Skip to main content

Pathloss Modelling and Evaluation for A Wireless Underground Soil Moisture Sensor Network

  • Conference paper
  • First Online:
Intelligent Systems and Networks (ICISN 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 752))

Included in the following conference series:

Abstract

Wireless Underground Sensor Network (WUSN) is well known to monitor the soil quality for precision agriculture application. However, the uncertain property of the soil leads to many difficulties in designing a WUSN, one of them being the pathloss determination in different channels. In this study, we investigate the pathloss and the effect of soil moisture content on the pathloss in the Vietnam popular type of soil. From that foundation, we will construct a WUSN based on 920 MHz LoRa wireless technology. The experiment is implemented to validate underground wireless communication. The results show a good performance and stability of the network, where the connection between two underground sensor nodes could be extended up to 3 m with 5% soil moisture content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vuran, M.C., Salam, A., Wong, R., Irmak, S.: Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. 81, 160–173 (2018)

    Article  Google Scholar 

  2. Nguyen, V.A., et al.: Realizing mobile air quality monitoring system: architectural concept and device prototype. In: 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), pp. 115–120. IEEE (2021). https://doi.org/10.1109/APCC49754.2021.9609931

  3. Fahrmeier, N., Goeppert, N., Goldscheider, N.: A novel probe for point injections in groundwater monitoring wells. Hydrogeol. J. 30, 1021–1029 (2022)

    Google Scholar 

  4. Jiao, W., Wang, J., He, Y., Xi, X., Chen, X.: Detecting soil moisture levels using battery-free Wi-Fi tag. Preprint at http://arxiv.org/abs/2202.03275 (2022)

  5. Pandey, G., Weber, R.J., Kumar, R.: Agricultural cyber-physical system: in-situ soil moisture and salinity estimation by dielectric mixing. IEEE Access 6, 43179–43191 (2018)

    Article  Google Scholar 

  6. Ranjan, A., Misra, P., Dwivedi, B., Sahu, H.B.: Studies on propagation characteristics of radio waves for wireless networks in underground coal mines. Wireless Pers. Commun. 97(2), 2819–2832 (2017). https://doi.org/10.1007/s11277-017-4636-y

    Article  Google Scholar 

  7. Akyildiz, I.F., Sun, Z., Vuran, M.C.: Signal propagation techniques for wireless underground communication networks. Phys. Commun. 2, 167–183 (2009)

    Article  Google Scholar 

  8. Xiaoya, H., Chao, G., Bingwen, W., Wei, X.: Channel modeling for wireless underground sensor networks. In: 2011 IEEE 35th Annual Computer Software and Applications Conference Workshops, pp. 249–254. IEEE (2011). https://doi.org/10.1109/COMPSACW.2011.46

  9. Castellanos, G., Deruyck, M., Martens, L., Joseph, W.: System assessment of WUSN using NB-IoT UAV-aided networks in potato crops. IEEE Access 8, 56823–56836 (2020)

    Article  Google Scholar 

  10. Zhang, X., et al.: Thoreau: a subterranean wireless sensing network for agriculture and the environment. In: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 78–84. IEEE (2017). https://doi.org/10.1109/INFCOMW.2017.8116356

  11. Ebi, C., Schaltegger, F., Rust, A., Blumensaat, F.: Synchronous LoRa mesh network to monitor processes in underground infrastructure. IEEE Access 7, 57663–57677 (2019)

    Article  Google Scholar 

  12. Froiz-Míguez, I., et al.: Design, implementation, and empirical validation of an IoT smart irrigation system for fog computing applications based on LoRa and LoRaWAN sensor nodes. Sensors 20, 6865 (2020)

    Article  Google Scholar 

  13. Takahashi, K., Igel, J., Preetz, H., Kuro, S.: Basics and application of ground-penetrating radar as a tool for monitoring irrigation process. In: Kumar, M. (ed.) Problems, Perspectives and Challenges of Agricultural Water Management. InTech (2012). https://doi.org/10.5772/29324

  14. Topp, G.C., Davis, J.L., Annan, A.P.: Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 16, 574–582 (1980)

    Article  Google Scholar 

  15. Cui, F., Du, Y., Ni, J., Zhao, Z., Peng, S.: Effect of shallow-buried high-intensity mining on soil water content in Ningtiaota minefield. Water 13, 361 (2021)

    Article  Google Scholar 

  16. Dobson, M., Ulaby, F., Hallikainen, M., El-rayes, M.: Microwave dielectric behavior of wet soil-Part II: dielectric mixing models. IEEE Trans. Geosci. Remote Sens. GE-23, 35–46 (1985)

    Google Scholar 

  17. Alharthi, A., Lange, J.: Soil water saturation: dielectric determination. Water Resour. Res. 23, 591–595 (1987)

    Article  Google Scholar 

  18. Peplinski, N.R., Ulaby, F.T., Dobson, M.C.: Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote Sensing 33, 803–807 (1995)

    Google Scholar 

  19. Tarboton, D.G.: Rainfall-Runoff Processes. Civil and Environmental Engineering Faculty Publications (2003)

    Google Scholar 

  20. Spohrer, K., Herrmann, L., Ingwersen, J., Stahr, K.: Applicability of uni- and bimodal retention functions for water flow modeling in a tropical acrisol. Vadose Zone J. 5, 48–58 (2006)

    Article  Google Scholar 

  21. Dysli, M.: Characteristic coefficients of soils. Road Traffic 86, 72–73 (2000)

    Google Scholar 

  22. Das, B.M.: Advanced Soil Mechanic. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  23. Hough, B.K.: Basic Soils Engineering. Ronald Press, New York (1969)

    Google Scholar 

  24. Terzaghi, K., Peck, R.B., Mesri, G.: Soil Mechanics in Engineering Practice. Wiley, Hoboken (1996)

    Google Scholar 

  25. Obzud, R., Trusty: The Hardening Soil Model - A Practical Guidebook Z. (2012)

    Google Scholar 

  26. Goldsmith, A.: Wireless Communications. Cambridge University Press, New York (2012)

    Google Scholar 

  27. Griffiths, D.J.: Introduction to Electrodynamics. Pearson, Boston (2013)

    Google Scholar 

  28. Li, L., Vuran, M.C., Akyildiz, I.F.: Characteristics of underground channel for wireless underground sensor networks. In: Proceedings of the MedHoc-Net 2007, Corfu, Greece, June 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Thuy Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chinh Pham, X., Thao Nguyen, T.P., Le, M.T. (2023). Pathloss Modelling and Evaluation for A Wireless Underground Soil Moisture Sensor Network. In: Nguyen, T.D.L., Verdú, E., Le, A.N., Ganzha, M. (eds) Intelligent Systems and Networks. ICISN 2023. Lecture Notes in Networks and Systems, vol 752. Springer, Singapore. https://doi.org/10.1007/978-981-99-4725-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4725-6_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4724-9

  • Online ISBN: 978-981-99-4725-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics