Sample A
contained the largest number of donor QDs, frequent energy transfers were expected
to occur. As a result, the excited optical energy was allowed to stagnate over a longer
time in the QDR and obtained at various times owing to various energy transfers.
Therefore, Sample A revealed the longest τ among the three. The results indicated
a clear relationship between the configuration of the QD network and the extent of
the echo state owing to FRET between the QDs.

3.2 Qualitative Non-linearity

To quantitatively evaluate the non-linearity of each photon-counting result, we
employed their correlation analysis in response to double incident pulses with a
linear sum of single inputs/outputs, which are the photon counts due to a single pulse
incident on each sample. For correlation analysis, Pearson correlation coefficients,
R, were calculated as follows:

R =
∑n

i=1 (xi − x)(yi − y)
√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
, (2)

where x and y represent the data obtained with the first and second incident pulses,
respectively, n is the data size, xi and yi are individual data points indexed with
i, and x and y represent the data means of x and y, respectively. While nonlinear
inputs/outputs were expected to be difficult to approximate with a linear sum of the
separately obtained single inputs/outputs, lower and higher correlation coefficients
corresponded to the larger and smaller nonlinearities of each input/output, respec-
tively. Furthermore, during irradiation with optical pulses, the length of the delay
path in the optical setup, as shown in Fig. 6, was controlled to set the time difference
�t between the two pulses. Here, �t was set to 0.64, 0.84, 1.6, and 7.4 ns, and the
photon counts in response to the second incident pulse were determined for the three
samples. Correlation coefficients were calculated from the photon counting results,
which were obtained with several �t values at three individual areas on the three
samples.

Overall, as shown in Fig. 8, with increasing�t, higher and more converged corre-
lation coefficients were observed, implying a gradual dissipation of the echo states
induced by the first incident optical pulse. Conversely, for �t shorter than 1.0 ns, the
second pulse was incident before dissipation of the echo state excited by the first inci-
dent pulse. Consequently, lower correlations and corresponding higher non-linearity
were successfully revealed.
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Fig. 8 Comparison of correlation coefficients corresponding to non-linearity of fluorescence of
three samples, a Sample A, b Sample B, and c Sample C

Furthermore, the three lines in the results for Sample C revealed similar curves,
and the correlation coefficients were greater than 0.95, which corresponded to a
smaller non-linearity. These findings were attributed to the sparse alignment of the
QDs, as schematically shown in the insets of Fig. 8. Specifically, the input/output
varied from area to area, and FRET between the QDs was rarely allowed. As a result,
the nonlinear input/output was not sufficiently revealed in Sample C. However, in
the case of Sample A, since the number of QDs was sufficient in all areas, many
paths for FRET were expected. Similar input/output tendencies were obtained in
each area, and a higher non-linearity than that of Sample C was revealed. In the case
of Sample B, tendencies showing the most variation in each area were observed, and
higher non-linearity was often revealed in some areas. As a result, we verified the
echo state properties of our QDR samples and quantitatively measured hold times of
less than 1.0 ns with our experimental conditions. As shown in Fig. 8, the hold time
and spatial variation of the echo state properties clearly depended on the composition
of the QDR sample.

4 Spatio-Temporal Photonic Processing

4.1 Basics

Based on the FRET mechanism, as described in the previous section, after the laser
irradiation of the QDR, the excited energy in some QDs was probabilistically trans-
ferred to the surroundings. Aftermultistep transferences through several FRETpaths,
the energy was probabilistically irradiated as the fluorescence of the QDs at various
times. Moreover, the fluorescence intensity varied spatially because of the random
distribution of the QDs. Consequently, the fluorescence output of the QDR can be
defined as two-dimensional spatiotemporal information, which is reflected as the
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Fig. 9 Schematic of the
spatiotemporal fluorescence
output based on various
FRETs in the QDR

nonlinear input/output and short-term memory of the QDR, as conceptually shown
in Fig. 9. Reservoir computing can be driven effectively using an appropriate readout
of several calculation parameters for reservoir computing from fluorescence outputs.

4.2 Streak Measurement

As an experimental demonstration of QDR-based reservoir computing, we prepared
QDR samples using the EPDmethod, which we defined as 10, 20, and 60M samples
in the previous section. The experimental setup for the fluorescence measurement is
shown in Fig. 10. The fluorescence output of the QDR sample was detected using
the time-correlated single-photon counting (TCSPC) method [17]. The setup and
experimental conditions of the light source were the same as those for the previous
setup shown in Fig. 6.

Several parameters of the reservoir model were identified. The QDR sample was
irradiated with first, second, and double pulses. As shown in Fig. 10, the delay
line generated 1 ns of the lag between the first and second incidents on the QDR
sample. Corresponding streak images were obtained using a streak camera (Hama-
matsu C10910) upon the insertion of an appropriate bandpass filter (Edmund Optics,
#65–708, transmission wavelength: 600 ± 5 nm) to extract the fluorescent output.
The streak camera mainly consisted of a slit, streak tube, and image sensor. The
photons of fluorescence to be measured as outputs of the QDR sample were focused
onto the photocathode of the streak tube through the slit, where the photons were
converted into a number of electrons proportional to the intensity of the incident light.
These electrons were accelerated and conducted toward the phosphor screen, and a
high-speed voltage synchronized with the incident light was applied. The electrons
were swept at a high speed from top to bottom, after which they collided against the
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Fig. 10 Schematic of experimental setup for streak measurement based on TCSPC method

Fig. 11 Examples of obtained streak images as outputs of a QDR sample with a the first pulse,
b the second pulse, and c double pulses

phosphor screen of the streak tube and were converted into a spatiotemporal image.
Streak images of a QDR sample irradiated by the first, second, and double pulses are
shown in Fig. 11a, b, c, respectively.

4.3 Spatiotemporal Reservoir Model

Referring to the echo state network [1], we define the updating formula for the state
vector s of a reservoir as follows:

St+1 = tanh(α(WresSt + W inut )), (3)

where st is the vector of the reservoir node at t, and Wres denotes the connection
weight between nodes. The non-linearity of each node is revealed as a hyperbolic
tangent function. Reservoir dynamics can be described using iterative applications
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Fig. 12 One-dimensional fluorescence intensity for experimental determination of W in

of the function. W in is the vector of input to the reservoir, and ut is the coefficient
representing the sequential evolution of W in.

Input weight matrix. W in is defined as a linear mapping vector that projects
the input vector u to the state vector space s, namely, reservoir nodes. In the QDR
experiment, W in was determined by the intensity distribution of the fluorescence,
which corresponds to the distribution of dispersed QDs. Therefore, in streak images,
the one-dimensional fluorescence intensity of all nodes immediately after irradiation
must be read to determine the W in, as shown in Fig. 12.

Leakage rate. As the fundamentals of reservoir computing, the leakage rate of
the respective nodes directly controls the retention of data from previous time steps.
Therefore, the reservoir can act as a short-term memory. In the experiment of QDR,
relaxation time τ of fluorescence output is directly related to the leakage rate of
each node. In the streak images, we focused on the respective nodes and extracted
the fluorescence relaxation, as shown in Fig. 13. The relaxations were fitted using
N = N0exp(−t/τ) for determining the relaxation time τi for each node.

Connection weight matrix. The connection weights between various nodes in the
reservoir corresponded to the FRET efficiencies between the dispersed QDs in our

Fig. 13 Extraction of fluorescence relaxation for experimental determination of relaxation time τ
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Fig. 14 Comparison of
fluorescence outputs
between all nodes for
determination of Wres

experiment. Based on these interactions, the inner state of a reservoir can sequentially
evolve to handle complex tasks. To searchWres, we assumed that multipleWress and
fluorescence relaxations of neighboring nodeswere compared for eachWres as shown
in Fig. 14. For quantitative comparison, the respective correlation coefficients were
calculated. We then determinedWres, which revealed a similar variance σ 2

R with the
experimental results.

Activate function. The change in the inner state s due to the variation in the input
vector u is defined by an active function. Here, we approximately set αtanh as the
active function of QDR and optimized its coefficient α. We varied α and respectively
compared with experimental results based on the calculation of Pearson’s correlation
coefficients. Specifically, fluorescence relaxation by the first incident pulse and the
second pulse was added and compared with relaxation by double incident pulses to
identify non-linearity, as shown in Fig. 15. Then, a was determined, which revealed
similar non-linearity with the experimental results.

4.4 Experimental Demonstration

Based on the experimental conditions and obtained results, we demonstrated the
sequential prediction of XOR logic based on machine learning. As XOR is one of
the simplest tasks that is linearly nonseparable, it is often selected for experimentally
demonstratingmachine learning using an artificial neural network. In our experiment,
the original streak image was arranged with 40 nodes in the spatial direction and 20
steps in the temporal direction. Each temporal step corresponded to 0.434 ns and each
size of node was 1 μm. Figure 16 shows some examples of data sequences predicted
by our reservoir models, which were constructed by utilizing streak images of 10,
20, and 60 M samples, respectively.

Furthermore, we successfully predicted sequential XOR logic using 1.0% of the
mean bit error rate (BER) with 100 trials, as shown in Fig. 17. The results clearly
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Fig. 15 Comparison of fluorescence relaxation by the first pulse incident, the second pulse incident,
and the cumulative result of the two with relaxation by double pulses incident

Fig. 16 Prediction results obtained by our reservoir models based on streak images of a 10 M,
b 20 M, and c 60 M samples
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Fig. 17 Comparison of MSEs of reservoir models using 10, 20, and 60 M samples with 100
respective trials

show that each model exhibits its own performance owing to the variations in the
QDR, as shown in Figs. 4 and 5. However, the theoretical relationship between each
performance metric and the corresponding QDR is now under discussion.

5 Conclusion and Future Prospect

In this section, the results of an investigation into the applicability of QDR as a
physical reservoir with an optical input/output is presented. Based on the idea that
QDR is expected to reveal nonlinear input/output owing to the short-time memory of
optical energy in the network, photon counting of the fluorescence outputs obtained
in response to sequential short-light pulses was performed for verifying the optical
input/output of our originalQDR.Consequently, the non-linearity of the input/output,
which is a fundamental requirement for the realization of effective machine learning,
was qualitatively verified. Moreover, we demonstrated that reservoir computing
based on the spatiotemporal fluorescence output ofQDRs can learn theXORproblem
and make correct predictions with a low BER. In future studies, we will extend the
applicability of our idea to execute practical tasks for a larger amount of time-series
data based on the outputs of our spatiotemporal fluorescence processing. In addition,
larger spatial variation is also expected to be one of the fundamental requirements in
QDR for physical implementations of reservoir computing because varied nonlinear
input/outputs in a single reservoir are useful for effective machine learning based on
QDR, that is, nanophotonic reservoir computing. The optimization of the composi-
tion required for targeted processes in nanophotonic reservoir computing remains an
open topic for further investigation.
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Exploring Integrated Device
Implementation for FRET-Based Optical
Reservoir Computing

Masanori Hashimoto, Takuto Matsumoto, Masafumi Tanaka, Ryo Shirai,
Naoya Tate, Masaki Nakagawa, Takashi Tokuda, Kiyotaka Sasagawa,
Jun Ohta, and Jaehoon Yu

Abstract This chapter explores a reservoir computing (RC) device based on fluores-
cence resonance energy transfer (FRET) between quantum dots (QDs). We propose
a compact structure in which optical input/output and quantum dots are adjacently
placed without lenses or delay lines. The proposed structure exploits the QD-based
optical reservoir as an intermediate layer and adopts memory to enable recurrent
inputs. We evaluate the feasibility of the proposed structure by applying tasks that
require nonlinearity. Simulation-based experimental results show that the proposed
device can perform logistic map, time-series XOR, and NARMA10. A proof-of-
concept implementation with a commercial image sensor demonstrates that the pro-
posed structure can solveXOR andMNIST tasks. Also, we discuss the energy advan-
tage over conventional digital circuit implementations.

1 Introduction

Reservoir computing simplifies model training by keeping the randomly generated
middle layer unchanged and only training the output connection. Physical reservoirs,
which use physical phenomena to replace the middle layer, are gaining popularity
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as they may be more efficient than traditional digital circuits [1]. Physical reservoirs
require nonlinearity, short-term memory, and high dimensionality to be effective.
Various physical reservoirs have been studied, including light-based [2], oscillator-
based [3], and mechanical reservoirs [4].

With the rise of IoT, edge computing is becoming more prevalent in applications
where centralized data processing is not suitable. Deep learning requires signifi-
cant computational power, making edge devices with limited hardware and energy
resources challenging. Additionally, the demand for computing proximity to users
necessitates the development of smaller devices.

FRET is a phenomenon where excited states are transferred between adjacent
QDs based on the QD types and their distance as discussed in Chap. 4. The densely
populated, randomly generated QD network inherently exposes several nonlinear
relationships between the input excitation light and output fluorescence. The exci-
tation state represents memory, making the FRET behavior promising for physical
reservoirs. However, the tiny size of QDs makes it challenging to know which QD
emits each photon by photodiode (PD) arrays or image sensors. Additionally, the
short duration of state holding and fluorescence lifetime require repeated sensing.
To overcome these issues, optical devices often use lenses and delay lines, but they
increase the device size.

This study proposes a simple structure that utilizes FRET for computing without
the use of lenses or delay lines and can be easily miniaturized to address the issues
mentioned. The structure comprises tiny LEDs as excitation light sources, a sheet
of QD network, a filter that can eliminate excitation light and transmit fluorescence,
and a photodiode array. As a first step, this study mostly considers only a single type
of QD network for FRET-based reservoir computing. Using a FRET simulator, we
confirm the feasibility of the device by mapping several tasks requiring nonlinearity.
A proof-of-concept (PoC) device is implemented using a commercial image sensor
and a droplet sheet of QDs. Experimental validation shows that XOR and MNIST
tasks can be performed using the PoC device. Finally, we discuss the advantage of
computational energy.

2 Proposed Device Structure

2.1 Device Structure

We propose a device structure for FRET-based reservoir computing, which is shown
inFig. 1 [5]. The physical reservoir,which serves as the intermediate layer in reservoir
computing, corresponds to the gray box in the figure. The device consists of a 2D-
array light source (input), a sheet containing numerous randomly placed QDs, and a
2D PD array (output) arranged in a straight line. The light source provides the optical
input that excites the QDs, and the PD measures the intensity of the fluorescence. To
minimize the form factor of the device, lenses are not used in this structure. The light

http://dx.doi.org/10.1007/978-981-99-5072-4
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Fig. 1 Proposed device structure. c©[2022] IEEE. Reprinted, with permission, from [5]

source, QDs, and PDs are intended to be stacked and housed in a single package in
the expected final implementation.

As mentioned earlier, the excited state memory of QDs is short, and detecting
fluorescence on a per-QD basis is impractical due to the size mismatch between
QDs and PDs. To address these, the proposed structure includes a digital memory to
form a recurrent network. Additionally, single-photon detection is challenging due
to the low sensitivity of typical PDs and isotropic photon emission. Therefore, stable
reservoir output requires repeated input and accumulation. Taking into account this
accumulation time, the reservoir operates discretely in time like a sequential circuit,
and its recurrent behavior progresses via feedback through the memory. Finally, the
digitized reservoir output is fed to a lightweight machine learning model, such as
linear support vector machines or ridge regression, to obtain the final output.

A closer view of the light source, QDs, and PDs is shown in Fig. 2, where a filter
is used to eliminate the excitation light. High rejection-ratio bandpass filters, such
as those in [6], are recommended for this purpose. Since QDs are much smaller than

Fig. 2 Closer view near
QDs. c©[2022] IEEE.
Reprinted, with permission,
from [5]
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droplet

Photo
diode

Photon
source

Excitation 
light filter
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PDs and the photon emission is isotropic, each PD receives photons emitted by many
QDs. Nonetheless, even in this configuration, the proposed structure can exploit a
nonlinear input-output relationship suitable for reservoir computing.

2.2 Network Mapping

The proposed device structure enables a switching matrix function through the feed-
back memory, allowing for the selective mapping of an echo state network (ESN)
onto the device. An ESN is a non-physical reservoir implementation consisting of
artificial neuronswhose recurrent connections andweights are randomly determined,
with a nonlinear transformation performed using a nonlinear activation function [7].

This work proposes to adjust the memory switching matrix to selectively map
a compact ESN achieving high performance onto the proposed device structure.
Figure 3 illustrates the correspondence between the ESN and the network on the
proposeddevice,where a set of 3×3 light source array and3×3PDarray is considered
equivalent to a node in an ESN. The spatial and temporal overlap of the light from
the light sources can provide interaction between multiple light sources, and the
arrows between the nodes from PD to the light sources represent delayed PD output
and recurrent inputs from the light sources. The weights can be set by adjusting the
relative positions of the light source and PD. In the device, the nodes are separated in
time using external memory, while in space, they are sufficiently distant from each
other to avoid unexpected FRETs between nodes. In addition to the conventional
training of the output part, the feedback matrix also needs to be determined.

Fig. 3 Network
construction. c©[2022]
IEEE. Reprinted, with
permission, from [5]

・・・ ・・・ ・・・
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Node Node Node

Echo State Network
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Table 1 Simulation setup

QD density 1000 dots/µm2

# of MC trials 200

PD size 600 nm

PD pitch 1000 nm

QD-PD distance 1000 nm

LS-QD distance 1000 nm

Sim. step 100 ns

c©[2022] IEEE. Reprinted, with permission, from [5]

2.3 Experiments

2.3.1 Setup

For the experiments, QD networks are generated randomly based on the conditions
described in Table 1, assuming the use of QD585 [8]. Other device parameters are
also listed in Table 1. Two types of light sources are used: DC and pulsed sources.
The intensity of the DC source corresponds to the input value, while the input value
is represented by the pulse count in unit time for the pulsed source. Specifically, the
input light is pulsed with a period of 10/(input value) [ns], where the pulse width is
constant at 1 ns.

In this study,weutilized a simulator [9] to simulate the behavior ofQDs,whichwas
introduced inChap. 5. The simulator employs aMonteCarlomethod to stochastically
simulate the state transitions of QDs, including excitation, FRET, fluorescence, and
inactivation, based on tRSSA [10]. Unlike the original FRET simulator, which only
simulates the QD states, our simulation framework replicates the proposed device
structure and simulates it as a complete device, with the FRET simulator as its core
engine. The input light and fluorescence, for instance, decay based on the squared
distance in our framework.

2.3.2 Memory-Unnecessary Tasks

We begin by evaluating two tasks that approximate nonlinear functions without the
need for memory.

Logistic map
The logistic map is a chaotic system that is highly sensitive to small changes in
initial conditions. It can be expressed by the equation xt+1 = αxt (1 − xt ), where our
experiment assumes a fixed value of α = 4.0 and an initial value of x0 = 0.2.

In this logistic mapping, the output value becomes the next input value, and
the prediction process relies on the predictions made one after another. To learn the

http://dx.doi.org/10.1007/978-981-99-5072-0_5
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Fig. 4 Prediction result of
logistic map in time domain.
c©[2022] IEEE. Reprinted,
with permission, from [5]

Fig. 5 Prediction result of
logistic map in input-output
domain. c©[2022] IEEE.
Reprinted, with permission,
from [5]

function, ridge regression is employed. The training process achieved amean squared
error (MSE) of 9.61×10−9, using a 5×5 PD array and a DC light source.

The performance of the trainedmodel is shown in Fig. 4, with the original function
Y , the trained data Train, and the prediction T est . The training is conducted over the
first 100 steps, and the prediction is performed after the 100-th step. Although the
system is chaotic, the first 17 steps (i.e., 100–117) are well-approximated, indicating
that the approximation is viable. In Fig. 5, we plot an X-Y diagram with the input on
the horizontal axis and the output on the vertical axis. It is evident that the function
and the prediction are nearly identical.

XOR
We conducted an experiment to test whether the proposed structure can derive non-
linearity using a two-input XOR function, y = XOR(x1, x2). To classify the output,
we used a linear support vector machine (SVM), which cannot approximate XOR
alone. We used 200 cases for training and an additional 50 cases for evaluation, with
the inputs x1 and x2 given from two locations using pulsed light sources. For 0 and
1 inputs, the pulse frequencies were set to 50 and 100 MHz, respectively.
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Fig. 6 Network structure for
time-series XOR. c©[2022]
IEEE. Reprinted, with
permission, from [5]
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We tested two configurations: 2 × 2 and 3×3 PD arrays. In both cases, we gave
the input lights to the most distant diagonal locations. The training and evaluation
in the 3 × 3 PD array achieved 100% accuracy, whereas in the 2 × 2 case, both the
training and evaluation accuracies were 75%, indicating poor approximation of the
XOR function. We attribute this difference in accuracy to the variation in distance
between the light source and the PD. In the 3 × 3 case, there were six variations in
distance, while in the 2 × 2 case, there were only three.

2.3.3 Memory-Necessary Temporal Tasks

Next, we will evaluate tasks that require memory in the reservoir.

Time-series XOR
In the time-series XOR experiment, random 0 and 1 inputs are used to predict the
XOR result of the current and previous inputs, i.e., d(n) = XOR(u(n), u(n − 1)).
The input is generated by the same pulsed light source as in the previous XOR
experiment. The feedback input is adjusted based on the amount of photons received
by the associated PD,with the pulse period being inversely proportional to the amount
of photons received.

Figure 6 shows one network configuration tested, where there is a one-step mem-
ory from the right node to the left node. The right node provides the previous input
to the left node, which can then process both the current and previous inputs. Each
node has 3 × 3 PDs, resulting in 18 outputs as a reservoir, with a linear support vec-
tor machine applied to the reservoir outputs. Both training and evaluation achieved
100% accuracy in the experiment.

NARMA10
Next, we evaluate the capability of reservoir computing using NARMA [11], which
is a standard benchmark for testing reservoir performance. NARMA is expressed by
the following equation:
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Fig. 7 NARMA10 network
structure. c©[2022] IEEE.
Reprinted, with permission,
from [5]

d(n + 1)=a1d(n)+a2d(n)

m−1∑

i=0

d(n − i)+a3u(n − m + 1)u(n)+a4, (1)

where ai are constants, and u(n) is the input at time n. The output d depends on the
inputs of the previous m steps, which means m-step memory is necessary. In this
experiment, we evaluate the widely used NARMA10 with m = 10.

Due to the extensive number of steps in NARMA10, resulting in a long simulation
time, only 100 FRET simulation trials were conducted. The experiment is designed
for online training, where weights are sequentially updated in every step using the
sequential least-squares method. The total number of training steps was 600 for three
different sets of NARMA10 parameters, with 200 training steps for each set.

To find appropriate network structures, we generated multiple ESNs by varying
the number of nodes and edges. Themodels were then trained and evaluated using the
RMSE metric. Among them, we selected a 20-node network with cyclic structures
depicted in Fig. 7 that provided accurate results. We then mapped this network onto
the proposed device structure following the procedure explained in Sect. 2. Each
node in the network was assumed to have a 3 × 3 PD array and a 3 × 3 light source
array.

The results of the NARMA10 experiment are presented in Fig. 8, where the
blue line corresponds to the target function d(n) and the orange line represents the
predicted values. At the beginning of the training, there is some distance between
the blue and orange lines, but they gradually overlap as the training progresses. The
root mean square error (RMSE) between the target and predicted values is 0.020.
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Fig. 8 NARMA10
prediction result. c©[2022]
IEEE. Reprinted, with
permission, from [5]

3 Proof-of-Concept Prototyping

To realize reservoir computing using QDs, it is necessary to confirm whether QD
fluorescence can be observed in a small experimental system and whether its output
can be used for learning. In this section, we construct a small experimental system
using a commercial image sensor, observe the fluorescence of QDs, and evaluate the
possibility of learning from the output.

3.1 Implementation

As part of the experimental setup,we installed a device incorporating an image sensor
in a darkroom. Figures 9 and 10 depict the experimental systems used for the XOR
andMNIST tasks, respectively, with the main difference being the used light source.
Thinly coated QDs were applied to the cover glass, which was then placed closely on
the image sensor. The image was obtained by illuminating the QDs with excitation
light from above using a light source fixed to the XYZ stage substrate, and capturing
the image with the image sensor. For the XOR task, two 430 nm LEDs were used as

Fig. 9 Experimental setup
with LEDs for XOR task
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Fig. 10 Experimental setup
with a projector for MNIST

the light sources, while for the MNIST task, a laser micro-projector with a resolution
of 1280 × 720 (HD301D1, Ultimems, Inc.) was employed.

The QDs used in the XOR task are QDs (CdSe/ZnS, ALDRIICH) with a single
center wavelength of 540 nm, and are fabricated in thin film form to realize a network
structure. 100 µL of a solution of 30 µL of QDs and 270 µL of thermosetting resin
(Sylgard 184) is poured into a cover glass. The film is deposited by spin coating.
The resin is then heated to cure it. Regarding the QDs employed in the MNIST task,
two types were used: CdSe/ZnS QDs with a 600 nm wavelength and CdSe/ZnS QDs
with a 540 nm wavelength.

The performance of the filter used to separate the excitation light from the fluores-
cence is essential to observe fluorescence using a compact lensless image sensor. This
image sensor is a commercial image sensor (CMV 20000, AMS) with a pixel count
of 2048 × 1088 and a pixel size of 5.5 µm.We implemented a bandpass filter on the
image sensor consisting of a long-pass interference filter, a fiber optic plate (FOP), a
short-pass interference filter, and an absorption filter. Interference filters have a high
rejection rate for perpendicular light but are angle-dependent, allowing scattered light
to pass through. Therefore, by combining an absorption filter with angle-independent
absorption with the interference filter, a high excitation light rejection is achieved,
which is transmission of 10−8 at the assumed excitation light wavelength of 430–450
nm [6]. This allows the fluorescence of QDs whose wavelength is 540 nm and 600
nm to be transmitted through the filter, and only the excitation light is removed.

3.2 Evaluation

3.2.1 XOR

The nonlinearity of the reservoir layer is necessary to function as a reservoir com-
puting device. To evaluate this nonlinearity, we conducted an experiment to check
whether it is possible to solve the XOR problem using a linear learner when two
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00 01

10 11

Fig. 11 Example of fluorescence pictures captured by the image sensor for XOR task

inputs are input from the light source. The captured images are used for training
linear SVM. An example of the input image is shown in Fig. 11. Sixty images are
taken for each of 00, 01, 10, and 11 (240 images in total), 40 for training and 20 for
inference. Comparison is made between the case with QD and the case without QD
(glass only, no excitation filter).

The experimental procedure involves determining the DC light intensity required
to represent input values of 0 and 1, in order to achieve maximum task accuracy.
Subsequently, the LEDs are turned off for input 0, while a constant current is applied
for input 1. To ensure equal light intensity from both LEDs, the magnitude of the
constant current for input 1 is adjusted to compensate for any spectral shift that may
cause the two LEDs to exhibit different intensities at the same current.

The SVM utilized a fixed pixel range size of 32 × 32 pixels, and learning was
performed at each location by shifting the location within the entire image (2048
× 1088 pixels). To address the issue of higher accuracy in areas with lower pixel
values, images were captured with varying exposure times. This ensured that the
pixel values in the bright areas of the image were approximately the same for both
cases: with and without QDs. The accuracy for each location in the 32 × 32 pixel
case is depicted in Fig. 12.

It was observed that using a shorter exposure time of 4 ms resulted in improved
accuracy, both with and without QDs. Specifically, with a 4 ms exposure time, the
QDsenhanced accuracy across awider rangeof the image sensor, indicating their con-
tribution to nonlinear computation. Additionally, the difference in accuracy between
exposure times of 4 and 40 ms suggests that the image sensor itself may also exhibit
nonlinearity. This finding underscores the necessity for image sensors dedicated to
reservoir computing to possess nonlinear pixels, which may not be suitable for con-
ventional image sensing applications.
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Fig. 12 Spatial distributions of XOR task accuracy across the image sensor. Each 32 × 32 pixels
are given to SVM

3.2.2 MNIST

We employed the Newton conjugate gradient method to train the reservoir output
for MNIST using logistic regression. Experiments were conducted on four different
input image sizes: 28 × 28, 140 × 140, 280 × 280, and 600 × 600, as illustrated in
Fig. 13. The fluorescence images shown in Fig. 13 serve as representative examples.
For the 28 × 28 image size, we used 900 fluorescence pictures for training and 150
pictures for testing. For the other sizes, we used 1,500 pictures for training and 500
pictures for testing. Distant pixels that did not observe fluorescence were excluded
from the training data. To prevent pixel value saturation in the image sensor, we
modified the color of the projector light when QDs were not employed.

Table 2 presents the accuracy results, indicating that the accuracy decreases as
the input image size decreases. For an input image size of 600 × 600, the accura-
cies with and without QDs were 88.8 and 87.6%, respectively. In comparison, the
accuracy achieved using the original MNIST data was 87.0% under the same train-
ing conditions. Therefore, in both cases, the PoC implementation achieved higher
accuracy than the linear regressor. Furthermore, the accuracy was higher when QDs

Fig. 13 Example of fluorescence pictures captured by the image sensor for MNIST task
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Table 2 MNIST accuracy. The highest accuracy with linear regressor is 87.0%. The accuracies in
bold are better than that of the linear regressor

Image size w/QD w/QD

Accuracy (%) Exposure (ms) Accuracy (%) Exposure (ms)

28 × 28 23.3 500 38.0 500

140 × 140 40.6 100 62.0 50

280 × 280 71.0 16.7 81.0 50

600 × 600 88.8 16.7 87.6 50

were used compared to when they were not. This improvement in accuracy can be
attributed to the nonlinearity of QDs and the image sensor.Wewill further investigate
the conditions under which QDs can offer a more significant advantage.

4 Discussion on Energy Advantage

This section aims to investigate the potential power-saving benefits of the proposed
reservoir computing device. To accomplish this, we conduct an analysis of the energy
consumption of the physical reservoir computer and compare it with that of a digital
circuit implementation.

4.1 Power Estimation Approach

Consider a structure consisting of a light source and a sensor directly below it, as
shown inFig. 14. Energy consumption in this structure is generated by the light source
and sensor. For simplicity, we consider the energy consumed by the photodiode
directly below the light source that receives the most light. Photons emitted from the
light source excite theQD, fromwhich photons stochastically enter the photodiode on
the sensor at the origin directly below. The sensor part that receives the fluorescence
and converts it into an output consists of a photodiode, a comparator, and an 8-bit
counter. The comparator detects a certain voltage drop on the photodiode and converts
it into a pulse, which is counted by the 8-bit counter. If the operating time is the time
it takes for the sensor at the origin to count 256 pulses, this can be obtained from the
number of photons incident on the photodiode per unit time, and the sensitivity and
conversion efficiency of converting the photons to a voltage. The energy consumption
is calculated bymultiplying the power consumption of the sensor and the light source
by the operation time.
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Fig. 14 Assumed structure Light source

Photodiode

1mm

1μm

7.5μm×7.5μm

θ

QD

10μm

4.1.1 Probability of Photon Incidence

It is assumed that photons emitted from a light source follow a normal angular
distribution with the divergence angle of the light source, which is the angle at which
the intensity is halved, serving as the half-width. The photons are stochastically
directed toward that angle. The probability of a photon entering a 10 µm × 10 µm
section of the QD surface located 1mm away from the light source is illustrated in
Fig. 15,where the probability density is integrated over each section of theQDsurface
to obtain the section probability. The photons emitted from the QD as fluorescence
are presumed to travel in a random direction.

Figure 16 shows the probability of a photon incident on the photodiode at the
origin, which is 1 µm away from the QD surface. For greater distances, photons
enter the photodiode at the origin from a broad range of locations, but for 1 µm,
photons primarily enter the photodiode from the QD directly above it.

Fig. 15 Incidence
probability from the light
source to the QD surface
(Distance 1 mm)
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Fig. 16 Incidence
probability from the QD
surface to the origin PD
(Distance 1 µm)
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4.1.2 Photon Input/Output Ratio in QD network

Let us calculate the input-output ratio of photons in a QD. The decay of the flu-
orescence intensity I (t) in a QD is expressed as an exponential decay as follows
[12]:

d I (t)

dt
= − 1

τ0
I (t), (2)

I (t) = I0exp(− t

τ0
). (3)

In this study, τ0 is assumed to be constant, but it is known that the average fluo-
rescence lifetime of the entire QD varies depending on the density and light intensity
[13]. FRET phenomena are often observed between donors and acceptors, but they
can also occur in a single QD. For simplicity, we consider fluorescence in a single
type of QD.

The QDs that are newly excited by incoming photons are assumed to be QDs that
are not currently excited. It is also assumed that the QDs are equally spaced lattice
structures. Adding the excited term, we obtain the following equation:

d I (t)

dt
= − 1

τ0
I (t) + (NA − I (t)) × σA

S
× Nphoton, (4)

where I (t) is the number of excited QDs, NA is the number of QDs in the region of
interest, σA is absorption cross section of QD, S is region area, and Nphoton is the
number of photons injected into the region per unit time.

Since Nphoton is a constant in the case of DC incidence, d I (t)
dt = 0 in equilibrium,

we have

I (t) = NA × σA
S × Nphoton

1
τ0

+ σA
S × Nphoton

. (5)



104 M. Hashimoto et al.

In the case of pulse input, Nphoton is changed to a square wave, and we use the
transient response given by the following equation. For pulse input in this study, the
period was set to 20 ns, with an on-time of 1 ns and an off-time of 19 ns:

d I (t)

dt
=

{ − 1
τ0
I (t), (light source off)

− 1
τ0
I (t) + (NA − I (t)) × σA

S × Nphoton . (light source on)
(6)

At this time, the number of photons emitted from the QD surface as fluorescence
per unit time is given by substituting I (t) into Eq. (2) and multiplying it by the QD’s
emission efficiency.

4.1.3 Sensor Energy

The sensor part is supposed to consist of a photodiode, a comparator, and an 8-bit
counter. The assumed structure is shown in Fig. 17. In the photodiode, the voltage
across it under reverse bias gradually decreases depending on the number of incident
photons. The overall operation of the sensor is as follows.

1. Photodiode: A photodiode converts an incident photon into a voltage by storing
it for a certain period of time, and the voltage is reduced from the supply voltage.

2. Source follower: The voltage drop of the photodiode is reduced to a voltage in
the range appropriate for the operation of the next-stage amplifier.

To counter

Photodiode Source follower Diff. Amp. Inverter

Light

Fig. 17 Sensor structure and waveforms in it
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3. Differential amplifier: The voltage change at the photodiode is amplified.
4. Inverter: The output voltage is converted into pulses.
5. 8-bit counter: Up to 256 8-bit pulses are counted.

The input voltage to the differential amplifier is determined by the photons incident
on the photodiode multiplied by the voltage conversion efficiency. In this evaluation,
the voltage drop required to output one pulse is 100 mV. Therefore, the operating
time is the time required for this 100 mV voltage drop with the highest photon
intensity multiplied by 256. In addition, the power consumption of the sensor unit is
calculated by simulating the consumption energy when a triangular wave is assumed
to be applied to the sensor unit as a voltage drop.

4.2 Result

4.2.1 Energy Dissipation

Using the probability of incidence on the photodiode at the origin and the assumed
conversion efficiency, we calculate the time required for the comparator to output one
pulse, and multiply it by the power consumption of the sensor and the light source
to obtain the energy consumption, as shown in Table 3. The parameters used in the
calculation are shown in Table 4. In this study, a laser diode (NDV4316, NICHIA) is
assumed as the light source, and the sensitivity and conversion efficiency are based
on the values of existing image sensors (S11639, Hamamatsu Photonics).

As shown in Table 3, using pulsed input light results in longer operation time. The
light source does not consume energy when off, but the sensor continues to operate.
Therefore, the energy consumption of the sensor increases roughly proportional to
the operation time even when the light source is off. From an energy standpoint, DC
input is better than pulsed input for the light source, but the pulsed input might be
better in terms of utilizing the short-term memory of the QD.

Table 3 Operating time and energy consumption of DC light and pulsed light

DC light Pulsed light

Necessary time for pulse (ns) 56.9 1250

Operating duration (μs) 14.5 320

Energy dissipated by light
source (μJ)

8.4 9.14

Energy dissipated by sensor
(nJ)

11.4 237.6
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Table 4 Parameters used for energy calculation

Parameter Value

PD conversion efficiency (μV/e) 25

Sensitivity (A/W) 0.3

Section width (μm) 10

Input wavelength (nm) 400

Output wavelength (nm) 600

QD absorption cross section (cm2) 1.51 × 10−17

QD fluorescence lifetime (ns) 20

Rated power of light source (mW) 576

4.2.2 Energy Comparison with Digital Circuit Implementation

To assess the energy efficiency of the computed energy discussed in the previous
section, we compare it with the energy consumption in a digital circuit implementa-
tion. In neural networks, the energy consumption in multiplication and accumulation
(MAC) operations and memory access becomes a concern as the complexity grows.
The energy consumption for 32-bit floating-point operations and memory access is
presented in Table 5 [14]. We will utilize these values for the comparative evaluation
in this section.

Letm be the number of light sources and n be the number of PDs. Consider adding
upweighted inputs in a fully connected layer.Weassume that the input transformation
in theQDnetwork is equivalent to the calculation in a fully connected layer. Ifwe read
weights from RAM (DRAM, SRAM), we need to perform addition, multiplication,
and weight readingm × n times each. On the other hand, the energy consumption of
the light sources and sensors is proportional to their respective numbers. Therefore,
the energy consumption for digital circuit implementation and physical reservoir
computing implementation can be calculated as follows:

• SRAM: (0.9 + 3.7 + 5) × mn = 9.6 pJ × mn
• DRAM: (0.9 + 3.7 + 640) × mn = 644.6 pJ × mn
• DC light source + sensor: 8.4 µJ × m + 11.4 nJ × n
• pulse light source + sensor: 9.14 µJ × m + 238 nJ × n.

Table 5 Energy consumption of 32-bit floating-point arithmetic and memory access

Operation Energy (pJ)

Addition 0.9

Multiplication 3.7

SRAM Read (8 KB) 5

DRAM Read (8 KB) 640
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Table 6 m, n values achieving lower power dissipation than digital implementation (DC light)

SRAM DRAM

100 mV m:104, n:106 m:102, n:105

10 mV m:103, n:105 m:10, n:104

Table 7 m, n values achieving lower power dissipation than digital implementation (pulsed light)

SRAM DRAM

100 mV m:106, n:106 m:103, n:105

10 mV m:105, n:105 m:102, n:104

Tables 6 and 7 show the values of m and n where the energy consumption of the
light sources and the sensors is smaller than that of digital circuit implementation.
We compared the energy consumption of SRAM read and DRAM read in digital
circuit implementation. In this simulation, we assume that the comparator outputs 1
pulse at 100 mV, and when 10 mV corresponds to 1 pulse, the time becomes 1/10.
From Tables 6 and 7, we can see that increasing the number of light sources m and
PDs n results in lower energy consumption than digital circuit implementation. This
is because in the proposed device, the energy consumption only increases by the
sum of the energy consumption of the light sources and sensors when m and n are
increased. Comparing DC and pulse light sources, the DC light source gives smaller
m value, meaning that the DC light source is more energy efficient.

In this evaluation, we assumed that the conversion of the input in the QD network
corresponds to the computation in the fully connected layer, but more energy-saving
operation can be expected when more complex conversions are performed.

5 Summary

In this chapter, we explored the viability of a compact implementation for FRET-
basedoptical reservoir computing.Theproposeddevice canbe integrated into a single
package containing the light source, QDs, filters, photodetectors, and digital signal
processing capabilities.Our evaluations,which included simulation-based and proof-
of-concept-based assessments, demonstrated that the proposed device is capable of
performing tasks and is energy efficient for large-input large-output computation.
Moving forward, we plan to develop a dedicated chip for FRET-based reservoir
computing, which will be integrated into a single package.
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FRET Networks: Modeling and Analysis
for Computing

Masaki Nakagawa

Abstract FRETnetworks,which refer to energy transfer networks betweennanopar-
ticles due to Förster resonance energy transfer (FRET), are promising physical phe-
nomena for realizing high-speed, efficient, and compact information processing.
These networks can generate rich spatiotemporal signals that help in information
processing and are capable of function approximation, time-series prediction, and
pattern recognition. This chapter presents a mathematical model and analysis for
FRET networks, including some simulation methods for the model, and demon-
strates the power of FRET networks for information processing.

1 Introduction

The energy transfer caused by dipole–dipole interactions between fluorescent
molecules is known as Förster resonance energy transfer (FRET). Förster theory
[1] states the energy transfer rate (the expected number of energy transferred per unit
time) to be such that

kFRET = 3

2

κ2

τ

(
R0

r

)6

, (1)

where κ is an orientation factor, τ is a natural excited-state lifetime, R0 is the Förster
distance, and r is the distance between fluorescent molecules. This relation shows
that the energy transfer rate sensitively depends on the distance r between fluorescent
molecules as it is proportional to r to the power of −6.

Consider randomly distributing a large number of fluorescent molecules. The
fluorescent molecules are separated by various distances. Therefore, the energies
on the network are transferred through diverse pathways. If time-series signals are
input as excitation light in the network, we can expect high-dimensionalized and
nonlinearized time-series signals to be produced as fluorescence. Furthermore, we
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can expect some memory of previous input to be left in the network because input
energy cycles to some extent in the network. Therefore, this energy transfer network
due to FRET can be a prominent phenomenon toward a novel information processing
device.

FRET has been used as local nanoscale signaling without molecular diffusion
processes. For example, local signaling by FRET between fluorescent molecules on
DNA substrates is used as photonic logic gates [2–5]. As previously stated, the kinet-
ics of single-step FRET is well explained by Förster theory, even in special environ-
ments such as membranes and solutions (see Chaps. 13–15 in [1]). Furthermore, the
kinetics of multistep FRET (a cascade of FRET) can also be understood in principle
using Förster theory. Multistep FRET has been demonstrated experimentally on lin-
ear DNA scaffolds using heterogeneous fluorescent dyes [6] and even homogeneous
fluorescent dyes [7]. Furthermore, multistep FRET occurs also in hetero- and homo-
geneous quantum dots (QDs) [8, 9]. If spatially distributed fluorescent molecules
are excited simultaneously, multistep FRET can occur over multiple locations and
times, where fluorescent molecules act as both donors and acceptors depending on
temporally changing situations. This multistep FRET network is the one we will
consider in the study.

The spatiotemporal dynamics of FRET networks are very important from an
information processing perspective. For example, the spatiotemporal dynamics of
multistep FRET have been used to design intelligent system components, such as
unclonable physical keys [10] and photonic logic gates [2–5]. Some FRET net-
works on spatially distributed QDs are shown to generate diverse spatiotemporal
signals that can be used for information processing [11]. The key to designing
information-processing applications for FRET networks is to understand the spa-
tiotemporal behavior of FRET networks. In our previous paper [12], we developed
a spatiotemporal mathematical model for FRET networks and revealed its tempo-
ral characteristic behavior. We emphasize that our model applies to any fluorescent
molecule. However, we concentrate on QD-based FRET networks because QDs are
expected to be important fundamental elements in realizing compact and energy-
efficient information-processing systems [13–16].

The rest of this chapter is organized as follows: In Sect. 2, we introduce a spa-
tiotemporal model for FRET networks, called the multiple-donor model, and show
various analytical (theoretical) results. Section 3 presents some FRET network sim-
ulation methods, from deterministic to stochastic ones, and compares deterministic
and stochastic methods to reveal the pros and cons of both methods. In Sect. 4,
we show the power of FRET networks for information processing by simulations,
particularly nonlinear function approximation, chaotic time-series prediction, and
handwritten digit recognition. Finally, we summarize this chapter and mention some
future works in Sect. 5.
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2 Spatiotemporal Model for FRET Networks

In this section, we first introduce a spatiotemporal mathematical model for FRET
networks. Then, we show some analytical results for the model. The first part of this
section almost follows our previous paper [12].

2.1 Multiple-Donor Model

Wanget al. [17, 18] developed amathematicalmodel to describe the dynamics ofmul-
tistep FRET that assumes networks with no more than one excited molecule, which
we refer to as the “single-donormodel.” The single-donormodel is a continuous-time
Markov chain (CTMC) with a finite or countable state space where the time spent
in each state is exponentially distributed. The single-donor model assumes that the
system has only one excited molecule and hence, cannot consider the “level occu-
pancy effect,” which means that already excited molecules are effectively forbidden
from energy absorption. However, the level occupancy effect is essential for FRET
networks because they involve multiple excited molecules (donors) and non-excited
molecules (acceptors). The “multiple-donormodel” [12] is an extended version of the
single-donor model that assumes networks with multiple excited molecules and non-
excited molecules. Although similar models that consider the level occupancy effect
already exist [19, 20], their approaches differ from ours in the following points: (i)
Their main aim is to present a Monte Carlo simulation algorithm using their models.
On the contrary, our main aim is to produce the theoretical results using our model
and thus understand the spatiotemporal behavior fundamentally. (ii) They introduce
the level occupancy effect as the complete exclusion of already excited molecules
from their roles as acceptors, whereas our model incorporates such roles by consider-
ing the Auger recombination. (iii) Their models mainly handle the decay processes,
whereas our model additionally covers the light-induced excitation process.

In themultiple-donormodel for the system consisting of N QDs,we first represent
the system state by an element in {0, 1}N , where each QD is assigned either a ground
state “0” or an excited state “1.” Then, we consider the system state probability
Pi1...iN (t) such that the system is in (i1, i2, . . . , iN ) ∈ {0, 1}N at time t , where in
represents thenthQD’s state, 0 or 1. Evidently, 0 ≤ i1 + i2 + · · · + iN ≤ N . It should
hold that

∑
(i1,...,iN )∈{0,1}N Pi1...iN (t) = 1 for all t ∈ R.Asweconsider thewhole system

state at each time, we can consider the level occupancy effect in FRET between QDs,
as shown later.

Next, we define the state transition rules between system states (i1, . . . , iN ). The
following symbols are used:

Sn = (i1, . . . , in−1, 0, in+1, . . . , iN ),

S∗
n = (i1, . . . , in−1, 1, in+1, . . . , iN ).
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The state transition rules consist of the following five rules in the multiple-donor
model:

S∗
n

kFn−→ Sn, (2a)

S∗
n

kNn−→ Sn, (2b)

S∗
n + Sm

kFRETnm−→ Sn + S∗
m, (2c)

S∗
n + S∗

m

kFRETnm−→ Sn + S∗
m, (2d)

Sn
kEn (t)−→ S∗

n , (2e)

where kFn and kNn denote the rate constants of radiative (fluorescence) decay and
nonradiative decay for the nth QD, respectively, and kFRETnm denotes the rate constant
of FRET from the nth QD to the mth QD. kEn (t) denotes the rate constant of the
excitation process with irradiation of time-dependent excitation light for the nth QD.
The time spent in each state is exponentially distributed with each rate constant, kFn ,
kNn , k

FRET
nm , or kEn (t). We also illustrate the state transition rules (2a–2e) in Fig. 1.

The rate constants in the state transition rules (2a–2e) are given using the funda-
mental physical constants as follows:

kFn = Qn/τn, (3a)

kNn = (1 − Qn) /τn, (3b)

kFRETnm = (3/2)
(
κ2
nm/τn

)
(Rnm/rnm)6 , (3c)

kEn (t) = σn Iex,n(t), (3d)

Fig. 1 State transitions in the multiple-donor model: (a) Deactivation due to fluorescence, (b) Non-
radiative deactivation, (c) Excitation–deactivation due to FRET, (d) Deactivation due to the level
occupancy effect, and (e) Excitation due to light-induced excitation. Note that hν(f), hν(e) denote
a fluorescence photon and an excitation photon, respectively
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Fig. 2 Auger recombination in the process of two excited-QDs interactions. Since Auger recom-
bination is a fast process, the resulting state transition follows Rule (2d)

where Qn, τn denote the quantum yield and the natural excited-state lifetime for the
nth QD, respectively. κ2

nm is the orientation factor between the nth and mth QDs.
Rnm and rnm denote the Förster and physical distances from the nth QD to the mth
QD, respectively. σn denotes the collision cross section for the nth QD, and Iex,n(t)
denotes the irradiation photon density for the nth QD.

We note that the transition rules (2a–2c) are essentially equivalent to the ones
of the single-donor model [17, 18]. On the other hand, the transition rules (2d–
2e) are originally introduced in our study [12]. Rule (2d) describes an energy
transfer by FRET and the subsequent Auger recombination. The Auger recom-
bination is a nonradiative decay process from a higher energy excitation state
S∗∗
m = (i1, . . . , im−1, 2, im+1, . . . , iN ) to the first level excitation state S∗

m . Although
the Auger recombination can bemodeled as several interactions [21], wewill assume
here for simplicity that this decay process is relatively rapid, i.e., S∗∗

m
∞−→ S∗

m (see
Fig. 2). Therefore, the resulting state transition follows Rule (2d). Finally, Rule (2e)
is the state transition due to the light-induced excitation process.

For simplicity, we assume that the orientation factors κ2
nm and physical dis-

tances rnm are constant in time, i.e., QDs have low anisotropies and minimal lateral
motions during their excited-state lifetimes. Our model can also be applied to such
situations for (i) orientation factor values other than the commonly assumed 2/3 or
even dynamic ones and (ii) diffusion of QDs during their excited states. However,
when a considerably faster rotation or diffusion compared to their excited-state life-
times is considered, one may need to use simpler models (see Chap. 4 in [22] or [23]
for the dynamic averaging regime and [24] for the rapid-diffusion limit).

Considering the inflow and outflow of probability, the master equation of the
multiple-donormodel defined by the state transition rules (2a–2d) is given as follows:

d

dt
Pi1···iN (t) = −

N∑
n=1

in(k
F
n + kNn )Pi1···iN (t)

+
N∑

n=1

īn(k
F
n + kNn )S+

n Pi1···iN (t) −
N∑

n,m=1

ink
FRET
nm Pi1···iN (t)

+
N∑

n,m=1

īnimk
FRET
nm S+

n Pi1···iN (t) +
N∑

n,m=1

īnimk
FRET
nm S+

n S−
m Pi1···iN (t)
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−
N∑

n=1

īnk
E
n (t)Pi1···iN (t) +

N∑
n=1

ink
E
n (t)S−

n Pi1···iN (t), (4)

where īn denotes the inverted binary for the nth QD’s state in , i.e., īn = 1 −
in , and S±

n denotes the shift operator for states (i1, . . . , iN ), i.e., S±
n Pi1...iN (t) =

Pi1...in±1...iN (t). Notably, if the state (i1, . . . , in ± 1, . . . , iN ) is improper, i.e., not in
{0, 1}N , Pi1...in±1...iN (t) = 0. In addition, we set kFRETnn = 0. The time-dependent flu-
orescence intensity I (t) is expressed as

I (t) =
∑

(i1,...,iN )∈{0,1}N

[
N∑

n=1

ink
F
n Pi1...iN (t)

]
. (5)

Note that the master equation (4) includes spatial information through the rate con-
stants kFRETnm (i.e., the network structure of QDs). In the following sections, we focus
on the temporal behavior of the FRET network and analyze our model and also the
single-donor model.

As mentioned earlier, the single-donor model assumes networks with at most one
excited molecule [17, 18]. Namely, only the state transition rules described in (2a–
2c) are considered. Therefore, the master equation of the single-donor model is as
follows:

d

dt
Pn(t) = −(kFn + kNn )Pn(t) −

N∑
m=1

kFRETnm Pn(t) +
N∑

m=1

kFRETmn Pm(t), (6)

where Pn(t) denotes the probability that the nth QD is in an excited state.
Now, we will show that the master equation (4) of the multiple-donor model

coincides with the master equation (6) of the single-donor model if we assume
networks with no excitation light and only one excited molecule, i.e., kEn = 0
and i1 + · · · + iN ≤ 1. To show this, let us assume i1 + · · · + iN ≤ 1 and put
P n
0...1...0(t) = Pn(t) in (4). Then, one can easily transform each term in the right-

hand side of (4) as follows: (the first term) = −(kFn + kNn )Pn(t), (the second term) =
0, (the third term) = −∑N

m=1 k
FRET
nm Pn(t), (the fourth term) = 0, (the fifth term) =∑N

m=1 k
FRET
mn S+

mS−
n Pn(t) =∑N

m=1 k
FRET
mn Pm(t), (the sixth term) = 0,

(the seventh term) = 0.

2.2 Analytical Results

2.2.1 Multicomponent Exponential Decay

Here, we present the fundamental temporal property of the decay process of the fluo-
rescence intensity derived from the multiple-donor model with kE(t) = 0. We show
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that nontrivial network-induced properties of fluorescence intensity decay occur
when multiple donors are considered. The derivation will almost follow our pre-
vious paper [12], except for the expression of some formulae.

Now consider the simplest situation where the network consists of only one type
of QDs, i.e., kFn = kF, kNn = kN, kF + kN = 1/τ for all n, and kFRETnm = kFRETmn for all
n,m.

First, we will show that the single-donor model (6) implies the single-exponential
decay. Because the fluorescence intensity in the single-donor model (6) becomes
I (t) = kF

∑N
n=1 Pn(t), the derivative of I (t) becomes

d

dt
I (t) = −1

τ
I (t) −

N∑
n,m=1

kFRETnm kFPn(t) +
N∑

n,m=1

kFRETmn kFPm(t). (7)

The sum of the second and third terms on the right-hand side of (7) is zero because
of the symmetricity of kFRETnm . Therefore, the single-donor model (6) implies the
single-exponential decay, i.e., I (t) = I (0) exp(−t/τ).

Next, we will show that the multiple-donor model (4) implies themulticomponent
exponential decay, i.e., I (t) =∑ j α j exp(−t/τ j ). To show this, we define the l-
excited states as

�l = {(i1, . . . , iN ) ∈ {0, 1}N : i1 + · · · + iN = l}

and the time-dependent fluorescence intensity from the l-excited states as follows:

Il(t) =
∑

(i1,...,iN )∈�l

[
N∑

n=1

ink
F
n Pi1...iN (t)

]
. (8)

Obviously, I (t) =∑N
l=1 Il(t) holds from (5) and (8). The following expression for

the all-excited-state probability P1...1(t) can be easily derived from (4) in the case
where the network consists of only one type of QDs:

d

dt
P1...1(t) = −N

τ
P1...1(t) −

(
N∑

n,m=1

kFRETnm

)
P1...1(t). (9)

Therefore, the all-excited-state probability P1...1(t) shows the single-exponential
decay as follows:

P1···1(t) = P1...1(0) exp

(
− t

τ
(N )∗

)
, τ (N )

∗ =
(
N

τ
+

N∑
n,m=1

kFRETnm

)−1

. (10)
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Because IN (t) = NkFP1...1(t), the resulting fluorescence intensity IN (t) also shows

the single-exponential decay IN (t) = IN (0) exp
(
−t/τ (N )∗

)
. Similarly, the following

expression for the (N − 1)-excited-state probability P n
1...0...1(t) can be derived from

(4) by a straightforward calculation:

d

dt
P n
1...0...1(t) =

N∑
m=1

Anm P
m

1...0...1(t) +
(
N

τ
+

N∑
m=1

kFRETnm

)
P1...1(t), (11)

where the elements of the matrix A are

Anm = −

⎛
⎜⎜⎝N − 1

τ
+

N∑
n′,m ′=1
(n′ �=n)

kFRETn′m ′

⎞
⎟⎟⎠ δnm + kFRETnm (1 − δnm). (12)

δnm denotes the Kronecker delta. Since matrix A is real symmetric, it has real eigen-
values and can be diagonalized. Let λ1, . . . , λN be the real eigenvalues (with mul-
tiplicity) of the matrix A. One can show that the matrix A is negative definite, i.e.,
xTAx < 0 for all nonzero x ∈ R

N , by a straightforward calculation and rearrange-
ment of the terms:

N∑
n,m=1

xn Anmxm

= −N − 1

τ

N∑
n=1

x2n −
N∑

n=1

⎛
⎜⎜⎝

N∑
n′,m ′=1
(n′ �=n)

kFRETn′m ′

⎞
⎟⎟⎠ x2n +

N∑
n,m=1

kFRETnm xnxm

= −N − 1

τ

N∑
n=1

x2n −
N∑

n=1

⎛
⎜⎜⎝

N∑
n′<m ′

(n′,m ′ �=n)

2kFRETn′m ′

⎞
⎟⎟⎠ x2n −

∑
n<m

kFRETnm (xn − xm)2 < 0,

(13)

where we frequently used the symmetricity of kFRETnm . Therefore, all of the eigenval-
ues λ j are strictly negative. Thus, one can see that the solution of (11), P n

1...0...1(t),

is a linear sum of exp
(
−t/τ (N−1,1)∗

)
, . . ., exp

(
−t/τ (N−1,N )∗

)
and exp

(
−t/τ (N )∗

)
,

where the decay times are τ
(N−1, j)
∗ = |λ j |−1 labeled in ascending order. Because

IN−1(t) = (N − 1)kF
∑N

n=1 P
n

1...0...1(t), the resulting fluorescence intensity IN−1(t)
shows the multicomponent exponential decay, including these exponential decay
components. Finally, we will show that the fluorescence intensity I1(t) includes
the exponential decay component exp(−t/τ). The following expression for the 1-
excited-state probability P n

0...1...0(t) can be derived from (4) by a straightforward
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calculation:

d

dt
P n
0...1...0(t) = − 1

τ
P n
0...1...0(t)

+
N∑

m=1
(m �=n)

(
1

τ
+ kFRETmn

)
P n m
0...1...1...0(t). (14)

Therefore, the 1-excited-state probability P n
0...1...0(t) includes the exponential decay

exp(−t/τ) as P n m
0...1...1...0(t)goes asymptotically to zero faster than P n

0...1...0(t). Because
I1(t) = kF

∑N
n=1 P

n
0...1...0(t), the resulting fluorescence intensity I1(t) also includes

the exponential decay component exp(−t/τ). Note that we used a physical insight
in the argument for (14); hence, it is not rigorous proof. In summary, the multiple-
donor model (4) implies that the fluorescence intensity I (t) shows the multicom-
ponent exponential decay, including at least N + 2 exponential decay components,

i.e., exp
(
−t/τ (N )∗

)
, exp

(
−t/τ (N−1,1)∗

)
, . . ., exp

(
−t/τ (N−1,N )∗

)
, and exp (−t/τ)

if P1...1(0) �= 0 and P n
1...0...1(0) �= 0 for some n. We expect that each fluorescence

intensity Il(t) from the l-excited states has potentially up to
(N
l

)
exponential decay

components. Therefore, the resulting fluorescence intensity I (t) has potentially up to∑N
l=1

(N
l

) = 2N − 1 exponential decay components.Note that the observable number
of exponential decay components can be smaller if fewer QDs are initially excited.

The above theoretical result, i.e., the appearance of multicomponent exponential
decay even in single-type QDs, is qualitatively supported by experimental results
obtained from spatially distributed single-type CdSe/ZnS QDs. See Sect. 3B in our
previous study [12] for further details.

2.2.2 Some Analytical Results for Small QD Systems

Wewill show some analytical formulae for the fluorescence intensity in specific cases
that assume equidistant QD systems, as shown in insets of Fig. 3. For other points,
we continue to treat networks consisting of only one type of QDs and no excitation
light. Let us introduce

P(t) = [PT
�N

PT
�N−1

. . . PT
�0

]T
,

where P�l denotes a column vector consisting of Pi1...iN (t) for (i1, . . . , iN )

∈ �l , in which subscripts are in descending order as binary numbers. For
example, when N = 2, P(t) = [P11, P10, P01, P00]T, and when N = 3, P(t) =
[P111, P110, P101, P011, P100, P010, P001, P000]T. The master equation (4) in the
multiple-donor model can also be expressed as

d

dt
P(t) = M(t)P(t), (15)
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where M(t) denotes the transition matrix with 2N rows and 2N columns for a N QD
system.

First, consider the simplest situation where the network consists of only one type
of QDs and no excitation light. Then, the matrix M in the case of N = 2 (see inset
in Fig. 3(a)) becomes

M = 1

τ

⎡
⎢⎢⎣

−2(ρr + 1) 0 0 0
ρr + 1 −(ρr + 1) ρr 0
ρr + 1 ρr −(ρr + 1) 0

0 1 1 0

⎤
⎥⎥⎦ for N = 2, (16)

where ρr = (R0/r)
6, and r is the distance between two QDs.

Eigenvalue analysis using Maxima for the master equation (15) with the matrix
(16) derives the fluorescence intensity decay of case N = 2, which has two expo-
nential components:

I (t) = 2kF
Ar

2ρr + 1
exp

(
−2ρr + 2

τ
t

)
+ kF

Br

2ρr + 1
exp

(
−1

τ
t

)
for N = 2,

(17)

where Ar = ρr P�2(0) and Br = 2(ρr + 1)P�2(0) + (2ρr + 1)P�1(0). We introduce
initial state probabilities for l-excited states �l :

P�l (0) =
∑

(i1,...,iN )∈�l

Pi1...iN (0).

We show the shape of (17) in Fig. 3(a).
In the same way, the matrix M in the case of N = 3 (see inset in Fig. 3(b))

becomes

Fig. 3 Analytical and numerical fluorescence intensity decay for equidistant QD systems: (a)
2QD, (b) 3QD, and (c) 4QD systems (see insets). Each color dot corresponds to each distance
r = c1/n × R0, c = 3, 2, 1, 1/2, and 1/3, respectively, where Förster distance R0 = 6.18 nm, and
Dimension n = 2 for (a) and (b), n = 3 for (c). The solid black lines are analytical results obtained
using (17), (19), and (20) for (a), (b), and (c), respectively. The dots are numerical results obtained
from stochastic simulation, tRSSA, described in the next section
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M = 1

τ

⎡
⎢⎢⎢⎣

A1×1 · · · · · · O

B3×1 C3×3 . .
. ...

... D3×3 E3×3
...

O · · · F1×3
...

⎤
⎥⎥⎥⎦ for N = 3, (18)

where

A = −(6ρr + 3), B = [2ρr + 1 2ρr + 1 2ρr + 1
]T

,

C =
⎡
⎣−(4ρr + 2) ρr ρr

ρr −(4ρr + 2) ρr
ρr ρr −(4ρr + 2)

⎤
⎦ , D =

⎡
⎣ρr + 1 ρr + 1 0

ρr + 1 0 ρr + 1
0 ρr + 1 ρr + 1

⎤
⎦ ,

E =
⎡
⎣−(2ρr + 1) ρr ρr

ρr −(2ρr + 1) ρr
ρr ρr −(2ρr + 1)

⎤
⎦ , F = [1 1 1

]
.

Eigenvalue analysis using Maxima for the master equation (15) with the matrix (18)
derives the fluorescence intensity decay of case N = 3, which has three exponential
components:

I (t) = 6kF
Ar

(3ρr + 1)(4ρr + 1)
exp

(
−6ρr + 3

τ
t

)

+ 2kF
Br

(2ρr + 1)(4ρr + 1)
exp

(
−2ρr + 2

τ
t

)

+ kF
Cr

(2ρr + 1)(3ρr + 1)
exp

(
−1

τ
t

)
for N = 3, (19)

where Ar = ρ2
r P�3(0), Br = 3ρr (2ρr + 1)P�3(0) + ρr (4ρr + 1)P�2(0), and Cr =

3(ρr + 1)(2ρr + 1)P�3(0) + 2(ρr + 1)(3ρr + 1)P�2(0) + (2ρr + 1)(3ρr + 1)
P�1(0). We show the shape of (19) in Fig. 3(b).

Furthermore, eigenvalue analysis usingMaxima for the master equation (15) with
the matrix M for N = 4 (see inset in Fig. 3(c)) derives the fluorescence intensity
decay of case N = 4 (where we avoid the long explicit formula for M), which has
four exponential components:

I (t) = 24kF
Ar

(4ρr + 1)(5ρr + 1)(6ρr + 1)
exp

(
−12ρr + 4

τ
t

)

+ 6kF
Br

(3ρr + 1)(4ρr + 1)(6ρr + 1)
exp

(
−6ρr + 3

τ
t

)

+ 2kF
Cr

(2ρr + 1)(4ρr + 1)(5ρr + 1)
exp

(
−2ρr + 2

τ
t

)

+ kF
Dr

(2ρr + 1)(3ρr + 1)(4ρr + 1)
exp

(
−1

τ
t

)
for N = 4, (20)
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Fig. 4 Nonlinearity in themultiple-donormodel: (a) single-QD, and (b) two-QD situation. (b) Each
color dot corresponding to each distance r = √

c × R0, c = 5, 3, 2, 1, 1/2, 1/3, 1/5, respectively,
where Förster distance R0 = 6.18 nm

where Ar = ρ3
r P�4(0), Br = 4ρ2

r (3ρr + 1)P�4(0) + ρ2
r (6ρr + 1)P�3(0), Cr = 6ρr

(2ρr + 1)(3ρr + 1)P�4(0) + 3ρr (2ρr + 1)(5ρr + 1)P�3(0) + ρr (4ρr + 1)
(5ρr + 1)P�2(0), and Dr = 4(ρr + 1)(2ρr + 1)(3ρr + 1)P�4(0) + 3(ρr + 1)(2ρr

+ 1)(4ρr + 1)P�3(0) + 2(ρr + 1)(3ρr + 1)(4ρr + 1)P�2(0) + (2ρr + 1)(3ρr + 1)
(4ρr + 1)P�1(0). We show the shape of (20) in Fig. 3(c).

From the above specific results (17, 19, 20), we can infer the general case for N ∈
N that τ

(N )∗ < τ
(N−1,1)∗ ≤ · · · ≤ τ

(N−1,N )∗ < τ , that is, the network-induced decay
times are shorter than the natural excited-state decay time τ .

We show the nonlinearities of themultiple-donormodel in the stationary excitation
situation at the end of this subsection. First, considering the single QD case (see inset
in Fig. 4(a)) with stationary excitation (the rate constant kE), the matrix M in the
case of N = 1 becomes

M = 1

τ

[−τkE 1
τkE −1

]
for N = 1. (21)

Eigenvalue analysis using Maxima for the master equation (15) with the matrix (21)
derives the stationary fluorescence intensity of case N = 1:

If = kF
Ie

Ie + (στ)−1
for N = 1, (22)

where Ie = σ−1kE is the excitation intensity for the collision cross sectionσ .We show
this nonlinearity between the fluorescence intensity If and the excitation intensity Ie
in Fig. 4(a).

Next, considering the two-QD case (see inset in Fig. 4(b)) with stationary uniform
excitation (the rate constant kE for each QD), the matrix M in the case of N = 2
becomes
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M = 1

τ

⎡
⎢⎢⎣

−2(ρr + 1) τkE τkE 0
ρr + 1 −(ρr + 1 + τkE) ρr τkE

ρr + 1 ρr −(ρr + 1 + τkE) τkE

0 1 1 −2τkE

⎤
⎥⎥⎦ for N = 2,

(23)

where ρr = (R0/r)
6, and r is the distance between two QDs. Eigenvalue analysis

usingMaxima for themaster equation (15) with thematrix (23) derives the stationary
fluorescence intensity of case N = 2:

If = 2kF
I 2e + σ−1(τ−1ρr + τ−1)Ie

I 2e + 2σ−1(τ−1ρr + τ−1)Ie + (στ)−2ρr + (στ)−2
, (24)

where Ie = σ−1kE is the excitation intensity for the collision cross sectionσ .We show
this nonlinearity between the fluorescence intensity If and the excitation intensity
Ie in Fig. 4(b). Note that the nonlinearity in Fig. 4(b) depends on the distance r
between two QDs and reveals an intermediate step as the distance r decreases. The
two-QD case result of (24) suggests that in a general QD network, the nonlinearity
between fluorescence intensity (output) and excitation intensity (input) depends on
the network structure complexity and has multiple distinct intermediate steps.

3 Simulation Methods

We can use either deterministic or stochastic approaches to simulate the multiple-
donor model. Each method has its advantages and disadvantages.

3.1 Deterministic Simulation

The deterministic approach numerically solves the master equation (4) as an initial
value problem for a 2N -dimensional system of ordinary differential equations, for
example, the Euler method and the Runge–Kutta method:

d

dt
P(t) = F(P(t), t)

or
d

dt
Pi1...iN (t) = Fi1...iN ({Pi1...iN (t)}, t), (25)

where P(t) = (P1...1(t), P1...0(t), . . . , P0...0(t))T. The calculation time in the deter-
ministic simulation increases exponentially with 2N for the number of QDs, N . In the
simulation with large N , the calculation of Fi1...iN dominates the whole calculation
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Algorithm 1 Calculate the value of Fi1...iN in the right-hand side of (4)
Input: t , (i1, . . . , iN ), and {P1...1(t), . . . , P0...0(t)}
Output: Fi1...iN ({Pi1,...,iN (t)}, t)
1: set sum = 0
2: for n = 1, . . . , N do
3: if in = 1 then
4: sum = sum − (kFn + kNn )Pi1...iN (t) + kEn (t)S−

n Pi1···iN (t)
5: for m = 1, . . . , N do
6: sum = sum − kFRETnm Pi1...iN (t)
7: end for
8: else
9: sum = sum + (kFn + kNn )S+

n Pi1...iN (t) − kEn (t)Pi1...iN (t)
10: for m = 1, . . . , N do
11: if im = 1 then
12: sum = sum + kFRETnm

{S+
n Pi1...iN (t) + S+

n S−
m Pi1...iN (t)

}
13: end if
14: end for
15: end if
16: end for
Note: This optimized algorithm was created by Dr. Jaehoon Yu (former associate professor at the
Tokyo Institute of Technology).

time. Therefore, optimizing the calculation of Fi1...iN is important to accelerate the
deterministic simulation. We show an optimized algorithm for calculating Fi1...iN in
Algorithm 1, which reduces “if” conditional branches, “for” loops, and zero multi-
plications.

It is best to avoid using “if” conditional branches for GPU parallel computing.
We transform the formula Fi1...iN as follows for GPU parallelization:1

Fi1...iN ({Pi1,...,iN (t)}, t) =

2
N∑

n=1

(
1

2
− in

)[(
kFn + kNn +

N∑
m=1

(in ⊕ im)kFRETnm

)
Pi1...1...iN (t) − kEn (t)Pi1...0...iN (t)

]

+
N∑

n,m=1

(1 − in)imS+
n S−

m Pi1...iN (t). (26)

This formula enables us to create an optimized algorithm that calculates Fi1...iN with-
out “if” conditional branches, which is suitable for GPU parallel computing. An
algorithm optimized for GPU parallel computing will be created in future work.

1 This transformed formula (26) was also created by Dr. Jaehoon Yu (former associate professor at
the Tokyo Institute of Technology).
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3.2 Stochastic Simulation

The stochastic approach generates a sample path of a stochastic process that obeys
the master equation (4) by Gillespie’s direct method (DM) [25], the first reaction
method (FRM) [26], and the next reaction method (NRM) [27]. Consider one of the
state transitions (2) in the multiple-donor model, say event i , and assume its rate
constant is ki . Then, the occurrence frequency per unit time, ai , called “propensity,”
for the event i is

a(n)
1 = ink

F
n (n = 1, . . . , N ), (27a)

a(n)
2 = ink

N
n (n = 1, . . . , N ), (27b)

a(n,m)
3 = in(1 − im)kFRETnm (n,m = 1, . . . , N ; n �= m), (27c)

a(n,m)
4 = inimk

FRET
nm (n,m = 1, . . . , N ; n �= m), (27d)

a(n)

5 = ink
E
n (t) (n = 1, . . . , N ). (27e)

The total number of the above propensities ai is 3N + 2(N 2 − N ) = 2N 2 + N .
However, we can reduce the total net number of propensities by integrating the third
and fourth events:

a(n)
1 = ink

F
n (n = 1, . . . , N ), (28a)

a(n)
2 = ink

N
n (n = 1, . . . , N ), (28b)

a(n,m)
3∧4 = ink

FRET
nm (n,m = 1, . . . , N ; n �= m), (28c)

a(n)

5 = ink
E
n (t) (n = 1, . . . , N ), (28d)

where we can determine which third or fourth event occurs according to im being
0 or 1. Therefore, the total number of propensities is reduced to 3N + (N 2 − N ) =
N 2 + 2N . In the following, we write the propensities as ai (i = 1, . . . , N 2 + 2N )

by flattening the above propensities a(∗)
i of (28).

Gillespie-type algorithms are based on the fact that the waiting time τi until
a subsequent event i occurs follows an exponential distribution with a propen-
sity, P(τi ) = aie−ai τi (τi > 0). The DM first generates a waiting time τ until some
event occurs by an exponential distribution P(τ ) = ae−aτ (τ > 0), where a is the
sum of propensities such that a =∑i ai . After generating a waiting time τ , which
event occurred is determined according to the ratio of propensities ai (event i is
selected with probability ai/a). Depending on the event that has occurred, the state
(i1, . . . , iN ) is changed, and the propensities ai are updated. We show a DM algo-
rithm in Algorithm 2. We note that the DM does not assume time-dependent rate
constants. Therefore, the DM cannot be adopted for the case of modulated excitation
light, which includes time-dependent rate constants kEn (t).

The time-dependent rejection-based stochastic simulation algorithm (tRSSA)
[28], one of the Gillespie-type algorithms, can handle time-dependent rate constants.
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Algorithm 2 Direct method (DM) [25] for the multiple-donor model (2)
Input: an initial state x = (i1, . . . , iN )

Output: a sample path {(t, x)}
1: initialize t = 0 with initial state x
2: compute propensities {ai } according to the state x
3: while t < tmax do
4: compute a =∑i ai
5: generate a random number r1 ∼ U (0, 1)
6: compute waiting time τ = (−1/a) ln r1
7: update time t = t + τ

8: generate a random number r2 ∼ U (0, 1)
9: select minimum index j s.t.

∑ j
i=1 ai > r2a

10: update state x depending on the selected event j
11: compute propensities {ai } according to the state x
12: end while

Fig. 5 Simulation results from tRSSA [28] for slightly large FRET networks: 50 × 50 lattice
arrangements. The solid lines represent the intensity data accumulated every 0.1 ns. The theoretically
predicted features are found as follows: (i) the multicomponent exponential decay, (ii) fast decay
in earlier times and slow decay in later times, and (iii) slower decay during higher dilution or lower
excitation

ThemodifiedNRM (MNRM) [29], another Gillespie-type algorithm, can also handle
time-dependent rate constants. However, the generation of the waiting time in the
MNRM relies on the tractable calculation of the integration of the time-dependent
rate constants and the solution of the inverse problem (see [28] for details). Fur-
thermore, the tRSSA we adopted here is a computationally efficient and versatile
Gillespie-type algorithm that does not rely on such tractable calculations and inverse
problem solutions. In the following, we adopted the tRSSA for the case of modu-
lated excitation light and also the case of constant excitation light. We show a tRSSA
algorithm for the multiple-donor model in Algorithm 3.

Figure 5 shows the simulation results obtained from tRSSA described above
for slightly large FRET networks. The simulation was conducted in the following
settings: QDswere located on a 50 × 50 lattice, and the lattice spacing was

√
c × R0,

where c = 5 to 1/5, as shown in the legend. The parameters of QDs were set to Q =
0.40 (quantum yield), τ = 19.5 ns (natural excited-state lifetime), and R0 = 6.18
nm (Förster distance), assuming QD585. These QD parameters are used repeatedly
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Algorithm 3 The time-dependent RSSA (tRSSA) [28] for the multiple-donor model
(2)
Input: an initial state x = (i1, . . . , iN )

Output: a sample path {(t, x)}
1: initialize t = 0 with initial state x
2: define the bound [x, x] as xi = 0 and xi = xi for i = 1, . . . , N
3: discretize [0, tmax] to k intervals 0 < t1 < · · · < tk = tmax
4: set i = 1
5: compute propensity bounds {a j } and {a j } according to x and x, respectively
6: compute a =∑ j a j
7: while t < tmax do
8: generate a random number r1 ∼ U (0, 1)
9: compute waiting time τ = (−1/a) ln r1
10: update time t = t + τ

11: if t > ti then
12: set t = ti
13: update i = i + 1
14: compute propensity bounds {a j } and {a j } according to x and x, respectively
15: go to 7
16: end if
17: generate two random numbers r2, r3 ∼ U (0, 1)
18: select minimum index j s.t.

∑ j
k=1 ak > r2a

19: set accept = false
20: if r3 ≤ a j/a j then
21: set accepted = true
22: else
23: compute propensities {a j } according to current state x
24: if r3 ≤ a j/a j then
25: set accepted = true
26: end if
27: end if
28: if accepted = true then
29: update state x depending on the selected event j
30: if x ∈ [x, x] then
31: define a new bound [x, x] around current state x
32: compute propensity bounds {a j } and {a j } according to x and x, respectively
33: end if
34: end if
35: end while

in the following and are listed in Table 1. Furthermore, κ2 (orientation factors) were
set to 2/3, assuming that our QD-experimental system is in the dynamic averaging
regime for the three-dimensional spatial and orientational case (see Chap. 4 in [22]
or [23] for effective kappa-squared values). In Fig. 5, “Strong excitation” and “Weak
excitation” denote the initially excited QDs that account for 90% and 10% of the total
amount, respectively. For simplicity, we assumed that QDs are points without volume
in the simulation. We performed 104 independent simulation trials and averaged the
results. We accumulated photons in a time interval of 0.1 ns at each time point to
evaluate the fluorescence intensity. We confirmed that the simulation results show
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Table 1 Simulation parameters assumed for QD585

Q τ R0 κ2

Quantum yield Natural excited-state
lifetime

Förster distance Orientation factor

0.40 19.5 ns 6.18 nm 2/3

multicomponent exponential decay. Specifically, the decayswere fast in earlier times,
slow in later times, and finally, with the natural decay time τ , as stated above as the
inference from the case N = 2, 3, 4. Moreover, the result shows faster decays as the
density of excited QDs increases or the excitation becomes stronger, as expected due
to the level occupancy effect. The effect promotes the emission of the transferred
and saturated energy between excited QDs through a nonradiative process such as
heat dissipation. As a result, the radiative energy dissipation becomes faster as the
density of excited QDs increases or the excitation becomes strong (see also Sect. 4.1
in [11] for a more intuitive explanation).

3.3 Comparison Between Deterministic and Stochastic
Simulation

We compare deterministic and stochastic simulations to understand the difference
in characteristics. We assume common QD parameters, as shown in Table 1. We
further assume a 4QD 2 × 2 lattice arrangement system, where the nearest neighbor
distance is R0, and the 4QD system consists of single-type QDs. In the following, the
time step of the Runge–Kutta method in the deterministic simulation is set to 0.01
ns. Meanwhile, in the stochastic simulation, the fluorescence photon accumulation
time is set to 0.1 ns, and the sampling number repeated for averaging is set to 106.

Figure 6 compares deterministic and stochastic simulations for the 4QD sys-
tem with no excitation light situation. The obtained normalized fluorescence inten-
sity decays are nearly identical, but the stochastic one includes small noises due
to the intrinsic probabilistic nature of FRET. Figure 7 compares deterministic
and stochastic simulations for the 4QD system with sinusoidal excitation light:
kE(t) = A(1 + ε sin(2π t/T )), A = 1 nm−1, ε = 0.8, and T = 5 ns. The obtained
modulated fluorescence intensities are nearly identical even under excitation light,
and the stochastic one includes small noises due to the FRET intrinsic probabilistic
nature. Figure 8 compares deterministic and stochastic simulations for the 4QD sys-
tem with rectangular excitation light: kE(t) = Aθ(tw − (t mod T )), A = 1 nm−1,
tw = 1 ns, and T = 5 ns, where θ(t) is the Heaviside function. The obtained mod-
ulated fluorescence intensities are also almost identical to the above cases, and the
stochastic one again includes small noises due to the FRET intrinsic probabilistic
nature.
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Fig. 6 Comparison of (a) deterministic and (b) stochastic simulations in the no excitation light
situation for the 4QD 2 × 2 lattice arrangement system

Fig. 7 Comparison of (a) deterministic and (b) stochastic simulations in the sinusoidal excitation
light situation for the 4QD 2 × 2 lattice arrangement system

Fig. 8 Comparison of (a) deterministic and (b) stochastic simulations in the rectangular excitation
light situation for the 4QD 2 × 2 lattice arrangement system

The above three cases suggest that the stochastic simulation results converge to
the deterministic simulation results in the limit of large sampling numbers. A large
sampling number is required for a clear result in stochastic simulations. Nonethe-
less, noises in stochastic simulations are faithful to actual observations. Therefore,
the sampling number in the stochastic simulation is determined by the considered
situations.
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Fig. 9 Comparison of calculation times between deterministic and stochastic simulations. The
network structure is chain-like, as shown in the bottom inset

Table 2 Pros and cons of deterministic and stochastic simulations

Deterministic simulation Stochastic simulation

Merits Merits

• Fewer QDs means faster calculations
• Clear results are obtained

• Calculation time does not increase
significantly even if the number of QDs
increases
• Noises are faithful to actual observations

Demerits Demerits

• Calculation time increases exponentially if
the number of QDs increases
• It is necessary to investigate the influence of
intrinsic noise separately

• Fewer QDs take longer calculation time than
deterministic simulation
• Evaluation of the results must be careful
since inherent noise is always included

Finally, we show the trade-off nature between deterministic and stochastic sim-
ulations. Figure 9 represents the calculation times of deterministic and stochastic
simulations in the case of chain-like networks. As shown in Fig. 9, deterministic sim-
ulations are appropriate for small-number situations. However, the calculation times
of deterministic simulations increase exponentially as the number of QDs increases.
On the other hand, the calculation times of stochastic simulations increase polyno-
mially as the number of QDs increases. Therefore, the calculation times between
stochastic and deterministic simulations reverse at some number of QDs. Table 2
summarizes the pros and cons of deterministic and stochastic simulations.
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4 Information Processing Using FRET Networks

In this section,we show thepower ofFRETnetworks for informationprocessing.This
section follows our previous studies [30, 31]. As shown in Fig. 10(a), our information
processing scheme has a standard structure with an input layer, a single hidden layer
(consisting of FRET networks), and an output layer. The parameters to be trained are
only output weights (the part of readout) connecting the hidden and output layers,
such as reservoir computing.We sometimes call this hidden layer the “FRET-network
reservoir.” Feedback in Fig. 10(a) is optional for an autonomous signal generation
or increased memory. The learning method used for the output weights is linear
regression, particularly ridge regression, which is similar to reservoir computing.

Here, we assume a working hypothesis for the simulator’s limited ability:

1. Each node consists of infinitely many two-QD pairs.
2. There are no interactions between such pairs.

The working hypothesis is not essential for information processing. It is only due
to the simulator’s limited memory, processing speed, etc. The working hypothesis
implies that fluorescence from each node is free from inherent noise, which enables
us to perform the deterministic simulation using Algorithm 1 with N = 2 for each
node. Therefore, the simulation becomes low-cost and suitable for CPU-thread or
GPU parallelization. We assume that FRET networks consist of QD585 and the
simulation parameters of FRET networks are listed in Table 1.

We further assume a standard input scheme called the time-piecewise con-
stant excitation, as shown in Fig. 10(b). The time-piecewise constant excitation
has stationary excitation intensity within an excitation duration [tp, tp + �t) and
switches to another excitation intensity just before the next excitation duration
[tp + �t, tp + 2�t). The fluorescence of each node is briefly observed just before
the excitation switches. Therefore, the excitation switching time �t equals the fluo-
rescence sampling time. As shown in Fig. 10(b), the smaller the excitation switching
time �t , the more past inputs reflect the output. Thus, the excitation switching time
and the memory in the reservoir are negatively correlated. We finally assume that

Fig. 10 FRET-network reservoir: (a) Fundamental network structure with optional feedback,
(b) Input scheme by time-piecewise constant excitation
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the excitation intensity is created from an exponentially enhanced input signal as
follows:

Iex = 10suinput+b, (29)

where s and b are a scale factor and a bias constant, respectively. The scale factor s
and bias constant b are set such that the dynamic range of the excitation intensity Iex
is within a significant change region in the nonlinearity, approximately [0.01, 100],
as seen in Fig. 4(b).

4.1 Nonlinear Function Approximation

We show the ability of FRET networks for nonlinear function approximation
[30]. The goal of the task is to learn the nonlinear transformation u(t) → y(t) =
1
2 {u(t)}7 through input–output relation data {(sin(t/5), 1

2 sin
7(t/5))}t=0,�t,2�t,··· ,n�t .

The training and prediction phases are performed with no feedback. Since this task
needs no memory, the excitation switching time �t should be set large. Here we set
the excitation switching time �t = 100 ns.

Figure 11 represents the result of this nonlinear function approximation. Training
is done by the first half of 100 input–output data (until t = 10000 ns), and prediction
is performed by the following 100 input data (from t = 10000 ns until t = 20000 ns).
Other simulation settings are as follows: the number of nodes is set to Nnet = 1000,
the distance between each two-QDpair is chosen betweenminimum rmin = 0.3R0 nm
and maximum rmax = 2.0R0 nm, the scale factor and bias constant is set to s = 1.0
and b = 0.0, respectively, and the regularization factor for the ridge regression is set
to λ = 10−10. We set the transient duration to 80 ns to ignore the transient behaviors
of the reservoir.

Fig. 11 Nonlinear function
approximation: input
u(t) = sin(t/5) → output
y(t) = 1

2 sin
7(t/5)
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Fig. 12 Generalization of nonlinear function approximation ũ(t) → ỹ(t) = 1
2 ũ(t)7 using different

input data from the original one sin(t/5), (a) a sawtoothwave and (b) a trianglewave. The prediction
is performed with the pre-trained weight by u(t) = sin(t/5) → y(t) = 1

2 sin
7(t/5)

Furthermore, we check the generalization of this nonlinear function approxima-
tion using different input data from the original one. Figure 12 shows the results.
The prediction is performed with the pre-trained weight by the original input–output
data. The predicted outputs become ỹ(t) = 1

2 ũ(t)7 in both cases, (a) sawtooth input
wave and (b) triangle input wave. These results mean that the nonlinear function
approximation is certainly generalized.

4.2 Chaotic Time-Series Prediction

We demonstrate the capability of FRET networks for chaotic time-series prediction
with minimal memory requirements [30]. The goal of the task is to predict the next
step of the Hénon map, xn+1 = 1 − 1.4x2n + 0.3xn−1, from the present step xn with a
memory of the past xn−1 left in the reservoir. This task imposes the use of memory in
the reservoir. Therefore, the prediction phase is performed with feedback, as shown
in Fig. 10(a). On the other hand, the training phase is performed with no feedback.
Since this task needs some memory, the excitation switching time �t should be
moderately small. Here, we set the excitation switching time �t = 0.5 ns.

Figure 13 represents the result of this chaotic time-series prediction. Training is
done by the first half of 100 input–output data (until t = 50 ns), and prediction is
performed by the following 100 input data (from t = 50 ns to t = 100 ns). Other
simulation settings are as follows: the number of nodes is set to Nnet = 1000, the
distance between each two-QD pair is chosen between minimum rmin = 0.3R0 nm
and maximum rmax = 2.0R0 nm, the scale factor and bias constant is set to s =
1/3 + 0.1ξ and b = 0.5 + 0.1η (where ξ, η are uniform randomnumbers in [−1, 1]),
respectively, and the regularization factor for the ridge regression is set to λ = 10−10.
We set the transient duration to 40 ns to ignore the transient behaviors of the reservoir.

Furthermore, we check the attractor reconstruction made from the above chaotic
time-series prediction. Figure 14 shows the result. Each cross point (green) in the
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Fig. 13 Chaotic time-series prediction for the Hénon map

Fig. 14 Reconstructed strange attractor of the Hénon map from the predicted time series

figure denotes (xn, xn+1) made from the predicted time series in the above task. This
result means that the Hénon map’s strange attractor is certainly reconstructed.

Finally, we evaluate the performance of the chaotic time-series prediction by the

root mean square error (RMSE), which is defined as RMSE =
√

1
N
∑N

n=1〈(xn − x̃n)2〉,
where xn, x̃n are actual and predicted time series, respectively, and 〈·〉 is the average
with respect to different initial conditions (note: initial conditions for xn and x̃n are
set to equal). Figure 15 shows RMSE versus (a) step n from the start of prediction
and (b) the excitation switching time �t . The excitation switching time �t = 0.5 ns
provides the best performance in this task as it has the smallest RMSE. This result
means that this task needs appropriate memory. Thus, a large excitation switching
time �t reduces available memory, whereas a small excitation switching time �t
disrupts prediction by introducing unnecessary memory.
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Fig. 15 Root mean square error (RMSE) versus (a) step n from the start of prediction and (b) exci-
tation switching time �t

4.3 Handwritten Digit Recognition

We show the ability of FRET networks for pattern recognition, particularly handwrit-
ten digit recognition [31]. The goal of the task is to classify handwritten digit images
to correct digits using the MNIST handwritten digit dataset. Figure 16 depicts our
pattern recognition scheme. Since this task needs no memory, the training and pre-
diction phases are performed with no feedback, and the excitation switching time�t
should be set large. Here, we set the excitation switching time �t = 100 ns as in the
nonlinear function approximation.

We note that an input weight matrix is needed to transform an image vector x
to an excitation intensity vector Iex. The image vector x and excitation intensity
vector Iex are Ni (= 784) and Nnet dimensional, respectively. Therefore, the input
weight matrix V has Nnet rows and Ni columns such that Iex = 10sV x+b. The input

Fig. 16 Pattern recognition scheme using FRET networks
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Fig. 17 Investigation of appropriate hyperparameters for MNIST handwritten digit recognition.
Investigated hyperparameters are (a) excitation switching times �t , (b) the number of nonzero
elements Nh per row in the input weight matrix, (c) regularization parameters for ridge regression λ,
(d) scale factors for excitation intensity s0, and (e) bias constants for excitation intensity b

weight matrix V is better sparse. Therefore, the number of nonzero elements Nh per
row is also better small. We randomly select the nonzero elements and set the sum
of elements per row to one in the input weight matrix.

We first investigate appropriate hyperparameters, as shown in Fig. 17. The eval-
uation uses accuracy for the MNIST handwritten digit dataset with training data of
60000 and test data of 10000. Investigated hyperparameters are (a) excitation switch-
ing times �t , (b) the number of nonzero elements Nh per row in the input weight
matrix, (c) regularization parameters for ridge regression λ, (d) scale factors for exci-
tation intensity s0, and (e) bias constants for excitation intensity b. This investigation
shows that (a) �t should be large to some extent, (b) Nh should be approximately
1/100 of the total, (c) λ should be small to some extent, and (d, e) s and b should
be set such that the dynamic range of the excitation intensity is within the nonlinear
region. The adopted hyperparameters are as follows: the excitation switching time
is set to �t = 100 ns, the number of nonzero elements per row in the input weight
matrix is set to Nh = 7, the regularization factor for the ridge regression is set to
λ = 10−4, and the scale factor and bias constant is set to s = 4/255 and b = −2,
respectively. The distance between each two-QD pair is chosen between minimum
rmin = 0.3R0 nm and maximum rmax = 1.0R0 nm. In the task, we set no transient
duration.

Figure 18 shows themain result ofMNISThandwritten digit recognition: accuracy
versus the number of FRET-network nodes. The accuracy is 92% in the case of
Nnet = 1000, 94% in the case of Nnet = 2000, and finally reaches approximately
95% in the case of Nnet = 3000. This accuracy is almost as good as the ELM-based
MNIST handwritten digit recognition accuracy of 94% in the case of 1000 nodes
(see Table 1 in [32]).
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Fig. 18 Dependence of accuracy on the number of FRET-network nodes in MNIST handwritten
digit recognition

5 Conclusions and Future Works

In this chapter, we first introduced a spatiotemporal model for FRET networks, called
the multiple-donor model, and showed various analytical (theoretical) results. The
derivation of network-induced multicomponent exponential decay and the analytical
results for small QD systems, including the nonlinear relation between input excita-
tion intensity and output fluorescence intensity, are demonstrated. We then presented
the deterministic and stochastic simulation methods for FRET networks and com-
pared their advantages and disadvantages. In general, deterministic simulations are
appropriate for only a few QDs situations, whereas stochastic simulations are appro-
priate for many QDs situations in terms of computational costs. We finally showed
the power of FRET networks for information processing by simulations, particu-
larly nonlinear function approximation, chaotic time-series prediction, and MNIST
handwritten digit recognition.

We are considering future work on reinforcement learning using FRET networks
and spatial network design theory. Reinforcement learning is one of the important
applications for FRET networks. We believe that the ability of FRET networks to
recognize patterns and predict chaotic time series (with some memory) provides the
power for reinforcement learning. On the other hand, the power of FRET networks
would bemaximized if the spatial network (spatial arrangement of QDs) were appro-
priately optimized. We currently lack a design theory for the spatial network of QDs.
Therefore, developing spatial network design theory is an urgent issue for realizing
novel information processing devices.
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QuantumWalk on FRET Networks

Michihisa Takeuchi

Abstract In this section, we introduce the basics of quantum walk algorithm and
its applications. Quantum walk is a natural extension of the concept of random walk
in quantum way; therefore, the results obtained from the discussion are considered
as the results by Quantum Computation. In principle, we can expect a certain type
of the computation would be boosted. There are a variety of phenomena in Quan-
tum walks, and much broader outcomes are often obtained than those from classical
random walk. Such famous examples include quantum search algorithms and quan-
tum simulations. In this article, we introduce a quantum simulation of QCD parton
shower algorithm appearing in particle physics.

1 Introduction of Quantum Walk

In this section, we introduce the QuantumWalk algorithm as an extended version of
Classical Random Walk.

1.1 Classical Random Walk

Let us begin with a traditional classical random walk on the integer points of a 1-
dimensional line. We call the object which will move around on the line as “walker”
and the movement of the “walker” is determined step-by-step randomly according
to the given probability p. At each step, the “walker” can move to the left or the
right integer points next to the current point with the probability of p and 1 − p,
respectively. We consider the same procedure t times repeated, then although we
cannot predict the location of the “walker” n at the time t we can compute the
probability of it.
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Suppose at t = 0 the “walker” starts at n = 0, then the probability that he is at n
at the time t is given by

P(t, n) = tC t+n
2
2−t , (1)

where tCn = t !/(t − n)!n!.
An important consideration here is that we can consider the “path”, in other words,

“history”, the set of the positions of the “walker” at all the time steps before the ending
time t , {nt ′ |0 ≤ t ′ ≤ t}, and that we can compute the probability of the appearance
of a certain “path”. For this example, each “path” appears at the probability of 2−t .
The above probability is given by counting the number of possible “paths” ending
at position n. For the generic p, the appearance probability of each “path” becomes
pn+(1 − p)n− , where n = n+ − n− and t = n+ + n−.

For the random walk, we can compute the average μ = 〈n〉 and the variance σ2 =
〈n2〉 − μ2 as μ = (2p − 1)t and σ2 = p(1 − p)t . Especially, the standard deviation
σ scales as O(

√
t). The asymptotic probability distribution becomes

lim
t→∞ P(Xt/

√
t ≤ x) =

x∫

−∞
f (y)dy, where, f (x) = 1√

2πσ2
exp

[
− (x − μ)2

2σ2

]
.

1.2 Quantum Walk

In classical random walk, we can predict the probability of the position of the walker
at time t by considering all the possible “paths” of the walker and computing the
probability of the “path”. We want to consider the quantum version of the corre-
sponding system. The most important property of the quantum system is that we can
consider the superposition of the states. Thus, we in the end want to consider the
superposition of the “paths”.

The dynamics of a quantum walk can be described using a quantum mechanical
formalism [1, 2]. The state of the particle on several nodes can be represented by a
quantum state vector, which evolves according to a unitary operator. One can imagine
that each node is lined on a 1-dimensional line, labeledwith an integer n. Note that the
following discussion is not restricted to the nodes lined in a line, but are valid as long
as we can label the node with n, for example, in the case that the nodes are vertices
on a graph. The position of the “walker” is described by the quantum state |n〉, which
spans the position Hilbert spaceHP = {|n〉|n ∈ Z}. Furthermore, for each node, we
assume there are two discrete states, like spin up and down. This Hilbert space is
denoted asHC , and we can label the two states with {| ↑〉, | ↓〉}, {|0〉, |1〉}, {|L〉, |R〉},
{|+〉, |−〉}, or often {|H〉, |T 〉}, which means “head” and “tail”. The coined operator
is acting on this Hilbert space. The whole Hilbert space considered is the product of
the two Hilbert spacesH = HP ⊗ HC , where the dimension of the Hilbert space is
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the product of the dimensions ofHP andHC . The quantum state |ψ(t)〉 at each time
step t is given by

|ψ(t)〉 =
∑
n

[
ψn,+(t)|n,+〉 + ψn,−(t)|n,−〉],

where ∑
n

[|ψn,+(t)|2 + |ψn,−(t)|2] = 1.

The evolution of the quantum state |ψ(t)〉 is described by the following algorithms:

1. Initial state: The particle is initialized at some node on the graph with a specific
quantum state |ψ(0)〉:

|ψ(0)〉 =
∑

n,sn=±
ψn,sn (0)|n, sn〉.

For example, ψ0,0(0) = 1, otherwise 0.

2. Quantum coin operation: The particle’s state is modified by a quantum coin
operatorC ∈ U (2) , which is a 2-dimensional unitary operator that acts on a coin
state |c〉 = α+|+〉 + α−|−〉 ∈ HC . Explicitly, |c′〉 = C |c〉 can be described by

C =
(
a b
c d

)
, |c′〉 =

(
α′−
α′+

)
, |c〉 =

(
α−
α+

)
.

3. Conditional shift: The particle’s position is then shifted according to the coin
operation. For each node, there is a corresponding shift operator that acts on the
state of the particle. The shift operator is often defined as

S =
∑
j

| j〉〈 j − 1| ⊗ |+〉〈+| + | j〉〈 j + 1| ⊗ |−〉〈−| = S+ ⊗ P+ + S− ⊗ P−,

where | j〉 represents the state of the particle at node j , and ⊗ denotes the tensor
product.

4. Total evolution: The total evolution of the quantum walk for each time step is
given by the operator:

U = S(I ⊗ C),

where C is the coin operator in HC , and I is the identity operator in HP . The
total evolution of the quantum walk over t time steps is given by the product of
U taken over t steps, Ut . The final form of the quantum state |ψ(t)〉 is obtained
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as follows:
|ψ(t)〉 = Ut |ψ(0)〉.

These equations describe the basic dynamics of a quantum walk on a line. By
choosing appropriate initial states, coin operators, and graph structures, quantum
walks can be used to solve various problems in quantum computing, such as search
and sampling.

Explicit form of the U operator is given by

U = S(I ⊗ C) =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · 0 P− 0 · · ·
· · · P+ 0 P− · · ·
· · · 0 P+ 0 · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · C 0 0 · · ·
· · · 0 C 0 · · ·
· · · 0 0 C · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · 0 P 0 · · ·
· · · Q 0 P · · ·
· · · 0 Q 0 · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where

P = P−C =
(
a b
0 0

)
, Q = P+C =

(
0 0
c d

)
,C = P + Q.

ActingU once provides the probability of finding the walker at (1,± 1) as |Pψ0|2
and |Qψ0|2, respectively, so |a|2 + |c|2 = 1 gives the similar relation of the classical
random walk system. However, if we consider more than two steps, Ut essentially
provideψn(t) as a coherent sumof the amplitudes corresponding to the possible paths
to reach the point (t, n) from (0, 0) as in Fig. 1. It is conceptually happening for the
quantum system when we don’t observe the intermediate states and only observe the
final wave function at time t .

P

P

P

P

Q

Q

Q

Q

P

P

P

Q

Q

Q

P

P

Q

Q PQ

n=−5 n=−4 n=−3 n=−2 n=−1 n=0 n=1 n=2 n=3 n=4 n=5
t = 0

t = 1

t = 2

t = 3

t = 4

P 2QP

Fig. 1 Quantumwalk paths.An example path is denoted in red line and the corresponding amplitude
is obtained by the products of P and Q acting on the initial state ψ0(0)



Quantum Walk on FRET Networks 143

For an example discussion, the coin operator is often chosen to be a Hadamard
coin operator H ,

H = 1√
2

(
1 1
1 −1

)
,

which puts the coin into an equal superposition of |+〉 and |−〉 states. For example,
the coin state obtained by H acting on |+〉 is given by H |+〉 = 1√

2
(|+〉 + |−〉).

Here, in this setup, for the coin operator in general we can consider only the
element of SU (2), since the overall phase is not relevant in quantum computation.
Thus, the variety of coin operator is parameterized with 3-dimensional real parame-
ters, a, b ∈ C satisfying |a|2 + |b|2 = 1, and

C =
(

a b
−b∗ a∗

)
=

(√
1 − |b|2 b
−b

√
1 − |b|2

)
.

The last line can be obtained when a and b are restricted being real.
With this parameterization, it is known that the asymptotic probability distribution

of Xt (the position of the walker at time t) in the QuantumWalk with the initial state

ψ0(0) =
(

α
β

)
, and ψn(0) =

(
0
0

)
(n �= 0) is given by the following [1, 2]:

lim
t→∞ P(Xt/t ≤ x) =

x∫

∞
f (y)I(−|a|,|a|)(y)dy,

f (x) =
√
1 − |a|2

π(1 − x2)
√|a|2 − x2

[
1 − (|α|2 − |β|2 + 2Re[aαb∗β∗]

|a|2 )x

]
,

where IA(y) is the compact support function giving IA(y) = 1 for y ∈ A, and oth-
erwise 0. Especially, most of the distributions accumulate around x ∼ ±|a|. The
important fact for the Quantum Walk is that the standard deviation σ scales as O(t)
not O(

√
t), which would be advantageous for faster search algorithm and for gener-

ating samples far from initial states (Fig. 2).

1.3 Quantum Walk on FRET Networks

In the previous chapter, a mathematical model of the FRET network is introduced,
where the reactions among the excited states and the ground states in an array of
Quantum Dots (QDs) are considered. As a physical system, it should be more appro-
priate to treat it as a quantum system as a whole. We here introduce a way to include
parts of the quantum effects, the interference effects, to the mathematical model of
the FRET network.
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Fig. 2 An example
probability distribution of
the walker at time t = 100 in
Quantum Walk (blue). The
corresponding asymptotic
probability of the Quantum
Walk (blue-dashed) and the
Classical Random Walk
(red) are also shown for
comparison

For simplicity, we consider the case where the interactions occur only between the
QDs which are next to each other in the 1-dimensional array of QDs. That means,
we consider the case knm �= 0 only when m = n + 1, and otherwise knm = 0. We
also assume the spontaneous decay process is negligible, i.e. kn = 0. The resulting
master formula is given by

d

dt
Pn(t) = −kn,n+1Pn(t) + kn−1,n Pn−1(t).

Changing the continuous time to discrete time �t ,

Pn(t + �t) = (
1 − kFRETn,n+1�t

)
Pn(t) + kFRETn−1,n�t Pn−1(t). (2)

Since the sum of the probability of all the possible configurations is conserved,
we can describe this system as a unitary transformation acting on the vector in the
Hilbert space that consists of the direct product of the Hilbert space representing
n QDs {|n〉} and that representing excited/non-excited states {|+〉, |−〉} for each
QD, which is originally in 2N dimensions but restricted to the 2N dimensions since
the number of excited states is restricted to one or zero. Thus, hot vector represen-
tation can be represented as ψ01,...,0n−1,1n ,0n+1,...,0N |01, . . . , 0n−1, 1n, 0n+1, . . . , 0N 〉 =
ψn,+(|n〉 ⊗ |+〉). For each step, the FRET interaction is acting as the transition from
|n〉 ⊗ |+〉 → |n + 1〉 ⊗ |+〉. Thus, to reproduce the correct transition probability
using the coin operator in the QW algorithm, we can take b = √

kFRET�t . The
explicit form of C is given as

C =
(√

1 − kFRET�t
√
kFRET�t

−√
kFRET�t

√
1 − kFRET�t

)
,

and for this case we can take the shift operator S′ = S+ ⊗ |+〉〈+| + S0 ⊗ |−〉〈−|.
The corresponding U operator is given by
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U ′ = S′(I ⊗ C) =

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · P− 0 0 · · ·
· · · P+ P− 0 · · ·
· · · 0 P+ P− · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · C 0 0 · · ·
· · · 0 C 0 · · ·
· · · 0 0 C · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · P 0 0 · · ·
· · · Q P 0 · · ·
· · · 0 Q P · · ·

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

With this unitary operator, we can reproduce the relationship among the amplitude
and the probability for one time step, which we assume to be the case when at each
step we observe the configuration. For more time steps, we should get

ψ(t) = (U ′)tψ(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

· · · Pt 0 0 · · ·
· · ·

t−1∑
i=0

Pi QPt−i−1 Pt 0 · · ·

· · · ∑
path

Q2Pt−2
t−1∑
i=0

Pi QPt−i−1 Pt · · ·
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ(0).

The amplitude ψn(t) is the coherent sum of all the amplitudes corresponding to the
possible paths from ψ0(0). Note that the coin operator to reproduce the same Eq. (2)
for one step is not unique. In this way, the dynamics of the FRET networks can be
embedded in the Quantum Walk framework.

2 Application of QuantumWalk

One of the famous applications of Quantum Walk algorithm is search algorithm.
Most of the cases are based on Grover’s algorithm [3], and there are several examples
including maze solving [4].

In this article, instead of considering the search algorithm application, we will
introduce an application in particle physics. There is a well-studied phenomenon
called “jet” which is originated by a quark production, and is well described by a
parton shower algorithm [5–11] based on the Quantum Chromodynamics (QCD)
theory. It is essentially a probabilistic process with the emission probabilities. Since
processes in a microscopic world, such as this process observed in particle physics,
are intrinsically described by quantum physics, the proper simulation requires a
quantum computation or quantum simulation [12]. In particular, some properties
in parton shower could be more efficiently implemented and described using the
Quantum walk algorithm.
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2.1 Classical Parton Shower

First, we review the parton shower algorithm to describe jets. At high-energy particle
collider experiments, we expect quarks are produced. However, it is known that a
bare quark is never observed because of the color confinements. Instead, due to the
color charges, quark and gluon can emit a gluon, or split into quark and gluon, and
we can compute the emission probability by the QCD theory. There are three types
of splitting, q → qg, g → gg, g → qq̄ , as depicted in Fig. 3.

It is known that the splitting probability is enhanced when the splitting occurs in
a collinear way. For each step of splitting, k → i j the kinematics of the splitting is
described by the 3-dimensional parameters, (θ, z,φ), where θ is the angle between
i and j , z (0 ≤ z ≤ 1) is the fraction of the momentum carried by i , that is pi =
zpk, p j = (1 − z)pk , and φ is the azimuthal angle, which is just integrable to give 2π
for simplicity. The differential cross sections between the split/non-split processes,
corresponding to n-final states and (n + 1)-final states, are related as follows:

dσn+1 = dσn
αs

2π

dθ

θ
P(z)dz.

The QCD theory predicts the probability of the splitting with a parameter z as

Pq→qg(z) = CF
1 + (1 − z)2

z
, (3)

Pg→gg(z) = CA

[
2(1 − z)

z
+ z(1 − z)

]
, (4)

Pg→qq̄(z) = n f TR(z2 + (1 − z)2), (5)

where CF = 4/3,CA = 3, TR = 1/2 based on the color algebra, and n f is the num-
ber of the massless quark flavors.

The above expression suggests that for all cases, the enhanced region is described
by P(z) ∼ 1/z. It is known that we can assume θ1 > θ2 > · · · > θn due to the inter-
ference effects; thus, having an ensemble of the events with the variety of {θ} is
interpreted as a time evolution process by considering 1/θ as time t . In this interpre-
tation, a certain time duration �t corresponds to �θ.

Following those information, once a quark exists, it will evolve based on the
Poisson process with those split/non-split probabilities. At each time, splitting/non-
splitting is determined by these probability functions and the final set of the tree
structure is obtained, which we call a shower history. We can consider the one-to-
one correspondence to the “path” of the random walk and the shower history. Note

q q

g

g g

g

q q

q̄

Fig. 3 QCD splitting patterns
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that even for a classical parton shower algorithm, a part of the quantum interference
effects is already taken into account during the computation of the splitting functions
through the quantum corrections but not full.

In practice, to obtain the ensemble of the events from the parton shower algorithm,
introducing the Sudakov factor is convenient, which is the non-splitting probability
between the angle scale θi to θ,

�(θi , θ) = exp

⎛
⎜⎝− αs

2π

θ∫

θi

dθ

θ

∫
dzP(z)

⎞
⎟⎠ . (6)

Using theMonte Carlomethod, based on the Sudakov factor, the next branching scale
θ is determined by equating the random number sampled from uniform distribution
r ∈ [0, 1) as r = �(θi , θ). Note that �(θi , θ) ≤ 1. Alternatively, we can discretize
the relevant range of the evolution between θi to θ f into N steps, and introduce
�θ = (θi − θ f )/N . At step m, we obtain the non-splitting probability as

�(θm) = �(θm, θm+1) = exp

(
− αs

2π

�θ

θm

∫
dzP(z)

)
. (7)

As long as �θ is small enough, the case with more than one splitting happening
at step m is negligible, therefore the splitting probability is 1 − �(θm). We need
to repeat this probabilistic process N -times. Thus, it reduces to the random walk
system with the probability �(θm). With the probability we can determine the N -set
of non-splitting/splitting possibilities, which provide a “path”. In the end, usually an
order of 10–30 partons are generated by the splitting process.

2.2 Quantum Parton Shower Algorithm

Since the splitting history can be identified as the path, we can consider the superpo-
sition of the splitting history and the interference effects. The attempt implementing
this system in QuantumWalk is discussed in Ref. [13–15]. We can identify the event
of non-split/split in the parton shower as the shift to the left/right in the Quantum
Walk. Explicitly, the coin operator for this problem can be taken as

C =
( √

�(θm) −√
1 − �(θm)√

1 − �(θm)
√

�(θm)

)
,

where �(θm) is the non-splitting probability of a particle at step m.
We consider here a simple shower, with only one particle species that exists. The

operator C is acting on the coin space HC = {|0〉, |1〉}. The |0〉 state is identified as
the “no emission” state, and the |1〉 state is identified as the “emission” state. The
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|x S

|c C

|w D

|m M

= Probk→ij

M

Position check and Coin Shift

Fig. 4 Schematic quantum circuit to implement the quantum walk algorithm for parton shower.
The figure is taken from Ref. [13]

position space HP = {|i〉|i ∈ N0} represents the number of particles present in the
shower and include only zero and positive integers as the parton shower cannot have
a negative number of particles. The shift operation is taken as the S′ in the previous
section. In this way, the number of particles present in the shower is encoded in the
position of the walker, with the initial state of the walker being at the |0〉 position.

It is possible to implement the Quantum Walk in the Quantum Circuit. The oper-
ator U = S(I ⊗ C) consists of the C acting on the coin space HC , which can be
implemented in one qubit, and of the S, which is the conditional shift operator,
which can be described by the CCNOT operator in Quantum Circuit. Figure 4 shows
the schematic quantum circuit describing a single step of a quantum walk algorithm-
based parton shower. In this simple shower, the number of particles present is encoded
in the position of the walker, which is encoded in |x〉 in the figure. It shows a 2-qubit
case, which can describe up to 4 shower particles with the initial state of the walker
being at the zero position. The number of particles that the algorithm can simulate
increases exponentially with the number of position qubits, x as 2x . D describes
the position check scheme, which is controlled from the position of the walker and
applies the correct splitting probability accordingly in the coin operation C . The
scheme is constructed from a series of CCNOT gates, thus the operation is entirely
unitary. Furthermore, the position check scheme ensures that the coin operation is
always applied to the |0〉 state on the coin qubit to recover the correct parton shower
distribution. The subsequent shift operation then adjusts the number of particles
present in the shower, depending on the outcome of the coin operation. If the coin
qubit is in the |1〉 state after the coin operation, the splitting has occurred and the
position of the walker is increased by one, otherwise the walker does not move. The
shift operation is constructed from a series of Toffoli gates and thus is unitary. This
step can be repeated for the number of discrete shower steps N in the parton shower,
resembling the quantum random walk. Finally, we obtain the amplitude describing
the superposition of the amplitudes with 1 − N shower particles. By measuring the
amplitude, we can sample the “paths” with the appropriate probability.
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3 Conclusion

We have reviewed the quantum walk algorithm, which can introduce the quantum
interference effects to the system described by the classical random walk. From the
physical setup of the FRET network, if all the quantum correlation is preserved, or
the decoherence effects are negligible, the FRET network would provide a quantum
device to simulate a quantum walk process. Although we need to consider the deco-
herence effects in a real device, it would be interesting to see what can be done in an
ideal case. The real system would be modeled by the mixture of the classical random
walk and the quantum walk, which would require further study. Although one of
the famous applications of the quantum walk algorithm is the searching algorithm
using the Grover algorithm, we have introduced an application in the parton shower
algorithm in particle physics in this article. We explicitly show how to implement
the quantum parton shower algorithm in the quantum walk approach. We hope a real
device can help to simulate this system in future.
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Spatial-Photonic Spin System



Spatial Photonic Ising Machine with
Time/Space Division Multiplexing

Yusuke Ogura

Abstract The spatial photonic Ising machine (SPIM) is an unconventional comput-
ing architecture based on parallel propagation/processing with spatial light modula-
tion. SPIM enables the handling of an Ising model using light as a pseudospin. This
chapter presents SPIMs with multiplexing to enhance their functionality. Handling a
fully connected Ising model with a rank-2 or higher spin-interaction matrix becomes
possible with multiplexing, drastically improving its applicability in practical appli-
cations. We constructed and examined systems based on time- and space-division
multiplexing to handle Isingmodels with ranks of no less than one while maintaining
high scalability owing to the features of spatial lightmodulation. Experimental results
with knapsack problems demonstrate that these methods can compute the Hamilto-
nian consisting of objective and constraint terms,which requiremultiplexing, and can
determine the ground-state spin configuration. In particular, in space-division mul-
tiplexing SPIM, the characteristics of the solution search vary based on the physical
parameters of the optical system. A numerical study also suggested the effective-
ness of the dynamic parameter settings in improving the Ising machine performance.
These results demonstrate the high capability of SPIMs with multiplexing.

1 Introduction

Technologies for efficiently acquiring, processing, and utilizing a large amount of
diverse information are becomingmore importantwith the recent progress in data sci-
ence, machine learning, andmathematical methods. Moreover, there is an increase in
the computation needs for addressing social issues and scaling up computer simula-
tion in various academic and industrial fields. Aiming to contribute to the remarkably
advanced information society, research on optical/photonic computing is becoming
more active. Light has a high potential for creating new computing architectures
owing to its broadband processing capabilities, low energy consumption, interac-
tion with various objects, multiplexing, and fast propagation. Novel optical/photonic

Y. Ogura (B)
Osaka University, Osaka, Japan
e-mail: ogura@ist.osaka-u.ac.jp

© The Author(s) 2024
H. Suzuki et al. (eds.), Photonic Neural Networks with Spatiotemporal Dynamics,
https://doi.org/10.1007/978-981-99-5072-0_8

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-5072-0_8&domain=pdf
mailto:ogura@ist.osaka-u.ac.jp
https://doi.org/10.1007/978-981-99-5072-0_8


154 Y. Ogura

computing systems have been recently proposed, including computing based on inte-
grated optical circuits [1, 2], optical reservoir computing [3], brain-morphic com-
puting [4], optics-based deep leaning [5, 6], and photonic accelerator [7].

Combinatorial optimization addresses important problems in daily life, includ-
ing the optimization of communication network routing and scheduling of apparatus
usage. Metaheuristic algorithms, such as simulated annealing (SA) [8] and evolu-
tionary computation [9] are often applied to these problems because they provide
approximately optimal solutions that are sufficient for practical use. However, most
combinatorial optimization problems areNP-hard, and unconventional architectures,
such as physical and optical/photonic computing, are attracting significant attention
for effectively solving large-scale problems.

Several combinatorial optimization problems can be mapped to the Ising model
[10]. The Ising model is a mathematical model introduced to represent the ferromag-
netic behavior. The system is expressed using spins with two states and the inter-
action between spins. Solving a combinatorial optimization problem is equivalent
to determining the energy ground state of the Ising model with suitably determined
interaction matrix.

Ising machines are dedicated computing systems where Ising models are imple-
mented using pseudospins. Computations are carried out by developing a spin config-
uration toward the energy ground state of the Hamiltonian. Ising machines are real-
ized using a variety of physical phenomena [11] and are expected to be fast solvers
of optimization problems. For example, Ising machines based on the quantum-
mechanics effect have been implemented using superconducting quantum circuits
[12] and trapped ions [13]. Based on quantum fluctuations, these methods execute
a solution search using quantum annealing [14]. CMOS annealing machines [15]
and digital annealers [16] are other examples of SA using semiconductor integrated
circuits. These machines can handle fully connected Ising models using suitable
software.

Photonics-based Ising machines are also promising because they provide com-
puting architectures capable of parallel data processing and high scalability. Good
examples include the integrated nanophotonic recurrent Ising sampler (INPRIS) [17],
the coherent Ising machine [18, 19], and the spatial photonic Ising machine (SPIM)
[20]. In INPRIS, spin is realized by a coherent optical amplitude. The optical sig-
nal is passed through an optical matrix multiplication unit using a Mach-Zehnder
interferometer, and the next spin configuration is created through noise addition to
improve computing speed and thresholding. In a coherent Ising machine, spins are
imitated using optical pulses generated by a degenerate optical parametric oscillator
[21]. The phase and amplitude of the pulse in an optical fiber ring were measured.
The interaction was realized by injecting optical pulses for modulation into the ring
based on the feedback signal obtained through a matrix operation circuit. To date,
the Ising machine consisting of 100,000 spins has been realized [19].

On the other hand, there aremany research examples of computing by spatial light
modulation as amethod enjoying the parallel propagationproperty of light [6, 22, 23].
Based on this concept, SPIM [20] represents spin variables as the modulation of light
using a spatial light modulator (SLM) and executes spin interaction by overlapping



Spatial Photonic Ising Machine with Time/Space Division Multiplexing 155

optical waves by free-space propagation. The SPIM system can be simpler than other
methods, and the scalability of the spins is high because it uses the parallelism of
light propagation based on Fourier optics. Moreover, fully connected Ising models
can be handled using free-space optics. Owing to these characteristics, the SPIM
has received considerable attention, and many derivative systems and methods have
been proposed [24–26].

An issue with the primitive version of SPIM [20] by Pierangeli et al. is the low
freedom to express the interaction coefficients. The light propagation model used
in the computation can handle only a rank-1 interaction matrix. Because this is a
major limitation in practical use, an extension of the computing model is required to
apply SPIM to a wider range of problems. A few research examples can be found,
including a quadrature SPIM that introduces quadrature phase modulation and an
external magnetic field [27] and the implementation of a new computingmodel using
gauge transformation by wavelength-division multiplexing (WDM) [28]. However,
these methods deteriorate scalability because of the decrease in the number of spin
variables owing to SLM segmentation for encoding spins. We investigated meth-
ods for increasing the interaction matrix rank without deteriorating scalability using
multiplexing. Accordingly, in Sect. 2, the basic principle of the primitive SPIM is
introduced and the concept of SPIM with multiplexing is explained. The procedure
and experimental results for time-division multiplexing SPIM (TDM-SPIM) are pre-
sented in Sect. 3 and those of space-division multiplexing SPIM (SDM-SPIM) are
presented in Sect. 4. Finally, the conclusions are presented in Sect. 5.

2 Spatial Photonic Ising Machine with Multiplexing

2.1 Basic Scheme of SPIM

The Ising model can be expressed using spins and their interactions. Let σ =
(σ1, . . . , σN ) ∈ {−1, 1}N be the spin variables and J = {Jjh} be the interaction coef-
ficients between spins σ j and σh , where j and h are the spin numbers and N is
the total number of spins. When the external magnetic field is negligible, the Ising
Hamiltonian H is represented as

H = −
∑

j,h

J jhσ jσh . (1)

The concept of SPIM proposed by Pierangeli et al. in 2019 [20] is shown in Fig.
1. The optical hardware consists of an SLM, a lens, and an image sensor. An optical
wave with a spatial amplitude distribution (uniform phase) is incident on the SLM.
The amplitude distribution is determined based on the spin interaction J in the Ising
model. The light modulated by the SLM, which encodes a spin configuration σ , is
Fourier-transformed using the lens, and the intensity distribution I (x) is acquired
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Fig. 1 Concept of the primitive SPIM

using the image sensor. The value of the Ising Hamiltonian is calculated from I (x).
The ground-state search is based on SA. The phasemodulation of the SLM is updated
for every calculation of the Hamiltonian. Repeating these operations provides a
spin configuration with the minimum energy. In the primitive SPIM, the amplitude
distribution that shines the SLM is fixed during the iterations.

The computation using SPIM is formulated as follows [20]: For simplicity, we
consider a one-dimensional case. We assume that the amplitude distribution ξ =
(ξ1, . . . , ξN ) entering the system has a pixel structure similar to that of SLM. Each
spin σ j is encoded with binary phase modulation φ j ∈ {0, π} using an SLM and
is connected to σ j = exp(iφ j ) = ±1. The width of a single SLM pixel is 2W , the
aperture is expressed as δ̃W (k) = rect

(
k
W

)
, and the optical field Ẽ(k) immediately

after the SLM is
Ẽ(k) =

∑

j

ξ jσ j δ̃W (k − k j ), (2)

where k j = 2W j . The optical field E(x) on the image sensor plane is obtained as a
Fourier transform of Ẽ(k), and the intensity distribution I (x) is represented by

I (x) = |E(x)|2 =
∑

j,h

ξ jξhσ jσhδ
2
W (x)e2ıW (h− j)x , (3)

where δW (x) = sin(Wx)/(Wx) denotes the inverse Fourier transform of δ̃W (k).
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Let IT (x) be an arbitrary target image. The minimization of ‖IT (x) − I (x)‖
corresponds to the minimization of the Ising Hamiltonian with interaction Jjh in Eq.
(4):

Jjh = 2ξ jξh

∫
IT (x)δ2W (x)e2ıW (h− j)xdx . (4)

If 2W is sufficiently small and δW (x) ∼ 1 is sufficient, Jjh can be approximated as

Jjh = 2πξ jξh ĨT [2W ( j − h)], (5)

where ĨT (k) denotes the Fourier transform of IT (x). In addition, when IT (x) = δ(x)
in Eq. (4), the interaction becomes simple: Jjh ∝ ξ jξh . In this case, neglecting the
constant of proportionality, the Ising Hamiltonian in Eq. (1) can be rewritten as

H = −
∑

jh

ξ jξhσ jσh . (6)

As seen fromEq. (6), the SPIM can handle fully connected Isingmodels using optical
computation based on spatial light propagation. However, Eq. (6) is an Ising model
with a special format known as the Mattis model. A pair of interactions between
two spins is the product of two independent variables, and the interaction matrix is
limited to a symmetric rank-1 matrix.

2.2 Concept of SPIMs with Multiplexing

As described above, the interaction matrix J has a restriction specific to SPIM. Thus,
the computational model of SPIM should be improved to handle interaction matrices
with a higher rank for application to diverse, practically useful optimization prob-
lems. A promising approach to address this issue is effectively utilizing multiplexing
capabilities. Multiplexing is a well-known method for improving the performance
and functionality of photonic information systems. Multiplexing strategies are used
in methods using spatial light modulation, including holographic data storage [29]
and computing [30], and would be effective for improving SPIM.

Consider the Hamiltonian configured using the linear sum of Eq. (6) [31]:

H = −
L∑

l=1

α(l)
∑

jh

ξ
(l)
j ξ

(l)
h σ jσh . (7)

Here, l = 1, 2, . . . , L is the multiplexing number, L is the total number of mul-
tiplexed components, α(l) is an arbitrary constant, and ξ

(l)
j is the amplitude. This

extension enables the representation of an interaction matrix with a rank L or less
in the Ising model. From Eq. (7), σ is common for all multiplexed terms; therefore,
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the hardware (SLM) for manipulating it can be shared among the multiplexed lights.
In contrast, the amplitude distributions ξ must be treated independently by assign-
ing individual multiplexed components to different amplitude distributions. Possible
methods for multiplexing include time-division, space-division, angle-division, and
wavelength-division. Figure 2 shows configuration examples of SPIMs with multi-
plexing.

TDM-SPIM (Fig. 2a) can be realized using a hardware configuration similar to
that of the primitive SPIM. However, the amplitude distribution of the light incident
on an SLM for encoding spins must change over time. This is achieved using, for
example, an amplitude-type SLM. The intensity distribution was acquired for indi-
vidual amplitude distributions while maintaining the spin configuration during each
iteration. The system energy was calculated by summing L intensity distributions
on a computer. When α(l) has the same sign, the energy can be calculated optically
by switching the amplitude distribution L times during the exposure of the image
sensor. This method enables multiplexing without sacrificing the number of express-
ible spin variables, and the number of multiplexing channels can be easily increased
while maintaining a simple hardware configuration. However, the computation time
increases linearly with the number of multiplexing channels. The switching rate of
the amplitude modulation can be a factor that restricts the computation speed.

In SDM-SPIM (Fig. 2b), mutually incoherent light waveswith different amplitude
distributions overlap and shine an SLM for encoding spins. Different amplitude
distributions can be generated simultaneously using multiple amplitude modulation
devices or bydividing themodulating area of a single device dependingon the number
of manipulated spins. When positive and negative signs are mixed in α(l), switching
between the amplitude distributions corresponding to the set of the positive and
negative signs is necessary for calculating the system energy. However, the intensity
acquisition required for each iteration is performed once or twice, independent of
the number of multiplexing channels; thus, the time cost is low. The total number
of pixels used for the amplitude modulation is divided according to the number of
multiplexing channels, and the number of spin variables is determined as the number
of pixels after division. However, as described above, introducing multiple devices
can easily extend the total number of pixels for amplitude modulation.

In angle-division multiplexing SPIM (Fig. 2c), different amplitude distributions
can be generated, for example, using a volume hologram with angle-multiplexed
recording [32]. A light-wave readout with angle multiplexing leads to a single SLM
for encoding spins. The computation of the Hamiltonian can be executed simulta-
neously and independently by reading the angle-multiplexed light using mutually
incoherent light. In addition to the SDM, the acquisition of the intensity distribu-
tion required for every iteration is twice the maximum; thus, the computation time
is independent of the multiplexing number. In addition, sharing pixels of amplitude
distributions and phase-modulation SLM amongmultiplexing lights is not necessary,
and this method is considered superior to TDM-SPIM and SDM-SPIM in terms of
the scalability of the spin variables. However, introducing angle-multiplexing optics
is necessary, and the system tends to be complicated. Moreover, the crosstalk of an
angle-multiplexing device affects the Ising machine’s performance.
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In WDM-SPIM (Fig. 2d), we generate different amplitude distributions for mul-
tiple wavelengths while acquiring the sum of the energies (Eq. (7)), optically calcu-
lated for individual wavelengths. Volume holograms or other devices can generate
wavelength-dependent amplitude distributions. Luo et al. recently proposed a sys-
tem using the dispersion of supercontinuum light as an example of WDM [28]. The
computational model was modified using gauge transformation, and the energy com-
putation was executed by leading uniform-distribution multiple-wavelength optical
waves to the phase-only SLM. In WDM methods, the computation time efficiency
is high owing to the simultaneous calculation of multiplexed terms in the Hamil-
tonian. However, compensation is required for the wavelength dependence of the
system behavior, such as the dependence of the intensity distribution scale after opti-
cal Fourier transformation on wavelengths. Moreover, it is difficult to satisfy the
phase distribution for different wavelengths simultaneously; hence, some ingenuity
is required.

This study investigated TDM- and SDM-SPIM, which provide relatively easy
implementation. The two methods are discussed in the following two sections, along
with the experimental results.

3 Time Division Multiplexed (TDM)-SPIM

We confirm that SPIM with multiplexing can handle a wider range of Ising models
by applying it to a 0–1 knapsack problem with integer weights, which is a combi-
natorial optimization problem in the NP-hard class [10]. The primitive SPIM cannot
be applied to this problem because the rank of the interaction matrix is greater than
1. A knapsack problem involves finding a set of items that maximizes the total value
when a knapsack with a weight limit and items with predefined values and weights
are given. This problem is related to several real-world decision-making processes.

Let us assume that there are n items and that the weights and values of the i th
(i = 1, 2, . . . , n) item are wi and vi , respectively. xi ∈ {0, 1} (i = 1, 2, . . . , n) is
a decision variable representing whether the i th item is selected (xi = 1) or not
(xi = 0). The knapsack problem is then formulated as follows:

maximize
n∑

i=1

vi xi , (8)

subject to
n∑

i=1

wi xi ≤ W, (9)

where W denotes the weight limit of the knapsack. The corresponding Ising Hamil-
tonian H is formulated using the log trick [10] as
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H = AHA − BHB, (10)

HA =
(
W −

n∑

i=1

wi xi −
m∑

i=1

2i−1yi

)2

, (11)

HB =
(

n∑

i=1

vi xi

)2

, (12)

where yi ∈ {0, 1} denotes the auxiliary variables. The number of auxiliary variables
is set tom = �log2 maxi wi�. A and B are constants. To find the optimal solution, the
penalty for constraint violation must be greater than the gain from adding an item,
and A and B must satisfy 0 < B

[
2

∑n
i=1 vi − maxi vi

] × maxi vi < A. HA is the
constraint term and HB is the objective term.

SPIM cannot handle Eqs. (11) and (12) directly; therefore, the Hamiltonian is
transformed into a linear sum of the Mattis model with a variable transformation.
Neglecting the constant term that does not affect the optimization, we obtain

H(σ ) = Aσ T ξ (1)ξ (1) Tσ − Bσ T ξ (2)ξ (2) Tσ , (13)

where

σ = (2x1 − 1, . . . , 2xn − 1, 2y1 − 1, . . . , 2ym − 1, 1)T , (14)

ξ (1) = (w1, . . . , wn, 2
0, . . . , 2m−1,

n∑

i=1

wi + 2m − 1 − 2W )T , (15)

ξ (2) = (v1, . . . , vn, 0, . . . , 0,
n∑

i=1

vi )
T . (16)

Equation (13) can be solved using SPIM with multiplexing. In this section, Eq. (13)
was computed using TDM-SPIM [31]. By switching the amplitude distribution
between ξ (1) and ξ (2), the intensity distributions with individual amplitude distri-
butions were acquired sequentially, and the total energy was calculated using a com-
puter. This method enables handling the same number of spins as in the primitive
SPIM by securing the number of pixels for amplitude distributions equivalent to that
of the SLM for encoding spins.

The optical setup of the TDM-SPIM is shown in Fig. 3. A plane-wave ray from a
laser source (Shanghai Sanctity Laser, wavelength: 532 nm) was incident on SLM1
(Santec, SLM-200; pixel number: 1920 × 1080, pixel pitch: 8µm) to spatiallymodu-
late the amplitudes and encode the problem to be solved. The light immediately after
SLM1 was imaged on SLM2 (Hamamatsu Photonics, X15213-01; pixel number:
1272 × 1024; pixel pitch: 12.5 µm), where spatial phase modulation was applied to
incorporate the spin configuration. The light was then Fourier-transformed by lens
L3, and the intensity distribution was acquired using an image sensor (PixeLink,
PL-B953U; pixel pitch: 4.65 µm). To eliminate the mismatch between the pixel
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Fig. 3 Optical setup of TDM-SPIM. OL: objective lens (40×, NA: 0.6); BS: beam splitter; L1, L2,
L3: lens (focal length: 150, 200, 300 mm)

sizes of SLM1 and SLM2, an area of 600 × 600 µm2 (75 × 75 pixels for SLM1 and
48 × 48 pixels for SLM2) was considered the minimum modulation size for each
spin. Because the amplitude range is limited from zero to one, ξ is normalized to
maxi ξi .

In the primitive SPIM, a target image IT , associated with the Hamiltonian using
Eq. (4), is employed to calculate the energy from the acquired intensity distribution.
In our TDM-SPIM, the energy was calculated directly from Eq. (3) without using
IT (x). By substituting x = 0 into Eq. (3), we obtain

I (0) =
∑

j,h

ξ jξhσ jσh, (17)

and find
H = −I (0). (18)

The Hamiltonian value was obtained as the intensity at the center position. This
method eliminates the cost of calculating ‖IT (x) − I (x)‖ from the intensity dis-
tribution and enables to employ a single sensor instead of an image sensor. In the
experiments, we set the intensity within a single pixel at the center as I (0).

The spin configuration was updated for each acquisition of a pair of constraint and
objective terms. The next candidate of the spin configuration σ ′ is made by flipping
individual spins except the last one, whose spin is fixed to “1,” of the current spin
configuration σ with the probability 3/(n + m). By simultaneously flipping multiple
spins, overcoming a higher energy barrier becomes easier. The transition probability
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P in the SA is determined by

P = exp

(
−H(σ ′) − H(σ )

T

)
, (19)

where T is the temperature. We adopted a sample with the maximum total value
among the feasible solutions obtained in the iterations as the final solution. This
is because the Hamiltonian can be inconsistent with the total value because of the
dependence in Eq. (10) on coefficients A and B, and to exclude samples that fail to
satisfy the weight limit. In the experiments, A = (maxi vi ) × (2

∑
vi − maxi vi ) +

1 = 2633, B = 1, and the temperature was constant at T = 10A = 26330. The
solved knapsack problem is as follows:

n = 13, W = 80,

v = (6, 7, 1, 15, 14, 8, 5, 6, 4, 7, 5, 12, 10),

w = (7, 7, 8, 8, 2, 7, 12, 4, 0, 14, 2, 7, 14). (20)

The total value and weight of the optimal solution are 95 and 80, respectively. The
total number of spin variables, including auxiliary variables, is 17.

First, the accuracy of theHamiltonian obtained using this systemwas investigated.
We compared the energy values for the 8192(=213) possible spin configurations
between the theory and experiment. Figure 4 presents an almost linear relationship
for the weight and total value terms with coefficients of determination of 0.8304
and 0.9726, respectively. In the weight calculation, we exclude the data saturated in
the experiment. The results show that the matrix operations for calculating different
terms are executed using a single system. A part of the Hamiltonian values for the
weight in the experiment is measured with saturation owing to the limitation of
the dynamic range of the image sensor. However, this does not hinder the system
behavior because the values important for finding the ground state are those on the
low-energy side. Nevertheless, it is necessary to suitably set the saturation threshold
by considering A and B to effectively utilize the limited dynamic range.

An example of the system evolution during the search for solutions is shown in
Fig. 5. Figure 5a shows the change in energy for each iteration. The total number of
iterations was 3000. Although the energy did not converge because the temperature
was set constant, searching was performed mainly in the low-energy area. Figures 5b
and c show the transitions in the weight and total values for the spin configuration
sampled at every iteration number. The spin configurations with high total values are
broadly searched under the weight constraint. We confirm that the TDM-SPIM can
deal with the Hamiltonian consisting of two terms; in particular, the constraint term,
which is not dealt with in the primitive SPIM, works well.

We executed the TDM-SPIM 50 times and the characteristics of the generated
samples were examined. Figure 6a presents a histogram of the feasible solutions,
taking the maximal total value for every execution. The optimal solution was deter-
mined to be 48%. In addition, approximate solutions with high total values were
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Fig. 4 Comparison of the Hamiltonian values between the theory and the experiment for a the
weight term and b the total value term

found even if the optimal solution could not be found, demonstrating the system’s
capability as an Ising machine. Figure 6b shows a histogram of the energy values
of 150,000 samples generated during the iteration for all executions. These statisti-
cal data show that the system generated many low-energy samples. Furthermore, an
exponential decreasewas observedwithin the areawhere the energy valuewas not too
low. This is similar to the Boltzmann distribution, and the system has characteristics
expected to be sufficient for determining the ground-state solution.

4 Space Division Multiplexing (SDM)-SPIM

TDM-SPIM can manage interaction matrices with a rank of two or more, but the
computation time increases as the number of multiplexing channels increases. As an
approach that provides other features, an SDM-SPIM system was constructed and
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demonstrated. The optical setup of the SDM-SPIM is shown in Fig. 7. We assume
that two independent and mutually incoherent intensity distributions are created
simultaneously in this setup. For this, we use two He-Ne laser sources with the
same wavelength of 632.8 nm (LASOS, LGK7654-8; Melles Griot, 05-LHP-171).
The individual beams from the sources shine in different areas of SLM1 (amplitude
type, HOLOEYE, LC2012; pixel number: 1024 × 768; pixel pitch: 36 µm), and
their amplitudes were modulated to independent distributions ξ . Beams 1 and 2
correspond to the objective and constraint terms, respectively. To control the degree
of contribution of both terms in calculating the Hamiltonian, a neutral-density (ND)
filter was inserted into the pass of beam 1 before SLM1 to adjust the intensity
ratio between the two beams. The beams modulated by SLM1 were then coaxially
combined and directed on the phase-only SLM2 (HOLOEYE, PURUTO-2; pixel
number: 1920 × 1080; pixel pitch: 8.0 µm) for encoding spins. After receiving the
same phase modulation, beams 1 and 2 were Fourier-transformed using lens L3.
The CCD (PointGray Research, Grasshopper GS3-U3-32S4: pixel pitch: 3.45 µm)
then captures the intensity images. The intensity ratio between the objective and
constraint terms was β = B

A = 4 without the ND filter in the setup in Fig. 7. An
area of 360 × 360 µm (10 × 10 pixels for SLM1 and 45 × 45 pixels for SLM2) is
considered the minimum modulation size to eliminate the mismatch between the
pixel sizes of SLM1 and SLM2.
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Knapsack problems were examined as well as the experiments described in the
previous section. Here, the contribution of the total value term in the Hamiltonian is
changed to linear such thatH ′

B is used instead of HB in Eq. (12):

H ′
B = −B

n∑

i=1

vi xi . (21)
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Fig. 7 Optical setup of the SDM-SPIM. The number of multiplexing is two. OL: Objective lens
(10×, NA 0.25); ND: neutral-density filter; BS: beam splitter; L1, L2, L3: lens (focal length: 60,
150, 300 mm)

The Hamiltonian is represented as follows:

H(σ ) = Aσ T ξ (1)ξ (1) Tσ − Bσ T ξ (2)ξ (2) Tσ + Bσ T ξ (3)ξ (3) Tσ , (22)

ξ (1) = (w0, . . . , wN−1, 2
0, . . . , 2M ,

N−1∑

i=0

wi +
M∑

i=0

2i − 2W ), (23)

ξ (2) = (v0, . . . , vN−1, vN , . . . , vN+M , 1), (24)

ξ (3) = (v0, . . . , vN−1, vN , . . . , vN+M , 0). (25)

The image captured by this system is the sum of the intensity distributions of the
individual amplitude distributions of the beams. In Eq. (22), the sign of the coefficient
of the second term is different from that of the other terms, and it is not possible to
obtain the sum of all Hamiltonians simultaneously. Therefore, TDM was utilized.
Terms with the same sign were optically calculated simultaneously, and the energy
was obtained separately for each sign. The separation of processing into two parts is
sufficient, and the time cost for TDM is constant, regardless of the number of terms
in the Hamiltonian. The spin configuration was updated based on SA. The initial
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temperature was 3000 and the cooling rate was 0.96. The next candidate of the spin
configuration σ ′ is made by flipping individual spins except the last one, whose spin
is fixed to “1,” of the current spin configuration σ with the probability 3/(n + m). The
spin configuration is updated according to Eq. (19). The delta function was employed
as the target image IT (x). To represent the delta function in the experiments, we set
3 × 3 pixels around the center to 1, and the others to 0.

Proof-of-concept experiments were performed using the knapsack problem as
follows:

n = 4, W = 11, v = (6, 10, 12, 13), w = (2, 4, 6, 7). (26)

The total value of the optimal solution is 23 and the weight is 11. The total number of
spin variables, including the auxiliary variables, is 8. Figure 8a presents a histogram
of the total values of the final solutions obtained over 100 iterations. The total number
of iterationswas 300 andβ = 0.01. The rate of execution inwhich the solution search
converges to the optimal solutionwas 52%.The rate of execution inwhich the optimal
solution is never sampled during iterationswas 27%. The rate of convergence to reach
the optimal solution out of the executions in which the optimal solution is sampled
once or more was 71%. No solution significantly exceeded the weight constraint, and
the constraint term was confirmed to work sufficiently. Figure 8b shows an example
of the time evolution of aHamiltonian during the iterations. TheSDM-SPIMprovides
sufficient opportunities for convergence to the optimal solution.

It is necessary to set the ratio (β) of the constraint and objective terms suitably
to determine the ground state in the Ising model. In the SDM-SPIM optical sys-
tem, the ratio β = B

A can be controlled by the light wave intensities related to the
individual terms. We investigated the characteristics of the solution search when
different ND filter transmittances were applied. Figure 9a shows the number of
samples that exceed the weight limit during iteration, and (b) the histogram of the
weights for the final solutions when the transmittance of the ND filter is 10% or
0.25% in 50 executions. The number of iterations was set to 300. When the intensity
of light related to the objective term decreases (the transmittance of the ND filter
decreases), the constraint is easilymaintained in searches. In contrast, when the inten-
sity increases, the constraint easily exceeds.Nofinal solution exceeds theweight limit
when β = 0.01 (ND:0.25%). However, many solutions violate this constraint when
β = 0.4 (ND:10%). These experimental results demonstrate that the distributions of
the samples during the iterations and the final solutions change depending on the
transmittance of the ND filter or β. This indicates the manipulability of the space
for solution search by controlling the optical parameters. In addition, for the con-
straint term towork effectively when using theHamiltonian in Eq. (22), the following
condition must be satisfied:

A > Bmax
i

vi . (27)

maxi vi = 13 for the examined problem, and the condition becomes β =<1/13 ≈
0.077. This is consistent with the results presented in Fig. 9.
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In the previous experiment, the ND filter’s transmittance was fixed during itera-
tions. The search characteristics can be improved by changing the optical parameters
during the iterations. Thus, we investigated amethod inwhich the iteration proceeded
by changing the coefficient ratio β step-by-step. This method is referred to as the
dynamic coefficient search in this study. The change in the coefficient can be realized
by replacing the ND filter or controlling the light source emission intensity. SA with
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fixed coefficients and dynamic coefficient searches were compared using numerical
experiments. The knapsack problem used is as follows:

n = 10,W = 60,

v = (20, 18, 17, 15, 15, 10, 5, 3, 1, 1),

w = (30, 25, 20, 18, 17, 11, 5, 2, 1, 1). (28)

The total value of the optimal solution is 52 and the weight is 57–60. The total
number of spin variables, including the auxiliary variables, is 16. The ratio β = 0.05.
In the SA, the initial temperature was 300, 000, and the cooling rate was 0.96. In the
dynamic coefficient search, the ratio was changed, β = 2, 1, 0.8, 0.5, 0.1, 0.05
for every 100 iterations. The annealing temperature was fixed at T = 30. The spin
configuration with the minimum energy in iterations with the same β is used as the
initial spin configuration in iterations with the next β. The total number of iterations
was set to 600.

Figure 10 shows the histogram of the total values for 1000 executions. The
dynamic coefficient search provides improved optimal or approximate solutions
compared to SA with fixed coefficients. This tendency is also observed when the
total number of iterations varies. A dynamic coefficient search has good potential.
A possible reason for this is the difference in the search route leading to the opti-
mal solution. In SA with fixed coefficients, the constraint term is strong from the
beginning of the iteration, and solutions satisfying the constraint are preferentially
searched. In contrast, in the dynamic coefficient search, the constraint term is weak at
the beginning of the iterations, and the search proceeds from solutions with high total
values. This suggests the possibility of the SDM-SPIM performance improvement
by dynamic optical parameter tuning.

5 Conclusion

This study presents SPIMs with multiplexing to solve combinatorial optimization
problems. An interaction coefficient matrix with a rank of two or more can be
managed, and the applicability of SPIMs to practical applications is enhanced. We
constructed TDM-SPIM and SDM SPIM systems among the possible multiplexing
schemes and verified their performance using knapsack problems. In the TDM-SPIM
experiments, the constraint and objective terms work well and the ground state of the
system can be searched efficiently by considering the two terms. In the SDM-SPIM
experiments, the search characteristics varied depending on the coefficient ratio,
which can change with the transmittance of the ND filter, between the constraint
and objective terms in the Hamiltonian. Furthermore, the numerical results suggest
that dynamically decreasing the coefficient ratio during the iteration can enhance the
performance of an Ising machine.
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With support from the performance and functionality improvements of SLMs and
the progress of mathematical methods, computing based on spatial light modulation
and free-space propagation provides advantages in terms of scalability, controlla-
bility, and simplicity [6, 23]. The number of spin variables handled in the SPIM
depends on the number of SLM’s pixels. These pixels can be manipulated in par-
allel, and the time required to calculate the energy is independent of the number of
spins and is constant. The degrees of freedom of the models that can be handled are
determined by the number of multiplexing. The number of spins and multiplexing
can be changed independently, thereby providing flexibility in the design of optical
systems. Furthermore, physical operations are possible in simple energy calculations
and when setting parameters related to annealing characteristics. These are signif-
icant features of SPIM with multiplexing, and they are expected to contribute to
creating optics-based unconventional computing architectures in the future.
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Investigation on Oscillator-Based Ising
Machines

Sho Shirasaka

Abstract Moore’s law is slowing down and, as traditional von Neumann comput-
ers face challenges in efficiently handling increasingly important issues in a modern
information society, there is a growing desire to find alternative computing and device
technologies. Ising machines are non-von Neumann computing systems designed to
solve combinatorial optimization problems. To explore their efficient implemen-
tation, Ising machines have been developed using a variety of physical principles
such as optics, electronics, and quantum mechanics. Among them, oscillator-based
Ising machines (OIMs) utilize synchronization dynamics of network-coupled spon-
taneous nonlinear oscillators. In these OIMs, phases of the oscillators undergo bina-
rization through second-harmonic injection signals, which effectively transform the
broad class of network-coupled oscillator systems into Ising machines. This makes
their implementation versatile across a wide variety of physical phenomena. In this
Chapter, we discuss the fundamentals and working mechanisms of the OIMs. We
also numerically investigate the relationship between their performance and their
properties, including some unexplored effects regarding driving stochastic process
and higher harmonics, which have not been addressed in the existing literature.

1 Introduction

In today’s society, we are increasingly reliant on information devices in every aspect
of our lives. The remarkable progress in information technology has been largely
driven by the advancements in semiconductor technology, specifically the scaling
law known as Moore’s law [1]. However, the pace of Moore’s law slows down due
to physical and economic limitations [2].

The modern era of information processing has been largely dominated by the
von Neumann architecture, a paradigm that has served as the backbone of general-
purpose computing for decades. However, von Neumann machines have inherent
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limitations when solving certain types of problems, such as those involving com-
binatorial optimization. These problems have a wide spectrum of applications in
the real world, including machine learning, computer vision, circuit wiring, route
planning, and resource allocation [3–6].

Recognizing these challenges, there has been a growing interest in non-silicon-
based, non-von Neumann architectures. These architectures, which admit massively
parallel, asynchronous, and in-memory operations, are different from traditional
general-purpose computing devices/models and are designed specifically to tackle
these complex problems more effectively. These architectures, which include quan-
tum computers, neuromorphic computers, and Ising machines, among others, offer
promising alternatives for the advancement of next-generation information process-
ing [7, 8].

Many combinatorial optimization problems can be translated into a problem of
physics: finding the ground state of an Ising model, a system of interacting binary
spins. Ising machines are physical systems specifically designed to find the ground
states of Ising models [9]. Ising machines have been implemented using various
physical systems, such as superconducting qubits, optical parametric oscillators,
dedicated digital CMOS devices, memristors, and photonic simulators [10–15].

Oscillations are ubiquitous phenomena observed across the fields of natural sci-
ence and engineering [16, 17]. Coupled oscillator systems, which can be realized
through various physical phenomena, possess diverse information processing capac-
ity and hold promise for building ultra energy efficient, high frequency and density
scalable computing architecture [18, 19] (see [18, Table 1] for a comparison of sev-
eral building block physical rhythmic elements). While the state of an oscillator is
represented by a continuous phase value, sub-harmonic injection locking phenomena
can be used to realize discrete states, as proposed since the time of von Neumann and
Goto [20, 21]. These discrete states can be utilized to implement Ising spins, a prin-
ciple that led to the foundation of oscillator-based Ising machines (OIMs) [22, 23].
OIMs have been experimentally demonstrated using various physical systems, such
as analog electronic, insulator-to-metal phase transition, and spin oscillators [22,
24–26].

In this Chapter, we discuss the fundamentals and working mechanisms of the
OIMs. We also numerically investigate the relationship between their performance
and their properties, including some unexplored effects regarding driving stochas-
tic process and higher harmonics, which have not been addressed in the existing
literature.

2 Ising Model and Ising Machines

The Isingmodel, proposed by E. Ising in the early 20th century, is a theoretical model
used to describe a system of interacting binary spins [27]. The model is specified
by a collection of discrete variables, the “spins,” (si )Ni=1 ∈ {−1, 1}N , where N is the
number of spins, and a cost function, or “Hamiltonian,” H : {−1, 1}N → R, which
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specifies how the spins interact. The Ising Hamiltonian is given by:

H = −1

2

N∑

i=1

N∑

j=1

Ji j si s j −
N∑

i

hi si , (1)

where Ji j ∈ R is the interaction coefficient between the i th and j th spins, and hi ∈ R

is the external magnetic field for the i th spin. Many combinatorial optimization
problems can be mapped onto the problem of finding the ground state of the Ising
model, with instances of these problems specified by the symmetric adjacencymatrix
J and vector h. The problem is to find the spin configuration s that minimizes the
above Hamiltonian. In this chapter, we limit to consider the Ising models with no
external field:

H = −1

2

N∑

i=1

N∑

j=1

Ji j si s j . (2)

These models still encompass various important combinatorial optimization prob-
lems [28], called NP-complete problems, which can be computationally intractable
for the traditional von Neumann architecture machines.

Ising machines are physical systems that are designed to efficiently explore
the ground state of the Ising Hamiltonian. Various Ising machines have been pro-
posed, using approaches including classical, quantum, classical-quantum hybrid,
and quantum-inspired classical [9]. Also, these machines have been realized through
various physical systems, such as superconducting qubits, optical parametric oscilla-
tors, dedicated digital CMOS devices, memristors, and photonic simulators [10–15].
Among these, the focus of this Chapter is on the classical ones. A classical physical
system subjected to thermal fluctuation exhibits a stationary distribution ps, known
as the Boltzmann distribution, which takes the following form [29]:

ps(x) = N exp (−V (x)/D) , x ∈ � , (3)

where x is the state of the physical system, � is the phase space, N ∈ R is the
normalization constant, V (x) ∈ R is the energy of the state x and D ∈ R is the
strength of the thermal fluctuation. The Boltzmann distribution tells us that the lower
energy states appear with higher probability, and the probability of obtaining the
ground state increases as the fluctuation strength is lowered. While reducing the
fluctuation strength can increase the probability of obtaining the ground state, it’s
not always advantageous to simply diminish the fluctuation. If the fluctuation is too
weak, the systemmay become trapped in local minima of the potential and be unable
to escape, which significantly increases the time it takes for the system to reach a
stationary distribution. To address this challenge, a process known as annealing is
often employed. In this process, the strength of the fluctuation is gradually reduced in
order to achieve a balance between reaching a stationary distribution and enhancing
the probability of finding the ground state. Thediscussion above leads to the following
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idea of a class of Isingmachines: if we implement a physical gradient systemwith the
potential V subject to the following conditions, and apply appropriate fluctuations to
it, we can find the ground state of the Ising Hamiltonian and thus solve combinatorial
optimization problems:

• There exists a set in the phase space � that can be regarded as spin configurations,
• The Ising Hamiltonian H is represented as the potential V evaluated at these spin
configurations,

• The minimum value of V coincides with the minimum value of H .

Even continuous-state dynamical systems can be harnessed in the implementation of
Ising machines. The Hopfield-Tank neural network [30] being a classical example,
and coherent Ising machines [11] implemented using optical parametric oscillators
and OIMs also belong to this group. Also, in addition to the method of utilizing
thermal fluctuations as discussed above, other approaches utilizing deterministic
chaotic fluctuations to implement Ising machines using classical continuous-state
dynamical systems have been proposed [31, 32].

3 Oscillator-Based Ising Machines

Oscillations are ubiquitous phenomena observed across the fields of natural science
and engineering [16, 17]. Coupled oscillator systems, which can be realized through
various physical phenomena, possess diverse information processing capacity and
hold promise for building ultra energy efficient, high frequency and density scalable
computing architecture [18, 19].

In this section, we will discuss the background of the operating principle of
oscillator-based Ising machines (OIMs) [22, 23]. This is summarized as follows:
Under the assumption that the interaction and external forcing are sufficiently
weak, network-coupled self-excited oscillators can universally be described using
the Kuramoto model, which consists of network-coupled phase oscillators. Given
certain symmetries in the topology and scheme of interaction, the Kuramoto model
becomes a gradient system. Moreover, sub-harmonic injection allows for the intro-
duction of spin configurations as a stable synchronized state within the phase space
of the phase oscillator system.

These properties suggest that a broad class of network-coupled self-excited oscil-
lator systems can be used to implement OIMs. OIMs have been experimentally
demonstrated using various physical systems, such as analog electronic, insulator-
to-metal phase transition, and spin oscillators [22, 24–26].
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3.1 Phase Oscillators

In this Subsection, we introduce the notion of the phase for a stable self-excited oscil-
lator and explain how its dynamics, when subjected to sufficiently weak fluctuation,
can be reduced to a one-dimensional dynamics of a phase oscillator.

Consider a smooth autonomous dynamical system of Nd-dimensional state x(t) ∈
R

Nd :
ẋ(t) = F(x(t)) , x(t) ∈ R

Nd , (4)

which has an exponentially stable limit-cycle χ : x̃0(t) with a natural period T
and frequency ω = 2π/T , satisfying x̃0(t) = x̃0(t + T ). We first introduce a phase
θ(x) ∈ [0, 2π) on χ , where 0 and 2π are considered identical. We can choose an
arbitrary point x̃0(0) on χ as the origin of phase, i.e., θ(x̃0(0)) = 0, and define
the phase of x̃0(t) as θ(x̃0(t)) = ωt (mod 2π). In the following, we reparametrize a
point on χ using θ instead of t . Specifically, we define x0(θ) := x̃0(t) for subsequent
discussions. Apparently, x0(θ) = x0(θ + 2π) holds.

To describe the dynamics when the system deviates from the periodic orbit χ due
to perturbation, we extend the definition of the phase beyond χ . Here, it’s important
to note that θ̇ = ω holds as long as x evolves on χ . Let us extend the definition of the
phase such that θ̇ = ω holds. With this extension, the phase difference between two
solutions of (4) starting from different initial conditions should remain constant over
time. The basin of attraction B ⊂ R

Nd is the set of initial conditions that converge to
χ . For smooth, exponentially stable limit-cycling system, the following holds [33]:
For any point x∗ ∈ B, there exists a unique initial condition x0(θ∗) on the periodic
orbit, which yields a solution that maintains a constant phase difference of zero with
the solution starting from x∗. Thus we can introduce a phase function θ(x) : B →
[0, 2π) that maps the system state to a phase value as

θ(x∗) = θ(x0(θ∗)) = θ∗ . (5)

For smooth systems, the phase function θ is also smooth, and thus

F(x) · ∇θ(x) = ω , ∀x ∈ B , (6)

holds due to the chain rule.
When an impulsive and sufficiently weak perturbation εk (|ε| � 1) is given to

the system at x0(θ∗), the response of the phase can be linearly approximated by
neglecting higher-order terms in ε as

θ(x0(θ∗) + εk) − θ∗ = ∇θ(x0(θ∗)) · εk . (7)

Thus, the gradient ∇θ(x0(θ∗)) of θ , evaluated at x = x0(θ∗) characterizes linear
response property of the oscillator phase to weak perturbations.∇θ(x0(θ∗)) is called
the phase sensitivity function (a.k.a. infinitesimal phase resetting curve, perturbation
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projection vector) [34–37]. The phase sensitivity function plays central roles in ana-
lyzing synchronization dynamics of oscillatory systems. In the following, we denote
the phase sensitivity function as Z(θ∗) := ∇θ(x0(θ∗)).

Consider a limit-cycle oscillator subjected to a weak perturbation, described by
the equation:

ẋ(t) = F(x(t)) + ε p(x, t) , p(x, t) ∈ R
Nd , (8)

where ε p represents a small perturbation ofmagnitude ε, i.e., |ε| � 1. The dynamics
of the phase θ(x(t)) can be obtained using the chain rule:

θ̇ (x(t)) = ∇θ(x(t)) · {F(x(t)) + ε p(x, t)} = ω + ε∇θ(x(t)) · p(x, t) . (9)

This equation is not yet closed in phase θ because ∇θ(x) depends on x. In order
to obtain an equation for θ , we used the fact that the perturbation is small and
O(ε), implying that the deviation of the state x from χ is also small and O(ε),
i.e., x(t) = x0(θ∗) + O(ε), where θ∗ = θ(x(t)). The gradient ∇θ at x can then be
expressed as∇θ(x(t)) = ∇θ(x0(θ∗)) + O(ε) and by substituting into (9), we obtain
an approximate phase equation for θ ,

θ̇ (t) = ω + εZ(θ) · p(x0(θ), t) , (10)

by neglecting the terms of O(ε2). This phase equation is now closed in θ and can
be solved for θ when the phase sensitivity function Z and perturbation ε p are given.
Thus the Nd-dimensional nonlinear dynamics of the oscillator is successfully reduced
the one-dimensional phase dynamics.

When the model of a dynamical system is known, a convenient method for cal-
culating the phase sensitivity function is the adjoint method [38–40]. The adjoint
method involves solving

ω
d

dθ
Y(θ) = −DF	(x0(θ))Y(θ) , Y(θ) ∈ R

Nd , (11)

where DF is the Jacobian matrix of F and 	 denotes the transposition. This
equation is solved backward in time with an initial condition Y(0) such that
F(x0(0)) · Y(0) 
= 0. It then converges to a periodic solution. Normalizing this solu-
tion using the condition F(x0(θ)) · Y(θ) = ω, which corresponds to (6), gives rise
to the phase sensitivity function. While this is a simple method, it requires the cal-
culation of the Jacobian matrix, which can often be challenging to use for high-
dimensional oscillatory systems. Therefore, methods to avoid the calculation of the
Jacobian matrix have also been proposed [41, 42].

The phase sensitivity functions can also be measured experimentally in model-
free manners [43–47]. Furthermore, the phase function (and thus its gradient) can
also be characterized by an eigenfunction of the associated Koopman operator for
dynamical systems [48]. The Koopman operator allows for a data-driven spectral
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decomposition method, known as dynamic mode decomposition, which is a rapidly
evolving field of study [49].

3.2 Second-Harmonic Injection Locking

An oscillator with a frequency ω can be entrained by an external periodic signal
having a frequency close to (l/k)ω, where k and l are natural numbers. This is
phenomenon is known as synchronization of order k : l. If k < l (resp. k > l), the
locking is referred to as sub-harmonic (resp. superharmonic) [16, 17]. The term
“second-harmonic injection locking” refers to 1 : 2 sub-harmonic synchronization.
Furthermore, when an oscillator is perturbed by an external second-harmonic injec-
tion signal, the phase difference between the oscillator and the injection signal settles
down to one of two values, separated byπ . This allows for the encoding of a spin state
of an Ising model into the phase difference, using the two steady states to represent
the spin down or up, respectively.

Let us provide a concrete discussion of this scenario. Consider a limit-cycle oscil-
lator with the frequencyω subjected to a weak, almost second-harmonic perturbation
of frequency ωs ≈ 2ω, described by the equation:

ẋ(t) = F(x(t)) + ε p(t) . (12)

We define ω − ωs/2 = �ω and the phase difference ψ between the oscillator and
the forcing as

ψ := θ − 1

2
ωst . (13)

The evolution of the phase difference is then given by

dψ

dt
= �ω + Z

(
1

2
ωst + ψ

)
· εq (ωst) , (14)

where q (ωst) := p(t). From the assumptions ωs ≈ 2ω, |ε| � 1, the right-hand side
of (14) is very small, andψ varies slowly. Hence, the averagingmethod [50] provides
an approximate dynamics of (14) as

dψ

dt
= �ω + ε
(ψ) , (15)


(ψ) = 1

2π

2π∫

0

dθZ(θ + ψ) · q(2θ) . (16)

Consider the Fourier series expansions of Z and q:
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Z(φ) =
[ ∞∑

k=−∞
Z1,ke

ikφ,

∞∑

k=−∞
Z2,ke

ikφ, · · · ,

∞∑

k=−∞
ZNd,ke

ikφ,

]	
, (17)

q(φ) =
[ ∞∑

l=−∞
q1,l e

ilφ,

∞∑

l=−∞
q2,l e

ilφ, · · · ,

∞∑

l=−∞
qNd,l e

ilφ,

]	
. (18)

Then,


(ψ) =
Nd∑

m=1

∞∑

l=−∞
Zm,−2lqm,l e

−2ilψ . (19)

If ε p(t) is a second-harmonic injection, i.e., qm,l = 0 for any |l| 
= 1, (19) simplifies
to


(ψ) = 2.0
Nd∑

m=1

Re
(
Zm,−2qm,1e

−2iψ
)

. (20)

This equation represents a second-harmonic wave. Therefore, when the mismatch
in the 1 : 2 frequency relation �ω is sufficiently small, the dynamics of the phase
difference (15) exhibits two stable and two unstable equilibria, each of which are
separatedπ . These stable equilibria can be utilized as the spin state of an Isingmodel.

Even if q is not a purely second-harmonic, as long as the frequency mismatch
condition is met, the DC component of (qm,0)

Nd
m=1 is small, and Zm,−2lqm,l (|l| ≥ 2)

do not create new equilibria, there continue to be only two stable equilibria separated
by π . This separation can again be utilized to represent the spin states.

3.3 Kuramoto Model

In this Subsection, we derive a variant of the Kuramoto model from a general system
of weakly coupled, weakly heterogeneous oscillators subjected to second-harmonic
forcing.

Consider

ẋi (t) = F(xi (t)) + f̃ i (xi (t)) +
N∑

j=1

Ji j g̃i j (xi (t), x j (t)) + p(t) . (21)

Here, F has a “standard” oscillator with a periodic orbit x̃0 of frequency ω, while
f̃ i characterizes the autonomous heterogeneity of the i th oscillator. J = (Ji j ) is the
adjacencymatrix of the coupling connectivity, and g̃i j represents the interaction from
oscillator j to i . p is the almost second-harmonic injection of frequency ωs ≈ 2ω.
We assume that the magnitudes of f̃ , g̃i j , and p are sufficiently small. We introduce
phase functions θi for the i th oscillator using the standard oscillator. We define �ω
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and ψi as in (13). Then we obtain

ψ̇i (t) = �ω + Z
(
1

2
ωst + ψi

)
·

⎡

⎣ f i

(
1

2
ωst + ψi

)
+

N∑

j=1

Ji j gi j

(
1

2
ωst + ψi ,

1

2
ωst + ψ j

)
+ q (ωst)

⎤

⎦ ,(22)

where x0(θ) := x̃0(t), f i (θ∗) := f̃ i (x0(θ∗)), gi j (θ∗, θ∗∗) := g̃i j (x0(θ∗), x0(θ∗∗)),
q (ωst) := p(t). Given the assumptions above, the right-hand side of (22) is very
small and the averaging approximation leads to

ψ̇i (t) = �ωi +
N∑

j=1

Ji j
i j (ψi − ψ j ) + 
(ψi ) , (23)

where �ωi := �ω + δωi and

δωi = 1

2π

2π∫

0

dθZ(θ + ψi ) · f i (θ + ψi ) , (24)


i j (ψi − ψ j ) = 1

2π

2π∫

0

dθZ(θ + ψi ) · gi j (θ + ψi , θ + ψ j ) , (25)


(ψi ) = 1

2π

2π∫

0

dθZ(θ + ψi ) · q(2θ) . (26)

Thus, the system of weakly coupled, weakly heterogeneous oscillators subjected to
second-harmonic forcing (21) can be universally reduced to the variant of Kuramoto
phase oscillator system (23). This type of Kuramoto model, which has an external
field term 
, is called the active rotator model [51–53].

3.4 Gradient Structure of the Kuramoto Model

In this Subsection, given certain assumptions about symmetries in the topology and
the schemeof interaction,we show that theKuramotomodel (23) is a gradient system.
Our discussion draws heavily on the material presented in Appendix C of [22], but
we slightly relax the assumption therein and extend the result.
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We assume that Ji j = Jji , 
i j = 
 j i and its antisymmetricity:


i j (x) = −
i j (−x) . (27)

Such antisymmetry appears when the interaction gi j is diffusive, i.e.,

gi j (ψi , ψ j ) = −gi j (ψ j , ψi ) . (28)

Note that, in [22], it is assumed that
i j = 
kl , i.e., the interaction scheme is uniform.
We only assume its symmetricity instead.

Let us introduce a potential function L as

L(ψ) := 1

2

N∑

i=1

N∑

j=1

{−1

N

[
�ωiψi + �ω jψ j

]

+ 1

2N

[
Is(2ψi ) + Is(2ψ j )

] + Ji j Ii j (ψi − ψ j )

}
, (29)

where

Ii j (x) := −
x∫

0


i j (y)dy + Ci j , (30)

Is(x) := −
x∫

0


(y)dy . (31)

Here Ci j ∈ R is a constant. Then we have

∂

∂ψl

{ N∑

i=1

N∑

j=1

−1

N

[
�ωiψi + �ω jψ j

] }
= − 1

N

N∑

i=1

N∑

j=1

[
�ωiδil + �ω jδ jl

]

= − 1

N

N∑

j=1

N∑

i=1

�ωiδil − 1

N

N∑

i=1

N∑

j=1

�ω jδ jl

= − 1

N

N∑

j=1

�ωl − 1

N

N∑

i=1

�ωl = −2�ωl , (32)

where δi j is the Kronecker delta. Also,
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∂

∂ψl

{
N∑
i=1

N∑
j=1

1

2N

[
Is (2ψi ) + Is

(
2ψ j

)]
}

= − 1

2N

N∑
i=1

N∑
j=1

[
2δil
 (2ψi ) + 2δ jl


(
2ψ j

)]

= − 1

N

N∑
j=1

N∑
i=1

δil
 (2ψi ) − 1

N

N∑
i=1

N∑
j=1

δ jl

(
2ψ j

)

= − 1

N

N∑
j=1


 (2ψl) − 1

N

N∑
i=1


 (2ψl) = −2
 (2ψl) , (33)

∂

∂ψl

{
N∑
i=1

N∑
j=1

Ji j Ii j
(
ψi − ψ j

)
}

= −
N∑
i=1

N∑
j=1

[
Ji j

(
δil − δ jl

)

i j

(
ψi − ψ j

)]

= −
[

N∑
j=1

N∑
i=1

δil Ji j
i j
(
ψi − ψ j

) −
N∑
i=1

N∑
j=1

δ jl Ji j
i j
(
ψi − ψ j

)
]

= −
[

N∑
j=1

Jl j
l j
(
ψl − ψ j

) −
N∑
i=1

Jil
il (ψi − ψl)

]

= −
[

N∑
j=1

Jl j
l j
(
ψl − ψ j

) +
N∑
j=1

Jl j
l j
(
ψl − ψ j

)
]

(∵ (27) and Jil = Jli , 
il = 
li )

= −2
N∑
j=1

Jl j
l j
(
ψl − ψ j

)
. (34)

Thus the Kuramoto model (23) is a gradient flow of L:

ψ̇ = −∇L(ψ) . (35)

3.5 Working Principle of OIMs

In this Subsection, we explain how an OIM explores the ground state of the Ising
Hamiltonian.

Consider a coupled oscillator system, where noisy fluctuation is introduced into
(23), as follows:
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ψ̇i (t) = �ωi − K
N∑

j=1

Ji j
i j (ψi − ψ j ) − Ks
(ψi ) + Knξi (t) , (36)

where ξi (t) is a white Gaussian noise with zero mean and unit variance, and
K , Ks, Kn represent the strength of each term. We interpret the stochastic inte-
gral of the Langevin equation (36) in the Strantonovich sense, as we are consid-
ering real and physical noises [54]. We assume that the symmetry assumptions (27),
Ji j = Jji , 
i j = 
 j i so that the associated deterministic system has a potential func-
tion:

L(ψ) := 1

2

N∑

i=1

N∑

j=1

{−1

N

[
�ωiψi + �ω jψ j

]

− Ks

2N

[
Is(2ψi ) + Is(2ψ j )

] − K Ji j Ii j (ψi − ψ j )

}
. (37)

As discussed in Subsect. 3.2, the second-harmonic injection aids in creating two
stable equilibria that are separated by π . Without loss of generality, we can consider
these equilibria as 0 and π . This is because ψ represents the phase difference with
respect to the second-harmonic injection, and the origin of the phase of the injection
can be chosen arbitrarily. Assuming small phase mismatches �ωi and that all ψi

have settled to either 0 or π , the potential energy can be approximated as

L(ψ) ≈ −NKs

2
Is(0) − 1

2

N∑

i=1

N∑

j=1

K Ji j Ii j (ψi − ψ j ) . (38)

We used the fact that Is(0) = Is(2π). As
i j is antisymmetric, Ii j is symmetric, hence
Ii j (π) = Ii j (−π). Thus, if we can choose Ci j in (30) such that

Ii j (0) = −Ii j (π) = C , (39)

where C ∈ R≥0 is a constant independent of i, j , we obtain

L(ψ) ≈ −NKs

2
Is(0) − KC

2

N∑

i=1

N∑

j=1

Ji j s̃(ψi )s̃(ψ j ) , (40)

where s̃(0) = 1, s̃(π) = s̃(−π) = −1. Thus, the potential function evaluated at π -
separated stable equilibria created by second-harmonic injection matches the Ising
Hamiltonian (2), up to a constant offset and a constant scaling factor. Since the
deterministic part of (36) has the gradient structure, the stationary distribution for ψ

is given by the Boltzmann distribution:
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ps(ψ) = N exp

(
− 2

K 2
n

L(ψ)

)
. (41)

In this stationary distribution, states with lower potential energy are more likely
to occur. Therefore, when the second-harmonic injection establishes π -separated
equilibria, the OIM effectively searches for the ground state of the IsingHamiltonian.

4 Experiments

In this Section, we conduct numerical investigations to explore the relationship
between the performance and properties of OIMs. Our focus is on the MAX-CUT
problem, an important problem that is straightforwardlymapped onto the Isingmodel
and is classified as NP-complete. Additionally, we delve into some aspects related
to higher harmonics and time discretization, which have remained unexplored thor-
oughly in the existing literature.

4.1 MAX-CUT Problem

The MAX-CUT problem asks for the optimal decomposition of a graph’s vertices
into two groups, such that the number of edges between the two groups is maximized.
The MAX-CUT problem is NP-complete for non-planar graphs [55].

In this Chapter, we consider the MAX-CUT problem for unweighted, undirected
graphs. The problemcanbe formulated as follows:Given a simple graphG = (V, E),
where V is the set of vertices and E is the set of edges. Find a partition of V into
two disjoint subsets V1 and V2 such that the number of edges between V1 and V2 is
maximized. Let us assign each vertex i ∈ V a binary variable si ∈ {−1, 1}. If i ∈ V1

(resp. V2), we set si = 1 (resp. si = −1). The term 1 − si s j is 2 if vertices i and j
are in different subsets (and thus contribute to the cut), and 0 otherwise. Then, the
sum of (1 − si s j )/2 over the graph provides the cut value:

c := 1

4

∑

i∈V

∑

j∈V
Ai j (1 − si s j ) = |E |

2
− 1

4

∑

i∈V

∑

j∈V
Ai j si s j . (42)

Therefore, theMAX-CUTproblemcan bewritten asmaxs{− 1
2

∑
i∈V

∑
j∈V Ai j si s j },

which is eqivalent to

min
s

⎧
⎨

⎩−1

2

∑

i∈V

∑

j∈V
Ji j si s j

⎫
⎬

⎭ , (43)
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by setting J := −A. Thus, by defining J := −A, theMAX-CUTproblem ismapped
to the Ising model (2).

In this work, we use MAX-CUT problems associated with Möbius ladder graphs
in order to demonstrate the performance and characteristics of OIMs. Figure 1(a)
depicts a Möbius ladder graph of size 8 along with its MAX-CUT solution. Möbius
ladder graphs are non-planar and have been widely employed as benchmarking Ising
machines [9, 11, 13, 14, 22, 24–26, 32]. Note that the weighted MAX-CUT prob-
lem on Möbius ladder graphs has recently been classified as “easy,” falling into the
complexity class P (NP-completeness does not imply all instances are hard) [56].
However, our focus is not on the qualitative side, such as the pursuit of polynomial
scaling of required time to reach optimal or good solutions for NP-complete prob-
lems. Instead, by understanding the impact of the quantitative physical properties of
OIMs, particularly the magnitudes and schemes of interaction and injection denoted
by 
i j and 
, we aim to lay the groundwork that could eventually lead to the deriva-
tion of effective design principles for physical rhythm elements, thus potentially
enhancing the performance of OIMs.

The computational capability of OIMs for MAX-CUT problems, such as exper-
imentally observed polynomial scaling, has been somewhat explained by exploring
connections with rank-2 semidefinite programming (SDP) relaxation of MAX-CUT
problems [57]. In this regard, the construction of physical coupled oscillator systems
that could effectively integratewith randomized rounding [58]would be an intriguing
research direction.

4.2 Experimental Setting and Evaluation Metrics

Unless otherwise specified, (36) is integrated over time using the Euler-Heun
method [59] under the parameters listed in Table 1.

The waveforms of 
i j and 
 are normalized so that

2π∫

0

|
i j (ψ)|dψ =
2π∫

0

| sinψ |dψ ,

2π∫

0

|
(ψ)|dψ =
2π∫

0

| sin 2ψ |dψ , (44)

hold.
We define how to interpret the phase difference ψ as a spin state when it takes

values other than 0, π . We extend the definition of s̃(ψ) in (40) to [0, 2π) as s̃(ψ) :=
sign(cos(ψ)).

Figure 1(b–e) illustrates the time evolution of the state of OIMs solving theMAX-
CUT problem and the corresponding cut values. (b) corresponds to weak coupling
andweak noise. (c–f) are related to amoderate level of coupling, where (c) represents
tiny noise, (d) somewhat weak noise, (e) moderate noise, and (f) excessively strong
noise. In situations like (e), characterized by moderate coupling and noise intensity,
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Fig. 1 (a) Möbius ladder graph of size 8 and its MAX-CUT solution. (b–e) Time evolution
of the OIM state (top panel) and the corresponding cut value (bottom panel). The parameters
for each plot are as follows: (b) (Ks, Kn) = (0.1, 0.01); (c) (Ks, Kn) = (13.5, 0.01);
(d) (Ks, Kn) = (13.5, 1.25); (e) (Ks, Kn) = (13.5, 1.85); and (f) (Ks, Kn) = (13.5, 5.27)

it has been observed that even if the initial conditions do not lead to the spin con-
figuration of the ground state (in this case, with a cut value of 10), the system can
effectively navigate to the ground state due to the noise, subsequently sustaining this
state for a certain time interval. Excessively strong noise (f) can also guide the OIM
toward an instantaneous realization of the ground state. If we were to consider this
as an achievement of the ground state, it would imply that the search performance
could be infinitely improved by conducting exploration with pure white noise with
unbounded strength and using unbounded frequency measurements, independent of
the dynamical properties of OIMs. This is of course unphysical. In this study, we
explore the performance of OIMs within the range where the dynamical charac-
teristics of them matter. Specifically, when an OIM reaches a particular value of an
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Table 1 Default parameters for the numerical integration of an OIM

Parameter Setting

Number of oscillators (N ) 8

Frequency mismatches (�ω) 0

Coupling strength (K ) 1.0

Coupling matrix (J) Adjacency matrix of a size 8 Möbius ladder
graph
negatively weighted with a value of –1

Time step size (dt) 0.1

Coupling function (
i j ) sin(·)
Injection coupling function (
) sin(2·)
Integration time interval [0, 20π ]
Initial condition distribution Uniform distribution over [0, 2π)N

Number of initial conditions 100

IsingHamiltonian and remains at that value for a time duration of τduration or more, we
determine that this Ising Hamiltonian value has been achieved.We set τduration = π/4
in this study.

We examine the performance of OIMs using Monte Carlo experiments with ran-
domly generated initial conditions. We define the cut value for each trial as

max {cut value | cut value persists for a time duration of τduration or more} . (45)

Note that we do not merely use the cut value at the end point of the time integration
interval.

Time-to-solution (TTS) metric is a standard quantitative measure of performance
used for Ising machines [9]. TTS is introduced as follows: Consider a Monte Carlo
experiment where the time taken for a single trial is denoted by τ . Assume that, after
r trials, it is found that an acceptable performance can be achieved with probability
pacc. The probability that an acceptable performance is achieved at least once in r
trials can be estimated as 1 − (1 − pacc)r . Let us denote the number of trials required
to achieve a desired probability, typically set to 99%, as r∗. TTS refers to the time
required to conduct r∗ trials, represented as τr∗, and can be expressed as follows:

TTS(τ ) = ln 0.01

ln (1 − pacc)
τ . (46)

TTS metric exhibits a nonlinear dependence on τ due to the nonlinear relationship
of pacc with τ . Therefore, in practice, TTS is defined to be

TTS = min
τ

TTS(τ ) . (47)
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In this study, a trial is deemed to exhibit an acceptable performance if it yields a cut
value greater than 0.9 times the best cut value discovered in the experiment. For the
Möbius ladder graph of size 8, the maximum cut value is 10. Therefore, in this case,
the acceptance probability corresponds to the ground state probability of the Ising
model.

4.3 Effect of Properties of Noisy Fluctuation and Coarse
Time Discretization

Figure 2(a) (resp. (d)) shows the color maps of the mean cut value of the OIM (resp.
acceptance probability pacc) when changing the ratio of injection strength to coupling
strength Ks/K and noise intensity Kn, for a time discretization step of dt = 0.01.
Figure 2(c, f) depicts those for a default time discretization step of dt = 0.1. It is
observable that the mean cut values and acceptance probabilities have significantly
improved by coarsening the time discretization step. Table 2 shows that by coarsening
the time discretization step, the maximum of acceptance probabilities has improved
by more than four times.

Discussing factors such as the coarsening of the time discretization step might
initially appear artificial and tangential for physically implemented Ising machines.
However, if we are able to identify a physical equivalent to this coarsening effect,
these insights could serve as valuable guides to enhance the efficiency of OIMs.

Figure 2(b, e) plots the color maps for the OIM for a fine time discretization step
of dt = 0.01, driven by random pulse inputs at coarse time intervals dt̃ = 0.1 instead
of the Wiener process. Here, each pulse follows an independent normal distribution,
and its variance is taken to be K 2

n dt̃ , that is, identical to the quadratic variation of
the Wiener process at the coarse time interval dt̃ . Similar to the case where the time
discretization step was coarsened, an improvement in performance can be observed.

In this way, it is conceivable that a solver with effects similar to coarsening the
time discretization step can be physically implemented. Given its physical relevance,
in this research, we have chosen to default to a coarser time discretization step.

Interestingly, performance improvements through coarsening the time discretiza-
tion step have also been reported for Ising machines utilizing not stochastic fluc-
tuation but deterministic chaotic fluctuations [60]. It is intriguing to explore effects
equivalent to such coarse-graining from both deterministic and probabilistic perspec-
tives.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 (a) (resp. (d)) the mean cut value of the OIM (resp. acceptance probability pacc) when
varying the ratio of injection strength to coupling strength Ks/K and noise intensity Kn, for a time
discretization step of dt = 0.01. (b) (resp. (e)) the same metrics for the OIM subjected to random
pulse inputs at coarse time intervals dt̃ = 0.1 instead of theWiener process of the identical variance,
with a fine time discretization step of dt = 0.01. (c) (resp. (f)) these measures for the OIM with
a coarse time discretization step dt = 0.1. The horizontal and vertical axes of the color map are
presented in a logarithmic scale

Table 2 Maximum mean cut value and maximum acceptance probability obtained from each
simulation setting presented in Fig. 2

Timestep size Random fluctuation Maximum mean cut
value

Maximum pacc

dt = 0.01 Wiener process 7.8 0.11

dt = 0.01 Random pulses of
dt̃ = 0.1 Interval

8.7 0.24

dt = 0.1 Wiener process 9.3 0.48

4.4 Effect of Injection and Noise Strength

Figure 3 shows color maps of the mean cut value, the best cut value, the acceptance
probability pacc, and the time to solution when altering the ratio of injection strength
to coupling strength Ks/K and noise intensity Kn, using the default parameter setting.

In situations where the relative injection strength is small, the best cut value does
not reach themaximum cut value 10, indicating that theOIMdoes not converge to the
ground state. Increasing the injection strength stabilizes the ground state, allowing
the OIM to reach the ground state without requiring noise, if the initial condition is
set within its basin of attraction (as shown in Fig. 1(c)).
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(a) (b)

(c) (d)

Fig. 3 Performance measures of the OIM when varying the ratio of injection strength to coupling
strength Ks/K and noise intensity Kn using the default parameter setting. The horizontal and vertical
axes of the color map are presented in a logarithmic scale. (a) Mean cut value. (b) Best cut value.
(c) Acceptance probability. (d) Time to solution

However, once the ground state is stabilized, if the noise strength remains low,
noise-driven exploration occurs infrequently (as depicted in Fig. 1(d)). Figure 3(c,
d) shows that, within certain ranges of Kn, both pacc and TTS show no significant
improvement. There is an optimal level of noise magnitude that optimizes perfor-
mance (as shown in Fig. 1(e)). Increasing the noise beyond this optimal level results
in an inability to maintain the quasi-steady state, as observed in Fig. 1(f).

It should be noted that an excessively strong injection strength stabilizes all pos-
sible spin configurations [57], thereby degrading the performance of OIMs.

4.5 Effect of Higher Harmonics in Coupling and Injection
Schemes

In [22], it was reported that the performance of the OIMs improves when a square
wave type coupling function 
i j is used. However, there has been no comprehensive
study investigating which types of coupling functions 
i j are effective, nor has there
been research into the effectiveness of various injection schemes 
.

Figure 4 shows performancemetrics of the OIMwhen either the coupling scheme,
the injection scheme, or both are implemented as square waves. The overall trend
remains similar to that in Fig. 3. However, when the coupling scheme is implemented
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 (a, d, g) Performance metrics of the OIM with a square wave coupling scheme and second-
harmonic sinusoidal injection scheme. (b, e, h) The same metrics for the OIM with a sinusoidal
coupling scheme and square wave injection scheme. (c, f, i) The corresponding metrics for the OIM
with both square wave coupling and injection schemes

as a square wave, it is observed that the ground state becomes stable even when
the injection strength is small (as shown in Fig. 4(d, f)), and there is a significant
improvement in performance metrics at optimal parameters, as shown in Table 3. In
particular, TTS remains almost invariant over various magnitudes of noise intensity,
and thus is largely dominated bywhether the initial conditions belong to the attraction
region of the ground state. However, when the coupling scheme is a square wave and
the injection scheme is a sine wave, it can be observed that there is an improvement
in TTS due to noise exploration, as shown in Table 3. This minimum TTS is attained
at Ks/K = 15, Kn = 1.43.

To explore how optimal the square wave coupling is and what constitutes a good
injection scheme, we conducted the following experiments using the parameter set
Ks/K = 15, Kn = 1.43.We consider the following coupling and injection schemes:
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Table 3 Optimal performance metrics obtained from each simulation setting presented in Figs. 3
and 4

Coupling scheme Injection scheme Maximum mean
cut value

Maximum pacc Minimum TTS

Default Default 9.33 0.48 196.5

Square wave Default 9.48 0.61 188.5

Default Square wave 9.2 0.44 196.5

Square wave Square wave 9.28 0.5 196.5

(a) (b)

Fig. 5 TTS against the cosine similarity between a square wave and (a) the coupling scheme, and
(b) the injection scheme


i j (ψ) = Nc

[
sinψ +

5∑

k=2

lk
k
sin kψ

]
, l ∈ {−1, 0, 1}4 , (48)


(ψ) = Ns

[
sin 2ψ +

5∑

k=2

lk
2k

sin 2kψ

]
, l ∈ {−1, 0, 1}4 , (49)

whereNc,Ns are normalization constants to satisfy (44). Figure 5 shows TTS calcu-
lated for all combinations of the above coupling and injection schemes. The results
are plotted against the cosine similarity between each scheme and a square wave.
No clear correlation is observed between the similarity to a square wave and the
performance of the coupling/injection scheme. Furthermore, a number of schemes
demonstrate a TTS smaller than that achieved with a square wave coupling scheme,
suggesting that the square wave scheme is not optimal. Most notably, we observed
combinations of schemes that reached the ground state in every trial, resulting in
a TTS of zero. Figure 6 shows the coupling and injection schemes that achieved
a zero TTS. The results suggest that a sawtooth wave is more suitable as the cou-
pling scheme than a square wave, and a triangular wave is effective for the injection
scheme.
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(a) (b)

Fig. 6 (a) The coupling scheme, and (b) the injection scheme that achieved a zero TTS

5 Summary

Oscillations are ubiquitous phenomena observed across various fields of natural
science and engineering. Coupled oscillator systems, manifested through diverse
physical phenomena, exhibit significant information processing capabilities. These
systems hold potential for the development of ultra energy efficient, high frequency,
and density scalable computing architectures.

Oscillator-based Ising machines (OIMs) have shown great versatility, offering
new paradigms for information processing. Although the inherent nonlinearity in
spontaneously oscillating systems presents challenges in analysis and optimization,
the application of phase reduction techniques can simplify the analysis and facilitate
the optimization of the performance of the system.

The key to designing effective OIMs lies in several factors:

(i) Tuning the strengths of coupling, injection, and noise.
(ii) Designing good coupling and injection schemes: The choice of coupling and

injection schemes, especially their higher harmonics, can greatly affect the per-
formance of OIMs.

(iii) Properties of the driving stochastic process: The choice of the stochastic process,
beyond the Wiener process, can have a significant impact on the performance of
the OIM.

Related to (iii), exploring the physical implementations of performance-enhancing
effects, which emerge from the coarse-graining of time discretization, in both deter-
ministic and probabilistic aspects, presents an intriguing research direction. While
not discussed in this Chapter, it is known that heterogeneity in the frequency of
oscillators can degrade the performance of OIMs [22]. Additionally, performing
appropriate annealing is also important [22, 24]. These factors highlight the com-
plexity of designing effective OIMs and the need for a comprehensive approach that
considers all these aspects.
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These advancements together form the foundation for further improvements and
innovations in the development of efficient computing architectures in a versatile
manner using coupled oscillator systems.
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Sampling-Like Dynamics
of the Nonlinear Dynamical System
Combined with Optimization

Hiroshi Yamashita

Abstract When considering computation using physical phenomena beyond estab-
lished digital circuits, the variability of the device must be addressed. In this chapter,
we will focus on random sampling for its algorithmic solution. In particular, we
discuss the nonlinear dynamical system that achieves the sampling behavior. The
system, called herding, is proposed as an algorithm that can be used in the same
manner as Monte Carlo integration. The algorithm combines optimization methods
in the system and does not depend on random number generators. In this chapter,
we review this algorithm using nonlinear dynamics and related studies, including
the author’s previous results. Then we discuss the perspective of the application of
herding in relation to the use of physical phenomena in computation.

As mentioned previously, the exploration of the use of physical phenomena in com-
putation, not limited to digital electronics, is expected to achieve breakthroughs
recently. The problem with computing with such physical phenomena is the vari-
ability of the device. In other words, physical devices generally have a limit to their
accuracy in both fabrication and operation, and this is particularly problematic when
the physical quantities are used as analog variables in the computation, as opposed
to digital electronics. For example, physical reservoir computing, as discussed in
earlier chapters, can be considered a method to deal with this problem. Owing to
the physical limitations mentioned above, it may be difficult to tune the parameters
of the physical reservoir for each; however, this problem can be addressed by train-
ing only a simple single-layer neural network inserted between the reservoir and
the output. Similarly, in the case of the spatial photonic Ising machine (SPIM) [1],
although the spatial light modulator (SLM) takes digital inputs, the computation is
analog and the output can be degraded by the light propagation. When considering
computations beyond the established digital circuits, this variability must be dealt
with; in particular, an algorithmic solution is required.
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In this chapter, we will focus on random sampling for this purpose. In statistics
andmachine learning,Monte Carlo (MC) integration is often used to compute expec-
tations. The problem is to determine the expected value of a function f (x) over a
probability distribution p denoted by

Ep[ f (x)] =
∫

f (x)p(x)dx . (1)

In MC integration, a sequence of samples x (1), x (2), . . . , x (T ) that follow the prob-
ability distribution p is generated, and then the expectation is approximated as the
sample average:

Ep[ f (x)] � 1

T

T∑
t=1

f (x (t)) . (2)

For example,MC integration is important for Bayesian inferences.When inferring
the parameters θ of a probabilistic model p(x; θ) from the dataD, we often use the
maximum likelihood method taking θ as an estimate that maximizes the likelihood
P(D; θ) of the data. Instead, Bayesian inference introduces a prior distribution π(θ)

for the parameters and applies Bayes’ rule to obtain the posterior distribution P(θ) ∝
π(θ)P(D; θ) as the inference result. The advantage of assuming distributions in the
parameters is that estimates with uncertainty can be obtained.

Because the variability in physical phenomena is often understood as a stochastic
behavior, this sampling and MC integration is a promising application of physical
phenomena in computation. Usually, a random number generator (RNG) is used for
sampling. Typically, a pseudo-RNG is used to generate a sequence of numbers using
deterministic computations; however, physical random numbers can also be used.
In either case, the RNG must be precisely designed to guarantee the quality of the
output. Although the use of stochastic behavior observed in physical phenomena is
promising, it is also difficult to precisely control its probabilistic properties.

Herding, proposed by [2, 3], is an algorithm that can be used in the same manner
as MC integration. However, it does not use RNGs, so we can expect it to be a
possible method for avoiding such difficulties. In this chapter, we review the herding
algorithm and its related studies, including the author’s previous results. Then we
also discuss the prospects of studying herding from perspectives that include the use
of physical phenomena in computation.

The remainder of this chapter is organized as follows. In Sects. 1 and 2, we
introduceherding, focusingon its aspects as amethodofMCintegration. In particular,
we introduce the herding algorithm inSect. 1. In Sect. 2, the herdedGibbs algorithm is
introduced as an applicationof herding.Wediscuss the improvement of the estimation
error and its convergence and review the relevant literature. In Sect. 3, we consider
herding from a different perspective, the maximum entropy principle. We explore
the relationship between herding and entropy, including the role of high-dimensional
nonlinear dynamics in herding. In Sect. 4, based on the discussion in the previous
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sections, we discuss the prospects of the study of herding, including the aspect of
computation with the variability of physical phenomena, and finally, we provide
concluding remarks in Sect. 5.

1 Herding: Sample Generation Using Nonlinear Dynamics
and Monte Carlo Integration

In this section, we introduce the herding algorithm. We adopt a different approach
to the introduction than that in the original work [2, 3].

1.1 Deterministic Tossup

We begin with a simple example. Consider a sequence of T random variables
x (1), . . . , x (T ) ∈ R. LetEp[·] andVarp[·] denote the expectation and variance, respec-
tively, of a function over a probability distribution p. Assume that each marginal
distribution is equivalent to the distribution p whose expected value is Ep[x] = μ

and whose variance is Varp[x] = V . Then, the expected value of the sample mean

μ̂ = 1

T

T∑
t=1

x (t) (3)

satisfies E[μ̂] = μ and the variance is calculated as

Var
[
μ̂

] = E

⎡
⎣

(
1

T

T∑
t=1

(x (t) − μ)

)2
⎤
⎦

= 1

T 2

T∑
t=1

T∑
t ′=1

E[(x (t) − μ)(x (t ′) − μ)]

= 1

T 2

(
T∑
t=1

E[(x (t) − μ)2] + 2
T−1∑
k=1

T−k∑
t=1

E[(x (t) − μ)(x (t+k) − μ)]
)

.(4)

Assume that x (1), . . . , x (T ) are not independently and identically distributed (i.i.d.)
and have a stationary autocorrelation as

E[(x (t) − μ)(x (t+k) − μ)] = Vρk , (5)

then the variance is calculated as
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Var
[
μ̂

] = V

T

(
1 + 2

T−1∑
k=1

(
1 − k

T

)
ρk

)
. (6)

Considering these x (t) as the samples inMC integration, this suggests that the variance
of the estimate is reducedwhen the number of samples T is large, and it can be further
reduced when the autocorrelation ρk is small or especially negative.

Consider a distribution of the binary random variable x ∼ pπ with parameter π ,
representing a tossup that returns 1 with probability π and 0 with probability 1 − π .
This distribution is the well-known Bernoulli distribution with the parameter π .
Instead of generating a sequence of i.i.d. samples from pπ , we consider generating a
sequence that follows the deterministic process presented in Algorithm 1 and Fig. 1.
According to the update rule (line 3) of the algorithm, w(t) is expected to be smaller
after the step if x (t) = 1, and w(t) is expected to be larger after the step if x (t) = 0.
Therefore, from the equation in line 2, we expect that this sequencewill have negative
autocorrelations.

Although the above arguments concern only ρ1, in fact the sample mean μ̂ con-
verges very quickly as O(1/T ). Let C = [−1 + π, π) and assume that the initial
value w(0) is taken from C . Then, one can easily check that w(t) ∈ C holds for all t ,
for example, from that we can change the variablew(t) tow′(t) to obtain an equivalent
system including the rotation of the circle represented as

x (t) =
{
1 (w′(t−1) ≤ π)

0 (w′(t−1)
> π)

, (7)

w′(t) = w′(t−1) + π mod 1 . (8)

Adding the update formula (line 3) with respect to t = 1, . . . , T , we obtain

w(T ) − w(0) = Tπ −
T∑
t=1

x (t) . (9)

Then we evaluate the difference in average as

Algorithm 1 Deterministic tossup (herding for Bernoulli distribution)
1: for t = 1, . . . , T do

2: x (t) =
{
1 (w(t−1) ≥ 0)

0 (w(t−1) < 0)

3: w(t) = w(t−1) + π − x (t)

4: end for
5: Output x (1), . . . , x (T )
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Fig. 1 An example trajectory of the deterministic tossup (herding for Bernoulli distribution). In
the left panel, off-diagonal dashed lines represent the maps used to update w(t). The points on
the diagonal dashed line indicate the w(t) for each t . The circles represent x (t+1) = 1 and crosses
represent x (t+1) = 0. The gray area represents the condition forw(t) to output x (t+1) = 1. The right
panel represents the trajectory as the function of t

|π − μ̂| = 1

T
|w(T ) − w(0)| , (10)

which converges as O(1/T ) because w(0), w(T ) ∈ C .

1.2 Herding

We then generalize the deterministic tossup above to introduce herding. LetX be the
sample space and ϕm : X → R for m ∈ M be the feature functions defined therein,
where M is the set of their indices. Suppose that we have parameters μm ∈ R that
specify the target moment values of ϕm over output samples. The empirical moment
values can be used as parameters if the dataset is available.We can also consider a sit-
uation in which only the aggregated observation is available, e.g., for privacy reasons
or because the subject is microscopic so that individual observation is impossible.
The problem considered here is the reconstruction of the distribution such that the
expected value of the feature Eπ [ϕm(x)] is equal to the given moment μm . Herding
is an algorithm proposed by Welling [2], which generates a sequence of samples
x (1), x (2), . . . that are diverse while satisfying the moment condition.

For ease of notation,we denote byϕ(x) andμ the vectors of features andmoments,
respectively. We denote by 〈·, ·〉 the inner product of vectors and by ‖x‖ ≡ √〈x, x〉
the square norm. The overall herding algorithm is presented in Algorithm 2. We
refer to w(t) of the algorithm as the weight vector. As discussed below, herding is an
extension of the above deterministic tossup where the sample mean of ϕ converges
to μ. We can also consider the algorithm as a nonlinear dynamical system with the
discrete-time variable t . As shown in Algorithm 2, the system includes optimization
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Algorithm 2 Herding algorithm
1: for t = 1, . . . , T do
2: x (t) = arg max

x∈X
〈w(t−1),ϕ(x)〉

3: w(t) = w(t−1) + μ − ϕ(x (t))

4: end for
5: Output x (1), . . . , x (T )

problemas a component. Ifweobtain the unique solution to the optimizationproblem,
then updating the weight vector is deterministic. However, the system behaves in a
random or chaotic manner. This random-like behavior can generate a pseudo-random
sequence of samples while satisfying the moment conditions. Thus, the generated
sequence that reflects the given information can be used as samples drawn from the
background distribution. We discuss the importance of the weight vector behavior
later.

There are many studies related to herding; for example, it is extended to include
hidden variables throughMarkovprobability fields and is applied to data compression
by learning the rate coefficients of the dynamical system of herding [4]. It is also
combinedwith the kernel trick to sample froma continuous distribution [5].However,
these are not discussed in detail here.

1.3 Convergence of Herding

Let us consider the herding algorithm for the Bernoulli distribution. In this situa-
tion, the sample space is X = {0, 1} and the features are ϕ(x)= (φ0(x), φ1(x))� =
(1 − x, x)�, whose moments are μ = (1 − π, π)�. The herding algorithm in this
situation is equivalent to

x (t) =
{
1 ( f (t−1)(1) ≥ f (t−1)(0))

0 ( f (t−1)(1) < f (t−1)(0))
, (11)

w
(t)
0 = w

(t−1)
0 + (1 − π) − (1 − x)

= w
(t−1)
0 − π + x , (12)

w
(t)
1 = w

(t−1)
1 + π − x , (13)

where f (t−1)(x) ≡ 〈w(t−1),φ(x)〉 = w
(t−1)
0 + (w

(t−1)
1 − w

(t−1)
0 )x . This updated for-

mula corresponds to the deterministic tossup (Algorithm 1), with the relation
(w

(t)
0 , w

(t)
1 ) = (−w(t), w(t)); the two algorithms become equivalent if the initial value

satisfies w
(t)
0 = −w

(t)
1 .

Generalizing andusing this relation conversely,we can performan analysis similar
to that of the deterministic tossup in the general case. Suppose x (t) is chosen such
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that ϕm(x (t)) is small at step t and the target value is ϕm(x (t)) < μm . In this case, the
corresponding weight w(t)

m increases as

w(t) = w(t−1) + μ − ϕ(x (t)) , (14)

which corresponds to line 3 of Algorithm 2. Therefore, ϕm becomes more important
in the optimization step and ϕm(x (t+1)) is expected to be larger in the next step.
Similarly, ϕm(x (t+1)) is expected to be smaller when ϕm(x (t)) is large. In other words,
the sequence ϕm(x (t)) is expected to have negative autocorrelation, which makes its
average converge to μm faster.

In addition, we obtain a convergence result for herding similar to that of the deter-
ministic tossup. In particular, the average of the features for the generated sequence
converges as follows:

1

T

T∑
t=1

ϕ(x (t)) → μ , (15)

where the convergence rate is O(1/T ). This convergence is obtained by using the
boundedness of w(T ) and equation

w(T ) − w(0) = Tμ −
T∑
t=1

ϕ(x (t)) . (16)

This equation is obtained by summing both sides of (14) for t = 1, . . . , T .
Using the optimality for the optimization problem

argmax
x∈X

〈w(t−1),ϕ(x)〉 , (17)

we can guarantee the boundedness of w(T ) as the following summarized version of
the proof in [2]: Let R(t) = ‖w(t)‖. The change in the value of R is calculated as
follows:

(R(t))2 = ‖w(t)‖2
= ‖w(t−1) − ϕ(x (t)) + μ‖2
= (R(t−1))2 − 2〈w(t−1),ϕ(x (t))〉 + 2〈w(t−1),μ〉 + ‖ϕ(x (t)) − μ‖2 .(18)

Note that x (t) is obtained by the optimization problem in (17); we define the following
quantity

A = min
‖w̃‖=1

(〈w̃,ϕ(x̂)〉 − 〈w̃,μ〉) , (19)
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where x̂ is defined as x̂ = argmax
x

〈w̃,ϕ(x)〉. From the optimality of x̂ , we obtain

A > 0 under a mild assumption of μ. We also assume that the third term in (18)
is bounded; that is, ‖ϕ(x (t)) − μ‖2 ≤ B holds for some B ∈ R. This holds if the
functions ϕ are bounded. Then, we obtain

(R(t))2 ≤ (R(t−1))2 − 2R(t−1)A + B . (20)

In other words, if R(t−1) > R holds for R ≡ B/2A, then R(t) is decreasing; R(t) <

R(t−1). On the other hand, if R(t−1) ≤ R, then R(t) is bounded. Thus, there are R′ ∈ R

such that R(t) ≤ R′ always holds if R(0) ≤ R′.

2 Herded Gibbs: Model-Based Herding on Spin System

Herding typically requires the featuremomentsμ as the inputs. However, in sampling
applications, the probability model π is often available instead. In this section, we
describe herded Gibbs (HG), an extension of herding that can be applied to such
model-based situations.

2.1 Markov Chain Monte Carlo Method

Sampling independently from a general probability distribution π is difficult in gen-
eral; thus the Markov chain Monte Carlo (MCMC) method is often used. In MCMC,
we consider the state variable x (t) that is repeatedly updated to be the next state x (t+1),
where this transition is represented as a Markov chain. By appropriately designing
this transition, the probability distribution of x (t) converges to π . In addition, the
two samples x (t) and x (t+T ) become nearly independent for sufficiently large T ; the
measure of such a time difference T is called the mixing time. If the transitions are
designed such that the mixing time is short, then the MCMC becomes more effective
for MC integration.

MCMC transitions are often designed to be local, i.e., the state x (t) moves only in
its neighborhood at each step. In such a case, themixing time strongly depends on the
energy landscape of probability distribution π to be sampled. The energy landscape
is represented as the graph of E(x), where the probability distribution is represented
by the Gibbs-Boltzmann distribution, π(x) ∝ exp(−E(x)). In particular, if there are
large energy barriers in the phase space, the mixing time increases because it takes
time for x (t) to pass over them.

A commonly used method for designing MCMC is the Metropolis-Hastings
method [6, 7], and it is a good example of a local transition. In the Metropolis-
Hastings method, given the current state x , the state y is generated according to the
proposal distribution qx (y). Typically, it is designed so that y is in the neighborhood
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of x . The proposed state y is accepted as the next state with an acceptance probability
α ∈ [0, 1] and is rejected with probability 1 − α. If rejected, state x is kept as the
next state. If the proposal distribution is symmetric, i.e., qx (y) = qy(x) ∀x, y, and
the acceptance probability is defined as α = min(1, exp(−E(y))/ exp(−E(x))), the
chain has π(x) ∝ exp(−E(x)) as its stationary distribution. Transition probabilities
are defined such that a transition to y with higher energy E(y) has a lower acceptance
probability.

Gibbs sampling [8] is another type ofMCMCmethod. Let us denote by p(· | ·) the
conditional distribution for a distribution p. Supposeπ is a probability distribution of
N variables x1, . . . , xN , and we can compute the conditional distribution π(xi | x−i )

for each i , where x−i is the vector of all variables except xi . Then, we can construct
a Markov chain as presented in Algorithm 3.

Algorithm 3 Gibbs sampling
1: for t := 1, . . . , T do
2: for i := 1, . . . , N do
3: Update xi by sampling from π(xi | x−i )

4: Maintain other variables x j for j �= i
5: end for
6: � The above can be repeated as many times as the mixing time to reduce correlation

between samples
7: Output current values (x1, . . . , xN )

8: end for

In particular, in this chapter,we consider the following spin system:Let us consider
N binary random variables, x1, . . . , xN ∈ {0, 1}. Suppose that the random variables
V = {x1, . . . , xN } form a network G = (V,E), where E denotes the set of edges,
and the joint distribution π is represented as

π(x) = 1

Z
exp (−E(x)) , (21)

E(x) = −
∑

(i, j)∈E
Wi j xi x j −

N∑
i=1

bi xi , (22)

where Z is the normalization factor that makes the sum of the probabilities equal to
one;

Z =
∑
x

exp(−E(x)) . (23)

This probability model is widely known as the Boltzmann machine (BM), which is
also discussed in Chap. 2.

For simplicity, let us suppose that there is no bias term, such that

http://dx.doi.org/10.1007/978-981-99-5072-0_2
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E(x) = −
∑

(i, j)∈E
Wi j xi x j . (24)

LetN(i) be the index set of neighboring variables of xi on G and xN(i) be the vector
of the corresponding variables. For the BM, the conditional distribution can be easily
obtained as

π(xi | x−i ) = π(xi | xN(i)) = 1

Zi
exp

⎛
⎝xi

⎛
⎝ ∑

j∈N(i)

Wi j x j

⎞
⎠

⎞
⎠ , (25)

where Zi is also the normalization factor. Therefore, sampling from this distribution
can be easily performed using Gibbs sampling.

2.2 Herded Gibbs

Herding can be used as a deterministic sampling algorithm, but it cannot be applied
directly to theBMbecause the input parameterμ is typically unavailable. By combin-
ing Gibbs sampling with herding, a deterministic sampling method for BMs called
the herded Gibbs (HG) algorithm [9] is obtained. The structure of the algorithm
is the same as that of Gibbs sampling, but the random update step for each vari-
able xi is replaced by herding, as presented in Algorithm 4. The variable neigh-
borhood xN(i) of xi has 2|N(i)| configurations, so let us give indices for such con-
figurations. HG uses weight variables, denoted by wi, j for the i th variable xi and
the j-th configuration of the variable neighborhood xN(i). We can compute the cor-
responding conditional probability given that xN(i) takes the j th state denoted by
πi, j ≡ π(xi = 1 | xN(i) = j).

Algorithm 4 Herded Gibbs
1: for t := 1, . . . , T do
2: for i := 1, . . . , N do
3: Let j be the index of the configuration of xN(i)
4: Compute the conditional probability πi, j = π(xi = 1 | xN(i) = j)

5: Update xi ←
{
1

(
wi, j < πi, j

)
0

(
wi, j ≥ πi, j

)
6: wi, j ← wi, j + πi, j mod 1
7: � applying the equivalent version of herding ((7), (8)) to xi and wi, j
8: Maintain other variables xi ′ for i ′ �= i and weights wi ′, j ′ for (i ′, j ′) �= (i, j)
9: end for
10: Output current values (x1, . . . , xN )

11: end for
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HG is not only a deterministic variant of Gibbs sampling but is reported to have
better performance thanGibbs sampling [9]. For a function f of the spins x in theBM,
let us consider estimating the expected valueEπ [ f (x)]. Theoretically, for the BM on
the complete graph, the error of the estimate by HG decreases at a rate of O(1/T ),
whereas it decreases at a rate of O(1/

√
T ) for random sampling. Experimental

results show that HG outperforms Gibbs sampling for image processing and natural
language processing tasks.

When a BM is used as a probabilistic model, its parameters must be learned from
data. The learning procedure is expressed as

Wi j ← Wi j + Edata[xi x j ] − Emodel[xi x j ] , (26)

where Edata[·] is the mean of the training data and Emodel[·] = Eπ [·] is the expected
value in the model (21) with the current parameters Wi j . The exact calculation of
the third term is typically difficult owing to the exponentially increasing number of
terms, but MCMC can be used to estimate it [10–12]. HG can also be applied to the
learning process via its estimation; the variance reduction by HG can have a positive
effect on learning, as demonstrated for BM learning on handwritten digit images
[13].

2.3 Sharing Weight Variables

The original literature on HG [9] also introduces the idea of “weight sharing.” For a
variable xi , let j, j ′ be indices of different configurationswith equal conditional prob-
abilities πi, j = πi, j ′ . For example, this can occur when the coupling coefficients are
restricted toWi, j ∈ {0,±c} for c ∈ R; thus the conditional probability is determined
only by counting neighboring variable values. In weight sharing, such configurations
are classified into groups, and those in the same group, indexed by y, share a weight
variablewi,y . We will also refer to these versions, which are based on general graphs
and use weight sharing, as HG.

Eskelinen [14] proposed a variant of this algorithm called discretized herded
Gibbs (DHG), which is presented in Algorithm 5. It uses B disjoint intervals of
the conditional probability value dividing the unit interval [0, 1]. Let us call them
bins and denote by Cy the y-th interval. At the time of the update, the conditional
probability π(xi = 1 | xN(i)) is approximated by the representative value π̃i,y ∈ Cy ,
where y is the index of the interval to which the configuration xN(i) belongs. The
weight variable used for the update is shared among several spin configurations with
similar conditional probability values. The probability value used for the update
is replaced by the representative value, but this replacement introduces an error in
the distribution of the output samples. A trade-off exists between the computational
complexity proportional to B and the magnitude of the error.

These ideas aim to reduce computational complexity by reducing the number of
weights. However, Bornn et al. [9] reported a performance improvement for image
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Algorithm 5 Discretized herded Gibbs
1: for t := 1, . . . , T do
2: for i := 1, . . . , N do
3: Compute the conditional probability π(xi = 1 | xN(i))

4: Quantize the conditional probability to obtain the discrete index y and the representative
value of conditional probability π̃i,y

5: xi ←
{
1

(
wi,y < π̃i,y

)
0

(
wi,y ≥ π̃i,y

)
6: wi,y = wi,y + π̃i,y mod 1
7: � applying the equivalent version of herding ((7), (8)) to xi and wi,y
8: Maintain other variables xi ′ for i ′ �= i and weights wi ′,y′ for (i ′, y′) �= (i, y)
9: end for
10: Output current values (x1, . . . , xN )

11: end for

restoration using the BM, and Eskelinen [14] reported a reduction in the estimation
error in the early iterations for the BM on a small complete graph.

2.4 Monte Carlo Integration Using HG

On complete graphs, HG has been shown to be consistent; the estimates converge to
the true value associated with the target distribution π . On general graphs, however,
this is not always the case. In particular, the error decay for HG in the general case has
two characteristics: faster convergence in the early iterations and convergence bias
in the later iterations. These are explained by the “weight sharing” and the temporal
correlation of the weights.

Specifically, the accuracy of the sample approximation of the function f with
HG was evaluated as follows [13]: For HG with a target BM π (21), let P be the
empirical distribution of the obtained samples. Let the error be defined as

D ≡ EP [ f (x)] − Eπ [ f (x)] . (27)

The magnitude of D is evaluated as

|D| ≤ λcorD
cor + λherdingD

herding + λapproxD
approx + λzD

z . (28)

This is obtained by decomposing the estimation errorwith respect to a variable,where
each term has the following meaning: Let x = xi with fixing i , and let z = x−i be
all the variables except xi . Let y be the index of the weight used to generate xi (line
3 of Algorithm 4 or line 4 of Algorithm 5) at each step. Dapprox is the error term
resulting from the replacement of the conditional probability π(x = 1 | z) by the
representative value π̃i,y , which occurs in the DHG. Dz is the error in the distribution
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of z, namely, the joint distribution of the variables other than xi , and expected to
depend largely on the mixing time of the original Gibbs sampling.

The other two, Dcor and Dherding, are the termsmost relevant to the herding dynam-
ics. Dherding is the term corresponding to the herding algorithm for the Bernoulli dis-
tribution or the deterministic tossup that decays by O(1/T ). Dcor is a non-vanishing
term. Thus, the error decay is characterized by the fast decay in early iterations dom-
inated by Dherding and its stagnation in later iterations dominated by Dcor. Dcor is
the term owing to the temporal correlation of the weight variables in the HG and is
represented by the following equation:

Dcor =
∑
y

P(y)
∑
x,z

|P(x, z | y) − P(x | y)P(z | y)| . (29)

Let us consider the ideal case that the weight index y and the conditional distribution
π(x | z) have a one-to-one correspondence. For DHG, this means that there are
enough many small bins. Then, for the target distribution, x and z conditioned on y
are independent; π(x, z | y) = π(x | y)π(z | y). This is because π(x | y) becomes
constant on z. For the output distribution, however, this independence does not hold
even under this assumption because the internal state wi,y determines the value of x
and also has the temporal correlation with z. Dcor evaluates the correlation between
the conditional distributions of x and z.

This temporal correlation is mainly caused by the deterministic nature of the
herding dynamics. To mitigate this, the algorithm can be modified by introducing
some stochasticity in the transitions. This has been shown to solve the bias problem
[13], but at the cost of a degradation in the estimation for small T .

2.5 Rao-Blackwellization

Let us further discuss this analysis with a more concrete example. Let us fix i as
before. Let f (x) = xi and consider the accuracy of estimating the expected value
Eπ [ f (x)] = Eπ [xi ]. The estimation error is bounded as

|D| = |EP [xi ] − Eπ [xi ]| =
∣∣∣∣∣
∑
z

P(z)P(x = 1 | z) −
∑
z

π(z)π(x = 1 | z)
∣∣∣∣∣

≤
∑
z

P(z) |P(x = 1 | z) − π(x = 1 | z)|

+
∑
z

|P(z) − π(z)| π(x = 1 | z) . (30)

Under some assumptions, the first term corresponds to Dherding and the second term
corresponds to Dz. Therefore, we can evaluate the error decay as the first term
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decaying by O(1/T ) as in herding but is eventually dominated by the second term
for a large T .

The results were compared with those of a similar algorithm as follows: First,
an i.i.d. sample sequence x(t) is generated via random sampling. Subsequently, the
expected value of f (x) = xi is approximated as the sample mean of the conditional
probability π(x = 1 | z). In this case, the approximation error is bounded above as

|D| ≤
∑
z

|P(z) − π(z)| π(x = 1 | z) , (31)

which is equal to the term that is dominant in the HG case. The substitution of
the conditional mean (or distribution) into an estimator is sometimes referred to as
Rao-Blackwellization [15, 16], after the Rao-Blackwell theorem that guarantees the
improvement in estimation accuracy from this substitution. In other words, herding
can be viewed as a sample-based estimation method that achieves error reduction
through Rao-Blackwellization, although it is implemented implicitly.

However, HG is not equivalent to this; the evaluation of the decaying error simul-
taneously holds for any other x j ( j �= i) without changing the algorithm. If the
conditional probability π(x = 1 | z) is considered as a function of z, this function
itself can have an approximation similar to that of (28). That is, we can decompose
this function as

π(x = 1 | z) = f̂ (z) +
∑
j �=i

β j x j , (32)

and evaluate each term in the summation by (28) for f (x) = x j . Thenwe find that the
first term in (32) is dominant, which leads to the improvement of the error evaluation
in HG.

We can also use this formula for i.i.d. random sampling to improve the estimation.
However, in this case, it is necessary to determine the appropriate β j by estimating
from the random samples obtained. However, in the case of herding, because this
evaluation is valid for anyβ j , selectingβ j is not necessary. Extending this discussion,
wemay be able to analyze the accuracy of estimation by herding in general; however,
this is left open for future study.

3 Entropic Herding: Regularizer for Dynamical Sampling

In the previous section, we discussed the characteristics of the herding algorithm
as a Monte Carlo numerical integration algorithm. In particular, there is a negative
autocorrelation in theweight variables and samples, which is important for numerical
integration. However, this does not cover all the characteristics of herding as a high-
dimensional nonlinear dynamics. This section discusses the connection between
herding and the maximum entropy principle.
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3.1 Maximum Entropy Principle

The maximum entropy principle [17] is a common approach to statistical inference.
It states that the distribution with the greatest uncertainty among those consistent
with the information at hand should be used. As the name implies, entropy is often
used to measure uncertainty. Specifically, for a distribution with a probability mass
(or density) function p, the (differential) entropy is defined as

H(p) = Ep[− log p(x)] . (33)

Furthermore, we assume that information is collected on features ϕm : X → R

indexed with m ∈ M, where X is the sample space and M is the set of feature
indices. Assume further that the collected data is available as the mean μm of each
feature. According to the maximum entropy principle, the estimated distribution p
should satisfy the condition that the expected value Ep[ϕm(x)] of the feature values
is equal to the given value μm . Therefore, the maximum entropy principle can be
explicitly expressed as the following optimization problem:

maximize
p

H(p)

subject to Ep[ϕm(x)]= μm ∀m ∈ M .
(34)

We obtain the condition that the solution should satisfy as follows: For simplicity,
let X = {x1, . . . , xN } be a discrete set and, for each i , let pi denote the probability
of the i-th state xi . The gradient of H is

∂

∂pi
H(p) = − log pi − 1 . (35)

Using the Lagrange multiplier method, we obtain the condition

pi ∝ exp
(
−

∑
θmϕm(xi )

)
, (36)

where θm corresponds to the Lagrange multiplier for the moment condition
Ep[ϕm(x)] = μm . For continuous X, we can make a similar argument using the
functional derivative.

In general, a family of distributions of the form (36) where the parameters θm are
unconstrained is called an exponential family, and is also called Gibbs-Boltzmann
distribution. Optimizing the parameters θm requires a learning algorithm similar to
that of the Boltzmann machine (21), which is generally computationally difficult.

For example, ifX = R and (ϕ1(x), ϕ2(x)) = (x, x2), the maximum entropy prin-
ciple gives the normal distribution as
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p(x) ∝ exp
(−θ1x − θ2x

2
)

∝ exp

(
− (x − m)2

2σ 2

)
, (37)

where (m, σ ) = (−θ1/2θ2,
√
1/2θ2).

If we use X ∈ {0, 1}N and ϕm(x) = xi x j for all pairs i < j where m = (i, j), we
obtain

p(x) ∝ exp

⎛
⎝−

∑
i< j

θi j xi x j

⎞
⎠ , (38)

which is identical to the Boltzmannmachine (21) without bias on the fully connected
graph.

The output of the herding algorithm is also such that the moment condition
Ep[ϕm(x)] = μm ∀m ∈ M is satisfied in the limit of T → +∞, and is expected
to be diversified due to the complexity of the herding dynamics. Therefore, we can
expect the output sequence to follow, at least partially, the maximum entropy princi-
ple. The original literature on herding [2, 3] also describes its motive in the context
of the maximum entropy principle.

3.2 Entropic Herding

We observed that herding is an algorithm closely related to the maximum entropy
principle. Entropic herding, which is described in this section, is an algorithm that
incorporates this principle in a more explicit manner.

Let us consider the same features ϕm and target means μm as above. Pseudocode
for entropic herding is provided in Algorithm 6. Here, we introduce scale parame-
ters �m ≥ 0 for each condition m ∈ M, which are used to control the penalty for
the condition Ep[ϕm] = μm as described below. In addition, we introduce step-size
parameters ε(t) ≥ 0 to the algorithm.

Similar to the original herding algorithm, entropic herding is an iterative process
and the time-varying weight am for each feature is included in the system. Each

Algorithm 6 Entropic herding

1: Choose an initial distribution r (0) and let η(0)
m = Er (0) [ϕm(x)] and a(0)

m = �m(η
(0)
m − μm)

2: for t = 1, . . . , T do
3: Solve minq∈Q

(∑
m∈M a(t−1)

m Eq [ϕm(x)]
)

− H(q) (Equation (39))

4: Let r (t) be the minimizer
5: Update a(t)

m = a(t−1)
m + ε(t)

(
�m(Er (t) [ϕm(x)] − μm) − a(t−1)

m

)
(Equation (40))

6: end for
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iteration of the algorithm, indexed by t , consists of two steps: the first step solves the
optimization problem and the second step updates the parameters based on the solu-
tion. Unlike the original herding algorithm, the entropic herding algorithm outputs a
sequence of distributions r (1), r (2), . . . instead of points. The two steps for each time
step, derived later, are as follows:

r (t) = argmin
q∈Q

((∑
m∈M

a(t−1)
m ηm(q)

)
− H(q)

)
, (39)

a(t)
m = a(t−1)

m + ε(t)
(
�m(ηm(r (t)) − μm) − a(t−1)

m

)
, (40)

where Q is the (sometimes parameterized) family of distributions and ηm(q) ≡
Eq [ϕm(x)] is the feature mean for the distribution q.

Obtaining the exact solution to the optimization problem (39) is often computa-
tionally intractable.We can restrict the candidate distributionsQ or allow suboptimal
solutions of (39) to reduce the computational cost.

3.3 Dynamical Entropic Maximization in Herding

Entropic herding is derived from the minimization problem minp L(p) with the
following objective function:

L(p) = 1

2

(∑
m∈M

�m(ηm(p) − μm)2

)
− H(p) . (41)

The optimal solution of (41) is expressed with parameter θ∗ as

pθ∗(x) ∝ exp

(
−

∑
m∈M

θ∗
mϕm(x)

)
. (42)

This has the same form as the distribution obtained using the maximum entropy
principle (36). However, parameter θ∗ does not coincide with the optimal solution θ

expressed in (36). Specifically, it satisfies the following equation:

θ∗
m = �m(ηm(pθ∗) − μm) . (43)

It roughly implies that the moment error becomes smaller when �m is large.
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Entropic herding can be interpreted as an approximate optimization algorithm for
this problem with a restricted search space. Suppose it only considers P that has the
following form:

P(x) =
T∑
t=0

ρt r
(t)(x) , (44)

where ρt are the fixed component weights and each component r (t) is determined
sequentially using the results of the previous steps r (0), . . . , r (t−1).

Let L̃ be the function obtained by replacing the entropy term H(p) ofL with the
weighted average of the entropies of each component H̃ ≡ ∑T

t=0 ρt H(r (t)):

L̃ = 1

2

(∑
m∈M

�m (ηm(P) − μm)2

)
−

T∑
t=0

ρt H(r (t)) . (45)

Since H ≥ H̃ holds due to the convexity of the entropy, L̃ is an upper bound
on L. Equation (39) is obtained by optimizing r (t) with fixing the components
r (0), . . . , r (t−1) to minimize L̃(P (t)), where P (t) ∝ ∑t

t ′=0 ρt ′r (t ′) is the tentative solu-
tion. Theoptimal condition is equivalent to (39),where the parameters are represented
using the tentative solution P (t) as

a(t−1)
m = �m(ηm(P (t−1)) − μm) . (46)

If we choose ρt appropriately, the update formula (40) can be derived by (46) and a
recursive relation between the tentative solutions for consecutive steps, P (t−1) and
P (t).

We expect that the formalization of entropic herding will help theoretical studies
of the herding algorithm. Equation (41) contains the entropy term H(p), andwe need
to make it larger. Entropic herding does so through the following two mechanisms:

(a) Explicit optimization: Greedy minimization of L̃, which is the upper bound of
L, by solving (39) including the entropy term.

(b) Implicit diversification: The additional reduction of L owing to the diversity of
r (t) caused by the complicated joint dynamics of the optimization steps and the
weight update steps.

We rely on entropy maximization to reconstruct the target distribution, especially
to reproduce the distributional characteristics not directly included in the inputs
ϕ(x) and μ. In the case of the original non-entropic herding algorithm, this depends
entirely on the complexity of the dynamics, which is difficult to analyze accurately.
Entropic herding explicitly incorporates this concept.

The added entropy term regularizes the output sample distribution. From (41), the
error of ηm is small when �m is large; however, the absolute value of am defined in
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(46) becomes large, and thus, the entropy values of the output components r (t) are
expected to be small. Thus, a trade-off exists in the choice of �m .

Additionally, setting �m to +∞ implies ignoring the entropy terms in (39). This
is equivalent to the original herding algorithm. That is, it is an extremum of entropic
herding such that only (b) implicit diversification is used for entropy maximization.

3.4 Other Notes on Entropic Herding

Entropic herding yields the mixture distribution expressed in (44). The required
number of components T of the mixture distribution is large when the target distri-
bution is complex. In this case, the usual parameter fitting requires the simultaneous
optimization of O(T ) parameters, which causes computational difficulties. On the
other hand, entropic herding can determine r (t) sequentially. Therefore, the number
of parameters to be optimized in each step can be kept small, which simplifies the
implementation and improves its numerical stability.

In general, the optimization (39) is non-convex. Therefore, a local improvement
strategy alone may lead to a local optimum. One possible solution to this problem is
to prepare several candidate initial values. Unlike normal situations in optimization,
herding solves optimization problems that differ only in their weights repeatedly.
As a result, a good initial value can again become a good initial value again in later
steps. Furthermore, the candidate initial values themselves can be improved during
the algorithm. This introduces dynamics into them, which has been shown to exhibit
interesting behavior [18].

4 Discussion

We reviewed the herding algorithm that exploits negative autocorrelation and the
complexity of nonlinear dynamical systems. In this section, we present two perspec-
tives on herding with a review of related studies.

4.1 Application of Physical Combinatorial Optimization
Using Herding

To use physical phenomena in devices, we must precisely control them, particularly
for computation. However, a certain amount of variability usually remains in both
fabrication and operation, which hinders their practical use in computation. For
example, quantummechanics inherently involves probabilistic behavior, and current
devices for quantum computing are also susceptible to thermal noise. Given that
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information processing in the human brain occurs through neurons that are energy
efficient but noisy, perfect control may not be an essential element of information
processing.

Sampling is a promising direction for the application of physical systems in com-
putation, because such variability can be used as a source of complexity. However,
completely disorganized behavior is not useful, and the system should be balanced
with appropriate control; herding can be the basis for such control. Specifically, this
incompletely controlled noisy device can be applied to the optimization step of the
herding algorithm. Although the output may deviate from the optimal solution owing
to the variability, this is compatiblewith the formulation of entropic herding, inwhich
a point distribution is not expected. The gap of the output from the ideal solution
may affect R, the upper bound of the weight norm ‖w‖ used in Sect. 1.3, but a larger
R may be acceptable because it can be handled by increasing the number of samples
with a trade-off in the overall cost of the algorithm as long as R does not diverge to
infinity.

Conventional computer systems have important advantages, such as the versatil-
ity of the von Neumann architecture, established communication standards, and the
efficiency from the long history of performance improvements. Therefore, even if a
novel device that achieves a breakthrough in computation, it is expected to eventually
be used as a hybrid system coupled to conventional computers, in which we expect
that herding can serve as the interface. For example, herding and optimization with
quantum computers such as quantum annealing (QA) [19, 20] or quantum approx-
imate optimization algorithm (QAOA) [21] can be a good combination. As shown
in Sect. 1, herding reduces the variance of the estimate through negative autocorre-
lation. However, this does not mean that the mixing time of MCMC is improved.
For herding, when the objective function in the optimization step is multimodal and
steep, finding the optimal solution should be difficult even for herding. When an
optimization method that can overcome this difficulty, such as quantum annealing, is
realized, its combination with herding is expected to lead to further improvements.

4.2 Generative Models and Herding

Among the latest machine learning technologies, deep generative models are one of
the areas that have attracted the most attention in recent years. In machine learning, a
generative model is a mathematical model that represents the process of generating
points from the sample space, which represents the set of possible targets, such as
images or sentences. For example, flow-based models [22] and diffusionmodels [23]
are among the most famous deep generative models, and other popular methods such
as variational autoencoders (VAE) [24] and generative adversarial networks (GAN)
[25] use generativemodels as components. Thesemodels are known for their amazing
performance in AI, but their behavior with a massive number of tunable parameters
is generally a black-box.
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One of the unique approaches used in machine learning and other new mathemat-
ical techniques that take full advantage of computer technology is the use of implicit
representation of probability distributions through black-box generative processes.
For example, the stochastic gradient method, which is the basis of deep learning,
requires only its generative method as an algorithm, not a density function in ana-
lytic form. When there is a large amount of data, randomly selecting from it can
be considered as generating a point from a true generative process. Therefore, it
is possible to implement the minimization of the objective function defined using
an inaccessible true probability distribution. This is also exemplified by the famous
reparameterization trick for VAE [24], where the variational model to be optimized is
represented as a generative model instead of an explicit density function. Deep rein-
forcement learning is another good example, where the probability distribution of the
possible time series of agent and environment states is represented as records of past
trials, and the agent is trained using randomly sampled records of past experience
[26]. This way of using the models increases their affinity with evolving computing
technologies and the big-data accumulated from the growing Internet.

On the other hand, one of the main purposes of using more traditional explicit
modeling of the density functions using parameterized analytic forms is to correlate
model parameters andknowledge.The simplest example of this is regression analysis,
as expressed by Y ∼ βX . Here, the probability density function representing the
model is fitted to the data, andwhether or not themodel parameter β is 0 is interpreted
as an indication of whether the variables X and Y are related. We can also use a
mathematical model to represent knowledge or hypotheses about a subject and use it
to mathematically formalize the arguments based on that knowledge or hypotheses.

If we look at herding from the above perspective, we can find a unique feature
of herding. Herding is the process of generating a sequence of points and can be
thought of as generative models that implicitly represent a probability distribution.
In addition, another important feature is that the algorithmic parameters ϕ(x) and μ

can be directly associated with knowledge as parameters of a mathematical model.
Herding is a combination of implicit representation and explicit modeling. Although
random sampling methods such as MCMC can be used to generate a set of points
in the same manner as herding, the process is derived from the explicit model of the
distribution, as opposed to the implicit definition of probability distributions as in
herding.

5 Conclusion

In this chapter, we reviewed the herding algorithm, which can be used in the same
manner as random sampling, although it is implemented as a deterministic dynamical
system. Herding is expected to play an important role in the application of physical
phenomena in computation because of the two aspects discussed in this chapter: a
Monte Carlo numerical integration algorithm in Sects. 1 and 2, which are related
to the mathematical advantages of the herding algorithm, and the connection to the
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maximum entropy principle in Sect. 3, which is related to the application of physical
phenomena with herding. In addition, as shown in Sect. 4, herding is an interesting
algorithm not only from these perspectives. We expect that theoretical studies of
herding and its applications will continue in both directions.
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Reservoir Computing Based on Iterative
Function Systems

Suguru Shimomura

Abstract Various approaches have been proposed to construct reservoir comput-
ing systems. However, the network structure and information processing capacity
of these systems are often tied to their individual implementations, which typically
become difficult to modify after physical setup. This limitation can hinder perfor-
mance when the system is required to handle a wide spectrum of prediction tasks.
To address this limitation, it is crucial to develop tunable systems that can adapt to a
wide range of problem domains. This chapter presents a tunable optical computing
method based on the iterative function system (IFS). The tuning capability of IFS
provides adjustment of the network structure and optimizes the performance of the
optical system. Numerical and experimental results show the tuning capability of the
IFS reservoir computing. The relationship between tuning parameters and reservoir
properties is discussed. We further investigate the impact of optical feedback on the
reservoir properties and present the prediction results.

1 Introduction

An artificial neural network (ANN) is a brain-inspired computing model and con-
tributes to a wide field of information processing including image classification and
speech recognition [1]. The ANN is represented by a network structure connected by
weighted links. By optimizing the weight of the connections, ANNs have capabilities
for desired information processing [2]. However, the optimization requires updating
all connections in ANNs, and it is difficult to realize large-scale ANNs. Reservoir
computing, which is a kind of recurrent neural network for processing time-series
data emerged [3]. Typical models of reservoir computing are divided into an echo
state network (ESN) and a liquid state machine [4, 5]. The idea of ESN has been
employed for hardware implementation of recurrent neural network, and various
architectures have been proposed (see Chap. 13). This chapter focuses on reservoir
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Input Reservoir Output

Fig. 1 Model of reservoir computing

computing based on the ESN. A model of reservoir computing is shown in Fig. 1.
An echo state machine consists of three layers: input, reservoir, and output layers.
Nodes in the reservoir layer are connected, and the structure is a recurrent network.
A state of the nodes in the reservoir layer at time t , X(t), is updated by

X(t + 1) = f [W resX(t) + W inu(t)], (1)

where u(t) is the input signal at time t , and f is a nonlinear function such as a
hyperbolic tangent and a sigmoid function. Each component of X(t) is transferred to
the other nodes in the reservoir layer according to the connecting weight W res. After
adding with the weighted input signals W inu(t), the nonlinear function is applied,
and the next state is updated as X(t + 1). The connection weights W in between the
input and reservoir layers and W res in the reservoir layer are fixed and not updated
in learning process. The ESN is optimized by a linear regression of weights W out

between the reservoir and the output layers. Owing to simple structure of the echo
state network and low computational processing in the learning process, reservoir
computing can be implemented as hardware.

Reservoir computing is an intriguing and dynamic research field, offering a wide
range of possibilities for hardware implementation by leveraging diverse types of
materials and phenomena [6]. To construct a reservoir computing system, it is essen-
tial to design and implement a reservoir as the hardware component, and its response
must satisfy Eq. 1. Thus far, various types of reservoir computing systems with
individual properties of the utilized phenomenon have been proposed. For instance,
the dynamic motion of soft materials has been used to determine the response of a
reservoir [7]. The interaction of spin-torque oscillators based on spin waves provides
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small-scale reservoir devices [8]. In the field of optics, recurrent network circuits
implemented on silicon chips and time-delayed feedback loop systems utilizing opti-
cal fibers have been successfully employed as reservoirs [9]. Individual reservoirs
exhibit a specific reservoir property, which is related to the prediction performance
of time-series data [10]. For example, the coupling matrix W res shown in Eq. 1
is determined by the characteristics of utilized materials and phenomenon. Conse-
quently, the performance may decrease depending on the prediction task. Tuning of
the coupling matrix W res is crucial in optimizing the prediction performance of a
reservoir computing system, allowing it to effectively address a wide range of prob-
lems. To achieve this, the integration of the tuning function within an optical system
is imperative. However, once an optical reservoir computing system is deployed, its
physical configuration becomes fixed. This fixed configuration poses a challenge for
any subsequent tuning. To predict various types of time-series data, it is necessary
to tune systems’ parameters after the construction of the system.

Free-space optics, which expresses the coupling matrix as a light-transfer matrix,
is a promising solution for optimizing the performance of RC after the construction
of the system. The use of a spatial light modulator provides a flexible adjustment
of the transfer matrix by controlling the wavefront. In optical reservoir computing,
transmission through scattering media is used to multiply the signal by W res [11].
However, the controllability is limited by the SLM pixel size and pitch, which affect
the representable coupling matrix.

In this chapter, we describe an optical RC approach using iterative function sys-
tems (IFSs) as a method to achieve optical tuning of the coupling matrix [12]. By
employing optical affine transformation and video feedback, the coupling matrix can
be flexibly tuned, allowing for the optimization of specific tasks.

2 Iterative Function Systems

For the adjustment of the coupling matrix W res, an optical fractal synthesizer (OFS)
was employed as the tuning function. The OFS utilizes an optical computing system
to generate a fractal pattern using a pseudorandom signal, which can be applied to
various applications, including steam ciphers [13, 14]. Pseudo-random signals are
generated based on an IFS using a collection of deterministic contraction mappings
[15]. Figure 2 shows the generation of pseudorandom signals by IFS. IFS mapping
comprises affine transformations of signals, including rotation, scaling, and shifting,
as follows: [

x ′
y′

]
=

[
s 0
0 s

] [
cos θ − sin θ

sin θ cos θ

] [
x
y

]
+

[
tx
ty

]
, (2)

where x ′ and y′ are the coordinates after translation, xandy are those before trans-
lation, s is the scaling factor, θ is the rotation angle, and tx and ty are the translation
parameters. The OFS can generate pseudorandom signals when s > 1, or fractal
patterns when s < 1. Owing to the simultaneous processing of input images, IFS
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Fig. 2 Pattern generation by iterative function systems

provides spatio-parallel processing. The operations in Eq. 2 can be implemented by
using two dove prisms and lenses, and the parameters can be tuned by adjusting the
optical components. Moreover, the IFS allows for the duplication and transformation
of signals in a recursive manner, enabling more intricate and complex pattern gener-
ation. This results in an increased number of degrees of freedom in the IFS operation.
In the proposed system, the IFS is utilized for the operation of the coupling matrix
W res, which can be tuned by controlling the optical setup including the rotation and
tilt of the dove mirrors.

3 Iterative Function System-Based Reservoir Computing

Hardware can be implemented for tunable reservoir computing by utilizing IFS. We
refer to reservoir computing using IFS as IFS reservoir computing.

Figure 3 shows the model of optical RC based on the IFS. The input sig-
nal u(t) at time t is multiplied by the coupling matrix W in and converted into a
two-dimensional image. The reservoir state X(t), which is generated from the input
signal, is assigned as the input of the IFS after undergoing an electric-optic con-
version and multiplication quantization operation B. The signal is duplicated and
combined after individual optical affine transformations. This signal processing is
represented by the multiplication with the matrix W res, which can be adjusted using
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Iteration

Fig. 3 Model of IFS reservoir computing [12]

the parameters of the optical affine transformation and the number of iterations. Fol-
lowing the addition of the input image u(t) to the transferred signal, the reservoir
state X(t) is updated as

X(t + 1) = α f [B[W resB[X(t)]] + W inu(t)] + (1 − α)X(t), 0 < α < 1, (3)

where α is a leaking rate, which determines the memory capacity of the signal in the
reservoir layer. Thus, the sequence of reservoir states corresponding to a sequence of
input signals is obtained. The output signal is generated by multiplying the reservoir
state X(t) with a variable weight W out, as follows:

y(t) = W outX ′(t), (4)

where X ′(t) is a subset of pixels extracted from the reservoir state X(t). In reservoir
computing, only the output connection weights W out is updated using a dataset with
a sequence of input signals u(t) and the corresponding sequence of the reservoir
state X(t). During the training phase, Ridge regression was adopted to optimize the
output signal. The loss function E is expressed as

E = 1

n

n∑
t=1

( y(t) − ŷ(t))2 + λ

N∑
i=1

ω2
i , (5)

where n is the number of training sets, ŷ(t) is the correct value, λ is the regulation
parameter, and ωi is the i th element of W out. By minimizing the loss function E ,
W out is optimized.
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4 Prediction Performance of IFSRC

Time-series data prediction is divided into two types: multistep and one-step-ahead
predictions. The former is a task involving continuous predictions of the input signal
by updating the input to the IFS reservoir computing based on the predicted value, and
the latter involves predicting the input signal one-step-ahead based on the reservoir
state at each time. To verify whether the proposed system can predict various types
of tasks, the prediction performance was evaluated for both types of prediction tasks.

4.1 Multi-step Ahead Prediction

In the evaluation of the prediction performance for multistep ahead prediction, we
employed the prediction of the Mackey-Glass equation which represents a chaotic
signal and is used as a benchmark for time-series signal prediction [16]. TheMackey-
Glass equation in this study is given by:

u(t + 1) = au(t) + bu(t − τ)

c + u(t − τ)m
+ 0.5, (6)

where a, b, c and m are constants, and τ is the delay parameter. A dataset of 30,000
inputs and the next predicted values obtained from the equation were prepared, and
W out was optimized by using Ridge regression which is the optimization method
using Eq. 5. After optimization ofW out, we assessed the system’s ability to replicate
a chaotic signal by inputting the predicted output into the system. The pixel size of
reservoir state X(t) was set to 64 × 64 pixels.

Figure 4 shows the predicted results. The best parameters of the IFS reservoir to
predict the Mackey-Glass equation were in Table 1. The IFS reservoir parameters
are listed in Table 1. The inital time step in prediction phase was 300. The chaotic
behavior of the Mackey-Glass equation was reproduced even for prediction phase.

0 100 200 300 400 500 600
Time step

0

0.5

1

Si
gn

al
 v

al
ue

Inputs
Trained
Predicted

Fig. 4 Prediction of Mackey-Glass equation [12]
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Table 1 Simulation parameters in IFS reservoir computing to predict Mackey-Glass equation [12]

Parameter Value

Number of iterations 3

Leaking rate 0.1

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) 10 50

Scaling ratio s 1.0 1.2

Horizontal shift tx (pixel) –10 –10

Vertical shift ty (pixel) 0 0

To evaluate the performance, themean squared error (MSE) between the target signal
and prediction output was estimated. The target signals were predicted for 261 time
steps with a satisfactory MSE of <0.01. These results demonstrate the capability of
IFS reservoir computing in predicting time-series data.

4.2 Single-Step Ahead Prediction of Santa Fe
Time-Series Data

Single-step-ahead prediction is a task that predicts the next time signal from the input.
To evaluate the performance of the system, we employed the Santa Fe time-series
data, which requires memory to be predicted accurately. The Santa Fe time-series
data, which models the behavior of a chaotic laser, is a widely recognized benchmark
for evaluating reservoir computing systems [17]. The number of samples used for
training and performing the test were 3,000, and 1,000, respectively. Figure 5a, b
shows the targeted data and the prediction result. Table 2 presents the parameters
of the IFS reservoir that exhibited the highest performance. Note that the best IFS
parameter was different from that in case of the signal prediction of the Mackey-
Glass equation. The system predicted signals similar to the label data. To evaluate the
prediction performance, the normalized mean squared error was calculated between
the predicted output and label. The definition of NMSE is described as follows:

NMSE = 1

nσ 2

n∑
t=1

(y(t) − ŷ(t))2, (7)

where n is the number of dataset, σ is the standard deviation of the inputs, y(t)
is the prediction, and ŷ(t) is the label value. As shown in Fig. 5c, the NMSE was
8.5 × 10−3. These results demonstrate that prediction performance can be improved
by adjusting the IFS reservoir.
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Fig. 5 Prediction result of Santa Fe time-series a target data, b predicted data, and c difference
between (a) and (b) [12]

Table 2 Simulation parameters in IFS reservoir computing to predict Santa Fe time-series [12]

Parameter Value

Number of iterations 1

Leaking rate 1.0

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) 10 80

Scaling ratio s 0.8 1.2

Horizontal shift tx (pixel) –10 10

Vertical shift ty (pixel) 0 0

5 Experimental Performance of IFS Reservoir Computing

5.1 Optical Setup

To evaluate the hardware performance of the IFS reservoir computing system, an
optical system featuring a video feedback system was constructed, as depicted in
Fig. 6. First, the image representing the reservoir state X(t) is projected into the
display (MIP3508, Prament, number of pixels: 480× 320), and replicated by a beam
splitter (BS). By using Dove prisms, optical affine transformations through rotation
and tilt are processed to the individual images. The scaling factor is determined by
the difference between the focal lengths of lenses L2 and L3. Individual images are
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Fig. 6 Optical setup of IFS reservoir [12]

combined by using a BS and pass through lens L4. Finally, the image is captured
by the image sensor (S3–U3–123S6, FLIR, number of pixels: 4096 × 3000). The
captured image is resized to perform a predetermined number of iterations and is
fed back to the display. The finally-obtained image is updated to next reservoir state
X(t + 1) by Eq. 3. After the processing, X(t + 1) is fed back to the display as the
next IFS reservoir state. The same process is repeated, and learning is performedwith
pairs of reservoir states and label data. In the experiment, a region of 37 × 30 pixels
in the display was sampled and used as the signals of the IFS reservoir to decrease
the computational cost in Ridge regression. Moreover, a hyperbolic tangent function
was used as the nonlinear function.

5.2 Multi-step Ahead Prediction of Mackey-Glass Equation

Figure 7 shows the predicted results for the Mackey-Glass equation by using the
optical system. The IFS parameters used in the experiment are listed in Table 3, and
each value was estimated from the obtained images. The initial status of the reservoir
was set to zero, and the number of training data points was 30,000. The prediction
output is the chaotic signal similar to the Mackey-Glass equation. This result shows
that the IFS reservoir can perform the prediction of time-series data. However, the
prediction point with MSE <0.01 was 85 steps, which is lower than the time step
in numerical simulation. The reason is that the iteration parameter was fixed to 1 in
the optical setup, and the captured image was resized for feedback to the display.
Increasing the output signal from the reservoir layer improves the performance in
the physical reservoir computing [18, 19]. However, too large size of X(t) takes
computational cost in Ridge regression to optimizeW out. Therefore it is important to
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Fig. 7 Prediction result of Mackey-Glass equation a target data, b predicted data, and c difference
between (a) and (b) [12]

Table 3 Experimental parameters in IFS reservoir computing [12]

Parameter Value

Number of iterations 1

Leaking rate (Mackey-Glass
equation)

0.1

Leaking rate (Santa Fe
time-series)

1.0

Affine transformation 1 Affine transformation 2

Rotation angle θ (degree) –20 43

Scaling ratio s 1.0 1.0

Horizontal shift tx (pixel) 50 460

Vertical shift ty (pixel) 370 480

adjust the resolution of an image sensor approximately depending on the time-series
data to be predicted.

5.3 Single-step Ahead Prediction of Santa Fe
Time-Series Data

Next, the one-step-ahead prediction of the Santa Fe time-series was evaluated. The
number of data points for training and prediction was set to 3,000 and 1,000, respec-
tively. The parameters used are listed in Table 3. Figures 8 show the label data,
predicted signal, and their difference. Similar to the prediction of the Mackey-Glass
equation shown in Fig. 7, the IFS reservoir computing generates a signal waveform
similar to the target signal. From the difference, the NMSE is estimated as 0.033.
Although the IFS parameters are not fine-tuned, the performance of the experimental
IFS reservoir system is higher than that of existing physical reservoir computers [20,
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Fig. 8 Prediction result of Santa Fe time-series by optical setup. a Targeted data, b Predicted data,
c difference between (a) and (b) [12]

21]. The results provide a promising perspective for IFS reservoir computing, which
can tune the performance and flexibility in optical implementations.

6 Relationship Between Performance and Spectral Radius

To evaluate a property of reservoir computing, a spectral radius of the coupling
matrixW res in the reservoir layer is often used [22]. The spectral radius is the largest
absolute value of eigenvalues of a matrix and is defined as follows:

ρ(W) = max(|λi |, i = 1, 2, . . . , n), (8)

where λ1, λ2, . . . , λn are the eigenvalues of the matrix. The memory capacity
increases as the spectral radius increases. In reservoir computing, a spectral radius
less than one is preferred because the signal memory of the reservoir layer should
be faded out [3].

In the IFS reservoir with leaking rate α, the coupling matrix was calculated as
follows:

W = αW res + (1 − α)I, (9)

where I denotes a unit matrix. To investigate the characteristics of the IFS reser-
voir, the spectral radius and the NMSE of one-step-ahead prediction for the Santa Fe
time-series were calculated. The individual parameters were set to the values listed in
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Table 4 Combination of parameters in IFS reservoir computing [12]

Parameters Value

Number of iterations 1, 3, 5, 10

Rotation angle θ (degree) 0, 30, 50, 80

Scaling ratio s 0.8, 1.0, 1.2

Horizontal shift tx (pixel) –10, 0, 10

Vertical shift ty (pixel) 0

0 0.2 0.4 0.6 0.8 1
Spectral radius

0

0.01

0.02

0.03

N
M

SE

Iteration 1
Iteration 3
Iteration 5
Iteration 10

Fig. 9 Spectral radius and NMSE on one-step prediction for Santa Fe time-series [12]

Table 4, and the relationship between the spectral radius and NMSE were compre-
hensively verified. The size of the input image was 64 × 64, all the pixels were used
for training, and the leaking rate was set to 1.0.

Figure 9 shows the relationship between the spectral radius andNMSE.Depending
on the IFS parameters, the value of spectral radius is modulated, and the combination
of scaling factors 0.8 and 1.0 generated a smaller spectral radius and improved the
prediction performance. It was confirmed that the adjustment of IFS parameters
provides modulation of coupling matrix W . In case of three and five iterations, the
correlation coefficients were larger than 0.7, which indicates a relationship between
the spectral radius and prediction performance. This result indicates that the one-step-
ahead prediction of the Santa Fe time-series does not require rich memory capability
for the task.

7 IFS Reservoir Computing with Optical Feedback Loop

It was demonstrated that the spectral radius changed with the number of iterations,
and the prediction performance changed accordingly. However, in the experiment,
it was necessary to repeat the electronic feedback process to change the number of
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Fig. 10 Optical setup of IFS reservoir with an optical feedback loop

iterations. Therefore, optical feedback was introduced to realize optical control of
the number of iterations. The experimental system is shown in Fig. 10. To facilitate
optical feedback of the signals for multiple iterations, the combined image was
transferred to BS1 through a relay lens. Consequently, a signal wherein the optical
affine transformation is repeatedly executed can be generated. The combined matrix
calculated in the experimental system is expressed as.

W res = (1 − β)A + β(1 − β)A2 + β2(1 − β)A3 + · · · βn−1(1 − β)An, (10)

where β denotes the feedback rate of the light signal branched by the beam splitter,
and A is a coupling matrix when the number of iterations is one. By realizing multi-
stage iterations, the range of combined matrix values was expanded. The signal after
passing through the IFS processing was detected by an image sensor. Subsequently,
the reservoir state was updated based on Eq. 3, and fed back to the display. The same
procedure is repeated to develop the status of the IFS reservoir.

For evaluation, one-step-ahead prediction of the Santa Fe time-series data was
performed. The feedback rate β, the number of training data, and the number of
prediction data were set to 0.5, 3,000, and 1,000, respectively. The optical parameters
are listed in Table 3. Figure 11a–c show the prediction results for the time-series data,
label data, and their differences. The NMSE value obtained under these conditions
was 0.098. When the feedback loop signal was removed under the same conditions,
the NMSE was 0.105, demonstrating the potential for improved prediction accuracy
with feedback.

The values presented in Eq. 10 demonstrate a decrease with an increase in the
order. This is owing to β < 1. The sensitivity of the image sensor was used to adjust
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Fig. 11 a Label of Santa Fe time-series data. b, d, f One-step ahead prediction of the proposed
system with an optical feedback loop and c, e, g the difference when the magnification of the gain
in the image sensor was 1.0, 1.1, and 1.2, respectively
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the signal acquisition of the calculated higher-order terms. Therefore, the change in
the prediction ability due to the adjustment of the image sensor gain was verified.

Figure 11d, f show the prediction results when the gain was 1.1 and 1.2 times
higher than that in case of Fig. 11b. In case of Fig. 11e The NMSE was 0.083 and
the prediction accuracy improved. However, when the magnification of the gain was
1.2, the NMSE was 0.800, and the prediction accuracy decreased. When the gain
is increased, a saturation of the light intensity occurs in the image sensor. . Con-
sequently, a signal with effective prediction information cannot be obtained, and
the prediction accuracy decreases. Therefore, it was demonstrated that it is neces-
sary to adjust not only IFS parameters but also the sensitivity of the image sensor
appropriately.

8 Discussion

The IFS reservoir computing allows for tuning of the parameters depending on the
prediction task. Next step is to optimize individual parameters and maximize the
performance. Various approaches have been suggested for optimizing hyperparam-
eters in reservoir computing through computational processing [23–25]. In physical
reservoir computing using FPGA, researchers have proposed methods for parameter
tuning utilizing genetic algorithms [26]. Moreover, Bayesian estimation has been
applied to realize more efficient parameters optimization compared to grid search
methods [27]. Therefore, computational processing allows the optimization of hyper-
parameters efficiently, and the performance of reservoir computing can be optimized.
In IFS reservoir computing, the number of IFS parameters is more than ten, which
is twice as high as that in other studies. The number of parameters is corresponding
to a degree of freedom in the tuning, and it is expected that higher prediction perfor-
mance by the optimization can be realized. Furthermore, IFS reservoir computing
provides the optimization of hyperparameters by adjusting the optical elements after
construction of the system. By problem-specific parameter optimization, a reservoir
computing predicting a wide range of time-series data can be built.
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Bridging the Gap Between Reservoirs
and Neural Networks

Masanori Hashimoto, Ángel López García-Arias, and Jaehoon Yu

Abstract While reservoir computing is drawing attention, its applications are lim-
ited to small tasks. This chapter proposes a solution to this issue by introducing the
Hidden-Fold Network, a recursive model with fixed random weights that resembles
reservoir computing. The model is constructed based on recent discoveries in neu-
ral networks, namely the Strong Lottery Ticket Hypothesis and folding. By pruning
an overparameterized model that is randomly initialized, it is possible to find accu-
rate neural networks without the need for weight optimization. It is conjectured that
residual networks may contain better subnetwork candidates for inference timewhen
transformed into recurrent architectures, as theymay be approximating unrolled shal-
low recurrent neural networks. This hypothesis is tested in image classification tasks,
where subnetworks within the recurrent models are found to be more accurate and
parameter-efficient than those within feedforward models, as well as the full models
with learned weights.

1 Introduction

Due to their complex structure, deep neural networks are capable of various types of
learning. However, when it comes to time-series problems, recurrent neural networks
(RNNs) are commonly used, but as their size increases, the cost of training becomes
an issue. Reservoir computing (RC) is a special type of RNNs that offer a solution
to this problem. In RC, the weights of the intermediate layer are fixed, and only
the output weights from the intermediate layer to the output layer are trained using
low-cost learners such as linear learners, which reduces the overall training cost.
Physical reservoir computing takes this a step further by implementing the interme-
diate layer nodes of reservoir computing as physical phenomena on hardware. This
approach reduces the need for design and can achieve even greater energy efficiency
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Fig. 1 Approach to deep reservoir computing

by selecting appropriate physical phenomena for the intermediate layer. There are
various approaches for implementing physical reservoir computing [1].

Currently, all RC models are single-layered and limited to processing small
datasets like MNIST. However, although there is a desire to scale up RC to larger
models capable of handling bigger datasets like CIFAR100, there are no methods
to achieve this. Increasing the size of the reservoir is not feasible since it makes the
output too complex for the simple classifier, and backpropagation cannot be utilized.
Figure 1 illustrates our approach toward achieving deep reservoir computing (DRC).
We begin by developing a method to make convolutional neural networks (CNNs)
similar to RC and replacing CNN layers with reservoirs to construct a DRC.

This chapter explores the compatibility between CNN and RC using two recent
concepts: the Strong Lottery Ticket Hypothesis [2, 3] and folding [4]. According
to the Strong Lottery Ticket Hypothesis, high-performing neural networks can be
obtained by pruning overparameterized dense models since they contain already
available high-performing subnetworks. These subnetworks are sparse, random, and
tiny, and can achieve competitive performance in vision tasks, making them suitable
for efficient hardware implementation [5]. However, finding optimal connectivity
patterns using current training methods can be challenging [6]. Folding, on the other
hand, is based on the observation that a specific type of shallowRNN is equivalent to a
deep residual neural network (ResNet) with weight sharing among layers [4], where
the original ResNet is proposed in [7] and remains the backbone of many SOTA
models. Implementing a folded RNN with significantly fewer parameters than the
corresponding ResNet leads to similar performance.

Figure 2 shows our baseline idea. We fold a ResNet to then find a strong lottery
ticket within the networkwith randomfixedweights.We have found that the obtained
recursive model, which is called Hidden-Fold Network (HFN), is similar to reservoir
computing.

We have observed that ResNets have an inherent ability to learn ensembles of
all possible unrollings of a shallow recurrent neural network. This restriction on
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Fig. 2 A sketch of hidden-fold network

the hypothesis space actually increases the number of potential subnetworks avail-
able at initialization time [8]. These resulting subnetworks are efficient in terms of
parameters and demonstrate competitive performance on image classification tasks.
Additionally, these subnetworks can be compressed to small memory sizes and have
a high degree of parameter reusability, making them ideal candidates for inference
acceleration.

2 Background

Driven by the increasingly powerful computational power promised byMoore’s Law,
artificial neural networks have grown in size, leading to the field of deep learning [9].
This trend was initially led by image classification models [10] and has continued as
researchers enhance neural networks at the cost of larger models. Natural language
processing and generative models have also joined the trend, offering impressive
capabilities at the expense of immense size [11, 12]. However, while this is a con-
venient approach for cutting-edge research, the high computational cost of these
models makes them impractical for real-world applications. Therefore, researchers
are also exploring small and efficient models as an alternative trend of research.

Strong lottery tickets refer to a set of efficient neural networks obtained through
a training process that combines learning, pruning, and weight quantization. The
development of this approach, depicted in Fig. 3, is described in detail in Sect. 2.1. In
this study, we introduce a method that converts a ResNet into a recurrent architecture
to enhance the quality of the strong lottery tickets that can be extracted from it, where
ResNet is introduced in Sect. 2.2.
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Fig. 3 Evolution of the training methods leading to the strong lottery ticket hypothesis

2.1 Lottery Ticket Hypotheses

Pruning is a widely used technique to compress trained neural networks into much
smaller models by removing unnecessary weights [13–17]. By iteratively applying
training and pruning, large portions of trainedmodels can be removed without affect-
ing accuracy, revealing that the original models are overparameterized. The sparsity
of the resulting network can be leveraged for additional compression using entropy
coding and for arithmetic optimization. This approach, combined with weight quan-
tization, has resulted in highly efficient model compression schemes [18, 19] and
specialized hardware neural accelerators [20].

In the past, it was observed that pruning did not separate the connectivity patterns
from the pre-trained weights, making it impossible to reinitialize and train from
scratch. However, a recent paper [21] introduced the concept of the Lottery Ticket
Hypothesis (LTH), which states that overparameterized neural networks contain a
subnetwork that can match the original model if trained in isolation. These subnet-
works, known as winning tickets, are discovered by iteratively training, pruning, and
resetting the remaining weights to their original value.

In an unexpected development during the analysis of the LTH, [2] discovered
that learning weights is not essential: high-performing subnetworks exist within
overparameterized neural networks at their randomly initialized state, which can be
identified through pruning. Moreover, they proposed an algorithm for discovering
these subnetworks by training a binary mask. Building upon this, [3] introduced
a training algorithm and weight initialization method that produces sparse random
subnetworks with competitive performance in image classification tasks.

Following a series of studies that explored the theoretical limits of necessary
overparameterization to obtain these subnetworks [22–24], the notion of subnetworks
obtained exclusively by pruning has been referred to as the Strong Lottery Ticket
Hypothesis (SLTH). However, some researchers also refer to it as the multi-prize
lottery ticket hypothesis [25], or simply as “hidden network.”

Although the discovery of strong tickets is surprising, it has some related prece-
dents. For example, extreme learning machines use fixed random weights in their
hidden units, only learning the output layer. Reservoir computers also use random
recurrent architectures in an analogous manner. Perturbative neural networks pro-
pose substituting convolutional layers with fixed additive random noise and a learned
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Fig. 4 The residual network
architecture. Specifically,
ResNet-50, which has 3, 4, 6,
and 3 blocks in each stage,
from input to output

linear combination. Training the batch normalization parameters of a fixed random
network can achieve non-trivial accuracy. The binary neural network trainingmethod
has been adapted to learn binary masks that, when applied to a trained model, extract
subnetworks that perform well on untrained tasks.

2.2 Residual Neural Networks

The residual neural network (ResNet) [7], as illustrated in Fig. 4, is a popular archi-
tecture among the continuously expanding variety of neural network architectures.
It serves as the backbone of many state-of-the-art (SOTA) models. ResNetis a deep
convolutional neural network that follows a pyramidal feedforward structure. It com-
prises a convolutional pre-net, four stages of residual blocks, and a fully-connected
post-net classifier. The first residual block of each stage downsamples the feature
map and doubles the number of channels, adjusting the representation space size.
The remaining blocks in a stage have the same size and shape and maintain the same
representation space size.
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Residual blocks in the ResNet architecture consist of batch normalization, ReLU
activation, and convolutional layers concatenated together. In this chapter, we focus
on the bottleneck block variant [7], which consists of three convolutional layers
applied in sequence with kernel sizes of 1×1, 3×3, and 1×1, respectively. Each
residual block has a skip-connection, which is an identity function running parallel
to the block that adds the block’s input to its output. In order to accommodate different
representation space sizes, the downsampling blocks have a learnable layer in the
skip-connection called a projection shortcut.

The original motivation for the ResNet architecture was to provide a clear path for
backpropagation to reach a layer directly, solving the vanishing gradient problem.
However, studies have shown that shuffling or removing residual blocks does not
severely impact its performance, but rather there is a gradual degradation proportional
to the amount of corruption introduced [26]. This phenomenon is not observed in
other feedforward models where similar lesions result in critical performance loss.
As a result, two alternative views of ResNethave been proposed: one suggests that it
is an ensemble of shallow networks, while the other argues that it is an approximation
of an unrolled shallow recurrent neural network. This work aims to reconcile these
two views into a single coherent explanation.

Each residual block in ResNet can be thought of as a path divergence point, which
leads to the interpretation of ResNet as an ensemble of all possible paths within
it [26], resulting in 2n possible paths for a model with n residual blocks. Several
improvements to ResNethave been proposed based on this perspective. For example,
during training, removing random subsets of blocks makes the ensembled networks
shallower and acts as regularization [27]. Furthermore, increasing the number of skip-
connections per block increases the number of ensembled paths, thereby improving
performance [28]. Another approach is to reduce network depth by increasing width,
enabling the training of larger models for improved performance in less time [29].

An alternative explanation for the lesion and shuffling results is that all the blocks
within a stage approximate the same function, as they have the same shape and
partially receive the same inputs and gradients through the identity shortcuts. This
implies that ResNetmay naturally converge to the approximation of an unrolled
shallow recurrent neural network, with each stage corresponding to a different hier-
archical level of representation, including the downsampling block for feature map
size adjustment. Meanwhile, the remaining blocks perform iterative refinement of
features, according to proponents of this view [30].

The ensemble of unrollings in ResNet, which combines the two views mentioned
above, the ensemble view and the unrolled iteration view, offers a vast search space
to discover effective tickets within a model with limited parameters. Therefore, it is
reasonable to assume that a ResNetwith more recurrent approximations at its initial
state may contain more potent tickets.



Bridging the Gap Between Reservoirs and Neural Networks 251

3 Hidden-Fold Networks

In this section, we present a technique for discovering a strong lottery ticket in a
ResNet by first folding it. The approach, described in [8], yields Hidden-Fold Net-
works (HFNs), which outperform the strong tickets present in feedforward ResNets.
Here, we provide details on the network’s architecture and training. Refer to [8] for
information on weight initialization and batch normalization.

3.1 Folded ResNet Architecture

In line with the unrolled iteration view, the chains of residual blocks with identical
shapes in each stage approximate an iterative function. To achieve this, folding [4]
is used, which converts these chains into recurrent blocks through weight sharing.
In other words, h ≈ g ≈ f in Fig. 4 is explicitly transformed into h = g = f . Since
applying the same functions in succession is equivalent to repeatedly applying one
of them, the feedforward chain can be transformed into a single recurrent block, in
a process opposite to time unrolling.

The downsampling block in ResNet has a different shape than the rest of the
blocks, and therefore cannot be folded with them. Strategies to address this issue
have been explored in previous works, such as removing the block to create an
isotropic architecture or substituting it with a simpler block, as discussed in [4, 31].
However, this work does not modify the downsampling blocks based on the view
that different stages correspond to different hierarchical levels of features, which are
composed of downsampling blocks [30]. Instead, the rest of the blocks within a stage
are folded into a single recurrent residual block that is iterated the same number of
times as the original number of blocks, as illustrated in Fig. 5.

Fig. 5 A ResNet stage
folded into a recurrent
residual stage through the
opposite of time unrolling.
The downsampling block is
left untouched, whereas the
rest of the stage is folded
into a single recurrent block.
That is, a stage of n blocks is
folded into 2 blocks, the
second of which is applied
n − 1 iterations
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Folding has a dual effect on the search space. It restricts the hypothesis space
of the model to iterative functions and reduces the number of parameters. Despite
the exponential reduction in available subnetwork candidates, we argue that folded
residual networks contain better performing strong tickets than their feedforward
counterparts. If the weights of a ResNet naturally converge to approximations of
unrolled iterative functions, then the strong tickets within it are likely approximations
of recurrent networks. This restricts the number of relevant subnetworks to a small
subset that includes consecutive blocks with similar random weights. By folding, all
candidate subnetworks become recurrent, which increases the number of relevant
subnetworks and their likelihood of containing stronger tickets.

Moreover, the parameter reduction occurs not only at inference time but also
during training. By reducing the search space for strong tickets during training,
folded tickets become easier to find. At inference time, the found subnetworks are
even smaller and benefit from parameter reusability, making them ideal for efficient
hardware implementation.

3.2 Supermask Training

Rather than optimizing the model’s weights, the model is pruned to identify a high-
performing subnetwork that is hidden within the randomly initialized folded model,
which is referred to as an HFN. This connectivity pattern is learned by training a
supermask [2], which is a pruning mask containing a binary element for each weight.
During inference, the ticket is discovered by applying an element-wise product of
the random weight tensor and the trained supermask.

This study adopts the edge-popup algorithm [3] for training the supermasks,
as shown in Fig. 6a. The algorithm assigns a score to each weight, which is updated
during backpropagation using straight-through estimation for the supermask (i.e.,
the supermask is not applied in the backward pass). The weights are sorted based
on their scores, and the supermask is updated to include the weights with the high-
est top-k% scores and prune the rest. Although the value of top-k% is determined
globally, the sparsity is enforced at the layer level. Folding does not impact this
process; supermasks and scores are shared similarly to their corresponding weights,
and backpropagation gradients are propagated through the unrolled model just like
a feedforward model. Therefore, folded parameters receive distinct gradients from
each iteration, as demonstrated in Fig. 6b.

4 Experiments and Results

In this section, we explore how to effectively integrate supermask training with a
recurrent residual network and compare the outcomes with the baseline approaches
outlined in Table 1.
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Fig. 6 Training an HFN
with a supermask. The
supermask (H ) includes the
random weights (W ) with the
top-k% scores (S), updated
via backpropagation.

⊙
is

the Hadamard product

Table 1 Summary of the four methods compared on ResNet in this work

Method Architecture Training

Standard (“Vanilla”) [7] Feedforward Dense weight learning

Folding [4] Recurrent Dense weight learning

Hidden-Networks (HNN) [3] Feedforward Supermasks

Hidden-Fold Networks (HFN) Recurrent Supermasks



254 M. Hashimoto et al.

4.1 Experimental Settings

All experiments were implemented in PyTorch [32], using the original code of [3]
available in their public repository [33]. The baseline model for all experiments
was ResNet-50 [7] and its variations, as folding only applies to deep networks.
The experiments were conducted on the CIFAR100 [34] dataset, which is relatively
complex.

Unless stated otherwise, the experiments were conducted using the following
methodology. We split the CIFAR100 dataset, consisting of 60, 000 images, into
45, 000 for training, 5, 000 for validation, and 10, 000 for the test set. Image pre-
processing and augmentation were carried out as in [3]. We trained the models on
CIFAR100 using stochastic gradient descent (SGD) with weight decay of 0.0005,
momentum of 0.9, and batch size of 128 for 200 epochs. For models deeper than 100
layers or double width, we trained for an additional 100 epochs. The learning rate
started at 0.1 and was reduced using cosine annealing with no warmup.We report the
average of three runs of top-1 test accuracy scores measured at the highest scoring
validation epoch. The standard deviation is shown with shaded areas on plots.

A vanilla ResNet-50 trained on CIFAR100 using an NVIDIA GeForce RTX 3090
requires 2.4 h. In comparison, the folded, HNN, andHFN versions of the samemodel
require 2.2, 4.4, and 4.2 h, respectively.

4.2 Results

The comparisonof accuracy andparameter count of variousResNet sizes trainedwith
different methods on CIFAR100 is shown in Fig. 7a. HFNmodels are found to be the
most parameter-efficient among the compared methods, with fewer parameters than
equally performing models, and more accurate than models with similar parameter
counts. Additionally, deeper and wider HFNs achieve the highest accuracies overall.

In addition, the superiority of HFNs is more pronounced when examining the
model memory sizes under the compression scheme presented in [8], as shown in
Fig. 7b. The memory size of HFNs is approximately half that of their feedforward
counterparts, with ResNet-50 fitting into less than 2 MB. Moreover, the wider HFN
models outperform the dense models that are more than 30× larger in size.

5 Summary

We explored the similarity between the Hidden-Fold Network, a recursive model
with fixed random weights, and reservoir computing, as depicted in Fig. 8. In this
chapter, we presented a method for folding and training ResNet with supermasks,
as a first step toward deep reservoir computing. We also tested the conjecture that
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(a) Accuracy vs. number of parameters.

(b) Accuracy vs. memory size.

Fig. 7 Comparison of the four methods using different model sizes on CIFAR100. HFN is both
the most parameter-efficient and the tiniest. RN and WRN are abbreviations of ResNet and Wide
ResNet, respectively
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Fig. 8 The current status in this chapter and future work

recurrent residual networks have stronger tickets than their feedforward counterparts,
which can be leveraged to significantly reduce the memory footprint while achieving
comparable or superior accuracy to dense models. Since HFN’s blocks are recurrent
and unlearned, leaving all the learning load to a simple mask, the model bears strong
resemblance to a deep reservoir computer. However, the second step of substituting
convolutional layers with actual reservoir layers remains a future direction. Once
this is achieved, we will bridge the gap between reservoirs and neural networks and
approach deep reservoir computing that can solve complex tasks.
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Brain-Inspired Reservoir Computing
Models

Yuichi Katori

Abstract This chapter presents an overview of brain-inspired reservoir computing
models for sensory-motor information processing in the brain. These models are
based on the idea that the brain processes information using a large population of
interconnected neurons, where the dynamics of the system can amplify, transform,
and integrate incoming signals. We discuss the reservoir predictive coding model,
which uses predictive coding to explain how the brain generates expectations regard-
ing sensory input and processes incoming signals. Thismodel incorporates a reservoir
of randomly connected neurons that can amplify and transform sensory inputs.More-
over, we describe the reservoir reinforcement learning model, which explains how
the brain learns to make decisions based on rewards or punishments received after
performing a certain action. This model uses a reservoir of randomly connected neu-
rons to represent various possible actions and their associated rewards. The reservoir
dynamics allow the brain to learn which actions lead to the highest reward. We then
present an integrated model that combines these two reservoir computing models
based on predictive coding and reinforcement learning. This model demonstrates
how the brain integrates sensory information with reward signals to learn the most
effective actions for a given situation. It also explains how the brain uses predictive
coding to generate expectations about future sensory inputs and accordingly adjusts
its actions. Overall, brain-inspired reservoir computing models provide a theoret-
ical framework for understanding how the brain processes information and learns
to make decisions. These models have the potential to revolutionize fields such as
artificial intelligence and neuroscience, by advancing our understanding of the brain
and inspiring new technologies.
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1 Introduction

The brain’s capacity to process sensory information and make decisions can be
attributed to the intricate neural dynamics within a highly interconnected network of
nonlinear elements known as neurons. However, the specificmechanisms underlying
this framework are not yet fully understood. The primary objective of engineering
and computer science researchers is to develop models that replicate the brain’s
information processing capabilities. A promising approach in this regard is the brain-
inspired reservoir computingmodel, which has demonstrated effectiveness in diverse
applications.

Reservoir computing (RC) is a framework for constructing recurrent neural net-
works that can model time-varying complex sensory signals [1, 2]. In the RC frame-
work, recurrent connections are randomly and sparsely configured and do not require
training. The readout connections from the reservoir are trained to reproduce a given
target time series, reducing the network’s computational cost. An important feature
of RC is that it requires extremely low computational cost for learning because only
the connections in the readout part are acquired through training. In addition, RC has
many applications, including time-series generation and prediction, pattern recogni-
tion in time series, and robot control. The key requirement for RC is the presence
of high-dimensional, that is, a large number of nodes or neurons that give rise to
complex dynamics. Another important feature of the RC framework is the several
possible physical implementations [3, 4], including electrical and optical systems,
among other numerous possibilities. Provided that it has high dimensionality, non-
linearity, and echo state property, it can serve as a reservoir for computing. The
framework of reservoir computing is being actively researched as an approach for
modeling brain regions, such as the prefrontal cortex and cerebellum [5, 6].

Predictive coding is a theoryof brain function, inwhich thebrain processes sensory
information by generating and updating internal models of the external world [7–9].
These models enable the brain to predict future sensory inputs. When the actual
input deviates from the predicted input, prediction error signals are generated and
sent back through the neural network to update the models. The iterative process of
generating and updating predictions improves the accuracy of the model and reduces
prediction error over time. Predictive coding is a widely accepted framework for
understanding perception, attention, and learning in the brain and has been applied
to various sensory modalities, including vision, audition, and touch. The predictive
coding model is a key component of many neural network models of the brain and
has been used to explain different neural phenomena, such as adaptation, attentional
modulation, and perceptual illusions. Despite its success, however, the predictive
coding model remains an active area of research with ongoing debates over the
specific mechanisms and neural substrates underlying predictive coding in the brain
[10].

The brain’s reward system and the process of reinforcement learning are essen-
tial components of decision-making and learning. The reward system is a collection
of neural circuits that processes information related to motivation, pleasure, and
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rewards. It plays a critical role in shaping behavior, such as learning and motivation,
by providing feedback on the outcomes of an action. The neurotransmitter dopamine,
which is released in response to a reward or the anticipation of a reward, is a keymedi-
ator of the activity of the reward system. In reinforcement learning, an agent learns
to select actions based on rewards or punishments [12]. This involves learning to
maximize long-term cumulative rewards by taking actions in an environment. Rein-
forcement learning algorithms often use trial and error to learn the optimal behavior,
explore the environment, and observe the consequences of different actions. The
brain’s reward system and the process of reinforcement learning are closely related.
The reward system provides feedback that drives the learning process, and reinforce-
ment learning provides a framework for understanding how the brain learns to make
decisions based on rewards. Computational models of reinforcement learning have
been successful in explaining different behaviors, including goal-directed behavior,
habit formation, and addiction [12].

In this chapter, we discuss brain-inspired reservoir computingmodels for sensory-
motor information processing in the brain [13, 14]. First, we introduce the reservoir
predictive coding model that corresponds to sensory information processing in the
cerebral cortex [11]. Subsequently, we discuss the reservoir reinforcement learning
model that corresponds to action learning based on rewards in the basal ganglia [14].
Finally, we present an integrated model that combines these two RC models based
on predictive coding and reinforcement learning [14]. This integrated model has the
potential to provide a more comprehensive understanding of the brain’s information
processing mechanisms.

2 Reservoir-Based Predictive Coding Model

Predictive coding is a neuroscience theory explaining how the brain processes sensory
information by constantly making predictions about the world and updating them
based on incoming data [7–9]. This concept is particularly relevant to the hierarchical
organization of the visual system in the brain, which consists of multiple processing
stages, each of which is responsible for detecting specific features of the visual
input. For example, lower-level neurons may detect simple features such as edges,
whereas higher-level neurons may identify more complex patterns or objects. The
same principle applies to the architecture of CNNs, which have multiple layers that
learn to extract increasingly complex features from input images.

Predictive coding posits that the brain actively generates predictions regarding
sensory input at each level of the hierarchy. These predictions are based on infor-
mation gathered from higher hierarchical levels and on previously learned internal
models. These internal models, also known as generative models, make predictions
and propagate them to lower levels via a top-down pathway. The difference between
the actual input and the prediction, known as the prediction error, then propagates
up the hierarchy in a bottom-up manner. This error signal helps the brain update its
internal models and refine future predictions.
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In the field of neural networks, the predictive coding with reservoir computing
(PCRC) model proposed by Katori et al. [11] is a novel approach for processing
time-varying sensory signals. The PCRCmodel employs a reservoir as the generative
model for predictive coding, wherein the reservoir generates multidimensional, time-
varying sensory signals. The prediction error is subsequently transmitted back to the
reservoir, allowing for the rectification of the network’s internal state. This model
demonstrates the capability of reconstructing and predicting time-varying sensory
signals.

The network architecture within each module comprises four key components:
the prediction layer, input layer, prediction error layer, and reservoir (Fig. 1a).Within
the module, the input signal located in the input layer is replicated in the prediction
layer, which is facilitated by the complex motion of the reservoir. This prediction
error is then fed back into the reservoir to minimize errors. During the training phase,
the connection between the reservoir and the prediction layer is modulated using the
first-order reduced and controlled error (FORCE) algorithm [15].

In the testing phase, the model operates in two distinct modes: error-driven and
free-running. The error-driven mode involves feedback on the prediction error to
the reservoir to further reduce the error. In contrast, the free-running mode does not
involve the transmission of the prediction error to the reservoir, allowing for the
autonomous operation of the reservoir. This dual-mode functionality highlights the
versatility and adaptability of the PCRC model for processing time-varying sensory
signals.

The PCRC module consists of a reservoir, prediction layer, input layer, and pre-
diction error layer, which are mathematically described as follows: The membrane
potential, or internal state, and the neuron activities within the reservoir are rep-
resented by m ∈ R

Nx and r ∈ R
Nx , respectively, where Nx denotes the size of the

reservoir. The states of the reservoir are updated according to the following equations:

m(n + 1) = m(n)+1

τ
{−m(n)+Wrecr(n)+ Wback y(n) + αeWee(n) − b(n)} , (1)

r(n + 1) = tanh(βmm(n + 1)) , (2)

where Wrec ∈ R
Nx ×Nx represents the matrix for recurrent connections, and τ is the

time constant. The parameter βm scales the neuron activities. The reservoir receives
inputs from the prediction layer y(i) ∈ R

Ny through the feedback connection Wback ∈
R

Nx ×Ny , the prediction error layer e ∈ R
Ny with a coefficient αe that determines the

error feedback strength and model operation mode, and the top-down input from the
higher area network b(i)(n). The states of the prediction and prediction error layers
are given by

y(n) = max(0, Wout r(n)) , (3)

e(n) = d(n) − y(n) . (4)
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Fig. 1 Network structure of the PCRCmodels. aModule of the predictive coding based on reservoir
computing. b PCRC-based hierarchical model for the multimodal processing of the visual and
auditory processing

In the error-driven mode (αe = 1), the reservoir is updated using the prediction
error, and the state of the prediction layer follows the state of the input layer. In the
free-running mode (αe = 0), the reservoir states are updated based on the internal
dynamics, independent of the sensory input.

The network’s configuration and learning process involve the following steps.
The recurrent connections within the reservoir and the feedback connections from
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the prediction layer to the reservoir are configured in a random and sparse manner,
with no need for training their connectivity. During the training phase, the network
operates in error-drivenmode, and the connections from the reservoir to the prediction
layer are trainedusing theFORCE learning algorithmwith agiven time-series dataset.
Recurrent connections Wrec are set up using the following procedure. First, create
a matrix W0 filled with zeros. Then, assign the non-zero values of either −1 or
1 to randomly chosen βr × Nx × Nx elements. Then, compute the spectral radius
of W0: |ρ0|. Define Wrec = αr W0/|ρ0|, where αr indicates the strength of recurrent
connections. Feedback connections Wback and We are set up using the following
procedure. Similar to Wrec, generate a zero matrix W0 and assign non-zero values
of −1 or 1 to the randomly selected βb × Nx × Ny elements, where βb specifies
connectivity of the recurrent connection. Define Wback = αbW0, with the strength of
the feedback connections given by αb. Use the same procedure to generate We with
the coefficient αe.

The readout connections from the reservoir Wout are updated using the FORCE
learning algorithm [15] as follows:

v(n) = P(n)r(n) , (5)

P(n + 1) = P(n) − v(n)vT (n)

1 + vT (n)r(n)
, (6)

Wout(n + 1) = Wout(n) − e(n)vT (n)

1 + vT (n)r(n)
. (7)

The initial value of P(n) ∈ R
Nx ×Nx is P(0) = I

α f
,wherematrix I is an identitymatrix

and α f is a scaling parameter. Once the readout connection training is complete, the
module can reconstruct the given input in error-driven mode and predict the input in
free-running mode.

The PCRC-based hierarchical model for multimodal processing comprises three
modules (Fig. 2b). Each module in the hierarchical model is distinguished by super-
script (i), where i ∈ {V, A, I } denotes the visual, auditory, and integration modules,
respectively.

The configuration and learning of this model were performed using the following
steps: The recurrent and feedback connections were established in accordance with
the previously described procedure. The connection matrices between the lower
and higher levels, U(A) and U(V ), are defined using the method below; their inverse
matrices are used for dimensionality reduction.

Firstly, operate the lower area network (visual and auditory areas) in error-driven
mode (α(V )

e = 1 and α(A)
e = 1) without top-down signals (αtd = 0), and gather the

time course of the reservoirs r(V ) and r(A) in the state collecting matrices R(V ) and
R(A), respectively. Next, compute the dimension reduction matrices U(V ) and U(A).
Assuming that T timesteps of reservoir states are collected in R(i) (i ∈ {V, A}), R(i)

can be decomposed by principal component analysis (PCA) as R(i) = S(i)U T
(i). Here,

S(i) is a T × 20 matrix, and U(i) is an N (i)
x × 20 matrix. The dimension reduction

matrixU−1
(i) can be obtained as the pseudo-inverse matrix ofU(i). Finally, connect the
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sensorymodules (visual and auditorymodules) and the integration using the obtained
U(i), and operate the entire network in error-driven mode (α(V )

e = α(A)
e = 1) with

αtd > 0. The matrices W (V )
out , W (A)

out , and W (I )
out are acquired using FORCE learning.

Within the hierarchical PCRC model for visual and auditory processing, the inte-
gration reservoir is responsible for reconstructing and predicting the compressed and
concatenated states of the sensory reservoirs. Consequently, the integration reservoir
is expected to reconstruct information from one modality using information from
another modality. Both the visual and auditory reservoirs are driven by the predic-
tion error on each sensory module and the integration reservoir.

The multimodal model is assessed using time-series data, consisting of pairs of
hand-written digit images and their corresponding spoken number utterances. Three
hand-written digit images (“2,” “5,” and “9”) from the MNIST dataset are employed
as visual signals [16]. Each image comprises 28 × 28 (784) grayscale pixels. These
images undergo preprocessing via non-negative matrix factorization (NMF) and are
converted into a 20-dimensional signal. Assuming V is an L × 784 matrix with
each row representing an individual image, and V is a collection of L images, NMF
decomposes V into twomatrices: V = H W , where H is an L × 20 coefficientmatrix
and W is a 20 × 784 feature matrix. The transformed 20-dimensional vector serves
as the input to the visual area network. The coefficient vector reconstructed by the
PCRC module can be converted back into images using W .

In addition, linguistic data containing spoken number utterances from the Ti46
dataset are utilized as auditory signals [17]. This dataset comprises uncompressed
audio data. Each dataset is preprocessed using a cochlear filtermodel [18], an auditory
model that simulates sound propagation within the inner ear, and the conversion of
acoustic energy into neural representations. The auditory signals are transformed
into 55-dimensional signals. Figure 2 displays samples of the dataset. In the auditory
signal, the initiation of spoken number utterances exhibits jitter, starting anywhere
from 60 to 90 timesteps. The corresponding visual signals are presented from 80 to
160 timesteps without jitter.

After training, the network is expected to reconstruct sensory information from
one modality based on input signals originating from the other modality. In the
subsequent analysis, the focus is on reconstructing visual information in the presence
of corresponding auditory signals. In this case, the auditory and integration reservoirs
operate in error-driven mode, whereas the visual reservoir functions in free-running
mode.

In the association process, a given auditory signal is initially presented to the
input layer of the auditory area. At this time, the reservoir maintains a silent state;
as no signal is formed in the prediction layer, a significant prediction error occurs.
This prediction error serves as a trigger, inducing the motion of the auditory reser-
voir and generating the auditory signal in the prediction layer. Subsequently, the
prediction error gradually decreases. A spatial pattern reflecting the temporal pattern
in the auditory signal is represented within the reservoir. This information is spa-
tially compressed and conveyed to the integration reservoir, where only the auditory
information is input. The prediction layer in the integration area initially remains
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Fig. 2 Evaluation of the PCRC-based multimodal model with auditory and visual signals. a Train-
ing phase: All modules are operated in error-driven mode. The model is trained with the datasets
comprising time-series pairs of visual signals (hand-written digits) and auditory signals (spoken
utterances of corresponding digits). Each signal is displayed for 100 timesteps. Visual signals
undergo preprocessing using NMF, resulting in a 20-dimensional signal that serves as sensory input
for the visual area network. Auditory signals are preprocessed with a cochlear filter and converted
into 55-dimensional signals. These signals are then provided as sensory input to the auditory area
network. b Cross-modal association from the auditory signal to the visual signal after the training
phase: Auditory and the integration modules are operated in error-driven mode, whereas the audi-
tory module is operated in free-running mode. The model is driven by an auditory signal, and the
corresponding visual image appears in the prediction layer of the visual area

silent, and the prediction error triggers the activity of the integration reservoir. As
the integration reservoir begins to move, predictions are generated to compensate for
the prediction error. At this time, both the auditory and corresponding visual signals
are generated. Because there is no signal coming from the lower visual layer, the
prediction error regarding the visual information is larger. This prediction error is
then transmitted to the visual area, inducing activity in the visual reservoir. Based
on the fluctuations in the visual reservoir, visual signal prediction is performed. In
summary, a visual signal corresponding to the input auditory signal is generated in
the prediction layer of the visual area.

During the processing of multidimensional complex time courses, the proposed
hierarchicalmodel combines themechanisms of temporal structure accumulation and
spatial pattern compression. The input signal is reconstructed using a reservoir that
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captures the temporal structure of the signal within its high-dimensional nonlinear
dynamics. Subsequently, the high-dimensional state vector in the reservoir, which
encompasses a short history of the signal, undergoes spatial compression and is
transferred to the integration area network. This combination of accumulation and
compression results in a higher-order abstraction of the intricate time course. In
cross-modal association, the processes of compression and abstraction are reversed,
allowing the generation of sensory information through expansion and instantiation.

3 Reservoir-Based Reinforcement Learning Model

Reinforcement learning is a type of learning inwhich an agent learns to choose actions
based on rewards or punishments, with the goal of maximizing long-term cumulative
rewards by taking actions in an environment. Reinforcement learning algorithms
often employ trial and error to learn optimal behavior, explore the environment,
and observe the consequences of various actions. The learning process is fueled
by feedback from the environment, providing information on the outcomes of an
agent’s actions. Among the various reinforcement learning approaches, TD-learning
is a model-free technique that merges ideas from dynamic programming and Monte
Carlo methods [12, 19]. It estimates the value function (expected future reward) by
learning from the difference between consecutive predictions, which is known as the
temporal difference error. Thismethod enables agents to learn online and update their
value estimates incrementally as new experiences are acquired,making it particularly
suitable for learning in dynamic environments.

In recent years, RL has been combinedwith deep learning to create deep reinforce-
ment learning (DRL), which has achieved remarkable success in solving complex
control tasks with high-dimensional sensory inputs, such as images and sounds [20].
DRL algorithms, such as Deep Q-Networks (DQN) [20], proximal policy optimiza-
tion (PPO) [21], and actor-critic methods [22, 23], have been successfully applied to
various applications, such as video game playing, robotics, and autonomous driving.

The two important frameworks within RL areMarkov decision processes (MDPs)
[24] andpartially observableMarkovdecision processes (POMDPs) [25].MDPs are a
mathematical framework used to model decision-making problems in reinforcement
learning, where the environment’s state transitions and rewards are assumed to be
Markovian; that is, the future state depends only on the current state and action
taken and not on previous states or actions. Although MDPs have been successfully
applied to various problems, they exhibit certain limitations, particularly in partially
observable environments.

In real-world situations, an agent may not have full access to the environment’s
state owing to noisy sensors, occlusions, or other factors. This lack of complete
information about the environment’s state can lead to suboptimal decision-making,
as the agent cannot accurately estimate the value of different actions. This is where
POMDPs play a significant role, extending the MDP framework to handle environ-
ments with partial observability.
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POMDPs are a generalization ofMDPs that consider uncertainty in perceiving the
environment’s state. Instead of using the environment’s true state, the agentmaintains
a belief state, which is a probability distribution over the possible environment states.
The belief state is updated as the agent takes actions and receives observations, allow-
ing it tomake better-informed decisions evenwith incomplete information. However,
solving POMDPs is generally more computationally demanding than MDPs owing
to the increased complexity associated with maintaining and updating belief states.

One approach to address POMDP is the use of reservoirs. Reservoirs, which
store not only the current state but also the history of sensory inputs reflecting the
environmental state in high-dimensional state vectors, can be expected to function
effectively in POMDP environments by compensating for information that cannot
be directly observed. In the following, we introduce how the reservoir reinforcement
learning model, which is a model that reads action values from the reservoir states
where the history of sensory information is accumulated, can effectively function in
POMDP environments.

The proposed model consists of a sensory layer, a dynamical reservoir, and an
output layer (Fig. 3a). The reservoir receives sensory input from the environment
through the sensory layer and generates action values in the output layer, which are
then converted to action commands. The reservoir state, comprising Nx neurons, is
denoted by x(t) ∈ R

Nx . The dynamical reservoir state x(t) evolves as follows:

x(t + Δt) = x(t) + Δt

τx

(−x(t) + W inu(t + Δt) + W recr(t) + W backq(t)
)

, (8)

where τx is the time constant; W in is the Nx × Nu sensory matrix from the sensory
layer to the dynamical reservoir, W rec is the Nx × Nx recurrent weight matrix in
the dynamical reservoir, and W back is the Nx × Ny feedback matrix from the output
layer to the dynamical reservoir. These weight matrices W in, W rec, and W back are
randomly and sparsely generated and remain fixed. The neuron firing rate in the
dynamical reservoir, r(t), is defined as r(t) = fr (βx(t)), where β specifies the firing
rate responses and fr (x) = tanh(x). The output layer state, denoted by q(t) ∈ R

Ny ,
represents the Ny action values and is specified according to:

q(t) = W outr(t) . (9)

W out is the Ny × Nx output weight matrix from the dynamical reservoir to the output
layer. Reservoir-based TD-learning is performed on the matrix W out to minimize the
temporal difference and approximate the action quality (Q-value). Exploration noise,
s(t) ∈ R

Ny , is added to the output. The Q-value for the exploration noise is denoted
by q̃(t). The connection from the reservoir to the output layer, W out, is trained using
the following equations in an online learning manner:

W out
a, j (t + Δt) = W out

a, j (t) + η(t) fq
(
R(t) + γ q̃a(t + Δt) − qa(t)

)
r j (t + Δt),

(10)
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is required tomove from the start to the goal position. The agent receives a positive reward depending
on the distance between the goal position and the robot and receives a negative reward (punishment)
if the robot crashes into the wall. c The robot sequentially chooses from one of the possible three
actions (move left, right, or forward)

where a is the index of the action commands, and the action command at time t
is given by a(t) = argmaxi (qi (t)). R(t) represents the reward received from the
environment, and fq(x) = tanh(x). γ is the discount factor, and η(t) is the learning
rate. The exploration noise is temporally correlated and changes according to the
following equation:

s(t + Δt) =
(
1 − Δt

τs

)
s(t) + σs N (0, 1) , (11)

q̃(t + Δt) = q(t + Δt) + s(t + Δt) , (12)
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where τs is a time constant, and σs represents the noise strength. N (0, 1) is a random
variable following a normal distribution with a mean of 0 and a standard deviation
of 1.

The proposed reservoir reinforcement learning model was assessed within a sim-
ulation environment, in which the model was tasked with navigating a robot to a
designated goal (Fig. 3b, c). The information received by the agent from the environ-
ment is the distance to the obstacles in eight directions around the robot. The sensory

layer state is given by u(t) = exp
(
− d(t)

d0

)
∈ R

Nu , where d(t) is the sensory signal

from Nu = 8 distance sensors. Note that the position and direction information of the
robot are not provided to the agent. The agent is required to continuously choose one
of three possible actions (move left, right, or forward). The agent receives a positive
reward depending on the distance between the robot and the given goal position and
a negative reward if the robot crashes on the obstacle. In the simulations, we use the
following parameter values: Nx = 500, Nu = 8, Ny = 3, Δt = 1, β = 1, τx = 2,
τs = 20, γ = 0.9, and d0 = 100.

Figure 4a illustrates the typical robot trajectories during training. Initially, the
robot quickly collidedwith obstacles and failed to reach the goal.However, as training
continued, the robot learned to avoid obstacles; after 300 episodes, it successfully
circumvented most obstacles and reached the goal.

Figure 4b shows a typical time course of the network state after 300 training
episodes. The reservoir state fluctuated in response to the sensory signals, which
varied based on the distance between the robot and the obstacles. In the output layer,
the Q-values for the three potential actions were determined, reflecting reservoir
fluctuations. The action corresponding to the highest Q-value was selected as the
motor command. The Q-value for moving forward was lower than those for turning
right or left. ThemaximumQ-value alternated between turning right and left, thereby
restricting the robot’s motion to either turning right or left.

The proposed reservoir reinforcement learning model effectively learned the
action sequence required to reach a given goal within the environment. The sequence
of sensory signals induced substantial fluctuations in the reservoir state, and reward-
based training resulted in an appropriate action sequence. Future studies should
focus on refining the network model in several ways. From a neuroscience per-
spective, the function demonstrated in this study, specifically the transformation of
sensory information into motor information, underlies the prefrontal cortex. Addi-
tional neuroscience-inspired functions should be incorporated, such as the amygdala,
which offers a gating mechanism for sensory signals based on their importance, or
hippocampal grid and place cells, which enable flexible representation of the agent’s
position.
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Fig. 4 Robot navigation task a Trajectory of the robot during the learning process. At the beginning
of the learning stage (episodes 51–100), the robot collides with obstacles shortly after starting and
does not reach the goal. However, in the middle of the learning stage (episodes 151–200), the
robot learns to avoid collisions with obstacles. At the end of the learning stage (episodes 251–300),
the robot learns to reach the goal while avoiding obstacles. b Temporal changes of sensory input,
reservoir, and action value after learning. (Top) Sensory signal reflecting changes in the distance
to obstacles as the robot moves. (Middle) Internal state of the reservoir that fluctuates according to
the sensory signal. (Bottom) Action-value functions corresponding to the three actions

4 Integrated Model and Mental simulation

Mental simulation is a cognitive process in which an individual mentally enacts
or imagines a scenario or action without physically performing it [29]. This men-
tal rehearsal can be used for various purposes, such as problem-solving, planning,
decision-making, and skill development [28]. Mental simulation allows individu-
als to predict the outcomes of various actions, assess risks, and evaluate potential
solutions without committing to a specific course of action in the real world.
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In the context of artificial intelligence and robotics, mental simulation refers to
an agent’s ability to internally model and predict the consequences of its actions in
a given environment [30]. One approach for implementing mental simulation in AI
systems is to use world models, which is an internal representation of the agent’s
environment, capturing relevant information regarding the relationships, objects, and
dynamics within that environment. By simulating potential actions and their conse-
quences within theworldmodel, the agent canmake better-informed decisions, adapt
to new situations, and learn from hypothetical scenarios without requiring actual
interaction or trial-and-error experiences. This approach can improve the learning
efficiency and reduce the time and resources required for training.

A reservoir-based mental simulation model combining the predictive coding and
reinforcement learning models described above (Fig. 5) has been proposed [27]. In
this model, the reservoir generates predictions of the sensory input and action values
as readouts. After a pretraining phase, the model operates in two distinct modes:
execution and mental simulation. In execution mode, the agent and environment are
connected, allowing the reservoir to receive information from the environment and
output actions that influence the environment. In contrast, themental simulationmode
involves decoupling the agent’s actions from the environment, with the predictive
error feedback disconnected. In this mode, the reservoir functions as a world model,
simulating environmental changes within the agent’s internal network.

The process of action planning using mental simulation consists of two phases:
pretraining and test. The pretraining phase involves collecting fundamental informa-
tion about the environment and constructing a world model within the reservoir. In
the test phase, the reservoir is detached from the environment, and action planning is
conducted by simulating the constructed world model. This enables the optimization
of action sequences required to achieve the desired state.

The overall network structure is illustrated in Fig. 5a. The agent receives sensory
signals d from the environment and generates sensory information predictions y
from the reservoir. The agent generates action values q based on sensory information
predictions and the state of the reservoir. This action value is modulated by the bias
input b, which is determined by optimization. Actions a are determined based on the
action values, and these actions are sent to the environment while simultaneously
being fed back into the reservoir.

In the pretraining phase, the agent is connected to the environment and updates
the connections from the reservoir to the layers representing sensory information
predictions and action values (Fig. 5b left). In the planningmode of the test phase, the
agent is disconnected from the environment, and environmental changes and action
selection are simulated through the reservoir’s internal dynamics (Fig. 5b center). In
the execution mode of the test phase, the agent reconnects to the environment and
performs actions in the real environment using the bias determined in the planning
mode (Fig. 5b right). During the planning mode of the test phase, the bias terms are
optimized such that the state of the simulated environment is close to the desired
state.

The model is evaluated in the context of a mobile robot environment. The robot
receives the following sensory signals: the distance to obstacles in eight directions
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planning model in the test phase, and the execution mode of the test phase. c Optimization of the
bias terms of the action value. Optimization of the bias terms is performed so that the state of the
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around the robot, the position of the robot with a place-cell representation, and the
direction of the robot [31].

During the pretraining phase, the robot learns to move through the environment
while avoiding collisions with the walls. This pretraining involves generating outputs
for both the predictive layer and action value readouts, following predictive coding
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Fig. 6 Action planning task.
The goal location is set at the
position marked by a star.
Robot trajectories (solid
curves) are shown when
operating in the environment
using the action value bias
obtained through optimizing
the action sequence by
mental simulation.
Trajectories without action
planning (no bias) are
represented by dashed
curves. When using the
action value bias obtained
through action planning, the
robot reaches the vicinity of
the goal location. The
starting orientation of the
robot is facing right (upper
panel) and upward (lower
panel)

and temporal difference learning models. In this phase, no specific goal location is
defined; however, a negative reward (penalty) is given upon collision with a wall.

During the test phase, action planning is conducted, with the task requiring the
robot to navigate to a specific location within the environment. In the mental sim-
ulation of the planning mode, the robot generates and optimizes action sequences
from the starting point to the desired position in the environment. Action values are
augmented with the bias term to modify the actions.

The bias terms consist of three parameters corresponding to the possible number
of actions: Ny = 3. In addition to these three parameters, the start time and duration
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of the bias application must be optimized. In the case of Ny = 3, there are a total
of five parameters to be optimized. Depending on the task, these bias terms can be
combined into multiple sets of modifications to optimize actions. These parameters
are optimized by minimizing the distance between the robot’s current position and
target location. In the mental simulation, the robot’s position can be estimated from
the states generated in the predictive layer, and the distance to the desired position can
be measured. The Nelder-Mead method [32] is utilized for parameter optimization.

Figure 6 demonstrates that the action sequences planned through mental sim-
ulation can be successfully applied in a real environment, allowing the robot to
effectively reach the target location. The solid line represents the trajectory of the
robot’s actions. Without context-vector-based action modification, the robot cannot
reach its destination (dashed line).

This example illustrates how the dynamic characteristics of reservoir computing
can be effectively employed in action planning. Although the robot task presented
herein involves only three possible actions and relatively simple planning, more
complex environments require further evaluation in the future. In addition to action
planning, mental simulation may help accelerate learning processes. Reinforcement
learning typically requires trial-and-error learning, involving numerous interactions
between the agent and the environment. However, this process can be replaced by
mental simulation through internal dynamics.

5 Summary

The brain is an important organ that allows us to perceive the world around us, learn
from our experiences, and make decisions based on this learning process. However,
understanding the brain’s information processingmechanisms is challenging because
of its complexity and dynamism. Brain-inspired reservoir computing models are one
approach that seeks to elucidate these mechanisms. These models are based on the
idea that the brain processes information using a large population of interconnected
neurons, where the dynamics of the system can amplify, transform, and integrate
incoming signals.

In this chapter, we discussed brain-inspired reservoir computing models for
sensory-motor information processing in the brain. We began by introducing the
reservoir predictive coding model based on the theory of predictive coding. Pre-
dictive coding posits that the brain constantly generates expectations regarding the
sensory input it receives and uses these expectations to interpret and process incoming
signals. The reservoir predictive coding model incorporates a reservoir of randomly
connected neurons that amplify and transform sensory inputs and generates predic-
tions regarding future sensory inputs. This model also highlights the role of feedback
connections between different levels of processing in the brain, which can refine and
update these predictions.

Subsequently, we discussed the reservoir reinforcement learning model, which
corresponds to action learning based on rewards in the basal ganglia. This model
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explains how the brain learns to make decisions based on rewards or punishments
received after performing a certain action. This model uses a reservoir of randomly
connected neurons to represent various possible actions and their associated rewards.
The reservoir dynamics allow the brain to learn which actions lead to the most
rewards. The reservoir reinforcement learning model also highlights the role of neu-
romodulators, such as dopamine, in shaping the learning and decision-making pro-
cesses of the brain.

Finally, we presented an integrated model that combines these two reservoir com-
putingmodels based on predictive coding and reinforcement learning. This integrated
model has the potential to provide amore comprehensive understanding of the brain’s
information processing mechanisms. This model demonstrates how the brain inte-
grates sensory information with reward signals to learn the most effective actions for
a given situation. It also explains how the brain uses predictive coding to generate
expectations about future sensory inputs and accordingly adjusts its actions.

Overall, these brain-inspired reservoir computing models offer a new perspective
on theworkings of the brain. They provide a theoretical framework for understanding
how the brain processes information and learns to make decisions. By incorporating
principles from both predictive coding and reinforcement learning, these models
offer a more complete picture of the brain’s information processing mechanisms.
This could have important implications in fields such as artificial intelligence and
robotics, where researchers are trying to build machines that can learn and adapt
similar to the human brain.

There are several directions for future research on brain-inspired reservoir com-
puting models. First, it is important to understand the computational and neural
mechanisms underlying these models. This could involve conducting simulations
and experiments to validate the models and test their predictions. Second, it is inter-
esting to explore how these models can be applied to real-world problems, such as
robotic control or natural language processing. Finally, it is important to consider
the ethical and societal implications of developing more intelligent machines based
on these models.

In conclusion, brain-inspired reservoir computing models offer a promising
approach for understanding the brain’s information processing mechanisms. They
provide a theoretical framework for guiding future research and motivating new
technologies. By advancing our understanding of the brain, these models have the
potential to revolutionize fields such as artificial intelligence and neuroscience.
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