Skip to main content

Heterogeneous Oxidation of Alcohols Catalyzed by Titania-Supported Palladium Nanoparticles in Aqueous Micellar Solution

  • Conference paper
  • First Online:
Recent Advances in Nanotechnology (ICNOC 2022)

Abstract

One of the most fundamental and important chemical processes for the production of fine chemicals in the chemical and pharmaceutical industries that has been studied extensively is the oxidation of alcohols either into carboxylic acids or aldehydes. An efficient, high surface concentration support catalyst from Pd and Titania was prepared, characterized by FTIR, XPS, Magnetic susceptibility and SEM. The catalytic behavior of this material was investigated at room temperature for the oxidation of hydroxy group to carbonyl compounds in the presence of t-butylperoxide (t-BuOOH) as an oxidant. Intrinsic reusability of the synthesized catalyst, environment-friendly simple procedure and high yield of products are the findings. Synergistic catalytic effect of anionic surfactant, sodium dodecyl sulfate and the metal–support were noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sheldon RA, Kochi JK (1981) Metal catalyzed oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  2. Mallat T, Baiker A (2004) Oxidation of alcohols with molecular oxygen on solid catalysts. Chem Rev 104:3037–3058

    Article  CAS  Google Scholar 

  3. Brink GJ, Arends IWCE, Sheldon RA (2000) Green, catalytic oxidation of alcohols in water. Science 287:1636–1639

    Article  Google Scholar 

  4. Ahmad JU, Figiel PJ, Raisanen MT, Leskela M, Repo T (2009) Aerobic oxidation of benzylic alcohols with bis (3,5-di-tert-butylsalicylaldimine) copper (II) complexes. Appl Catal A Gen 371:17–21

    Article  CAS  Google Scholar 

  5. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using au-Pd/TiO2 catalysts. Science 311:362–365

    Article  CAS  Google Scholar 

  6. Zhan BZ, Thompson A (2004) Recent developments in the aerobic oxidation of alcohols. Tetrahedron 60:2917–2935

    Article  CAS  Google Scholar 

  7. Collins JC, Hess WW, Frank FJ (1968) Dipyridine-chromium (VI) oxide oxidation of alcohols in dichloromethane. Tetrahedron Lett 9(30):3363–3366

    Article  Google Scholar 

  8. Collins JC, Hess WW (1972) Aldehydes from primary alcohols by oxidation with chromium trioxide: heptanal. Org Synth 52:5–10

    Article  CAS  Google Scholar 

  9. Paquette LA, Earle MJ, Smith GF (1996) (4R)-(+)-tert-butyldimethylsiloxy-2-cyclopenten-1-one. Org Synth 73:36–43

    Article  CAS  Google Scholar 

  10. Tu Y, Frohn M, Wang ZX, Shi Y (2003) Synthesis of 1,2:4,5-di-o-isopropylidene-d-erythro-2,3-hexodiulo-2,6-pyranose. A highly enantioselective ketone catalyst for epoxidation. Org Synth 80:1–8

    Google Scholar 

  11. White JD, Grether UM, Lee CS (2005) (R)-(+)-3,4-dimethylcyclohex-2-en-1-one. Org Synth 82:108–114

    Article  CAS  Google Scholar 

  12. Dess DB, Martin JC (1983) Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J Org Chem 48:4155–4156

    Article  CAS  Google Scholar 

  13. Ishihara K, Mori A, Yamamoto H (1990) Stereoselective reduction of acetals. A method for reductive generation of heterocyclic ring systems. Tetrahedron 46:4595–4612

    Google Scholar 

  14. Heffner RJ, Jiang J, Joullie MM (1992) Total synthesis of (−)-nummularine F. J Am Chem Soc 114:10181–10189

    Article  CAS  Google Scholar 

  15. Overman LE, Ricca DJ, Tran VD (1997) Total synthesis of (±)-scopadulcic acid B. J Am Chem Soc 119:12031–12040

    Article  CAS  Google Scholar 

  16. Kreutzer JS, Vanoye L, Guicheret B, Philippe R, Metay E, Duclos MC, Lemaire M, Bellefon CD, Fongarland P, Réguillon AF (2019) Continuous flow aerobic alcohol oxidation using a heterogeneous Ru0 catalyst. React Chem Eng 4:550–558

    Article  Google Scholar 

  17. Xu C, Zhang C, Li H, Zhao X, Song L, Li X (2016) An overview of selective oxidation of alcohols: catalysts, oxidants and reaction mechanisms. Catal Surv Asia 20:13–22

    Article  CAS  Google Scholar 

  18. Muzart J (2003) Palladium-catalysed oxidation of primary and secondary alcohols. Tetrahedron 59(31):5789–5816

    Article  CAS  Google Scholar 

  19. Aldrich KE, Odom AL (2019) A silica-supported titanium catalyst for heterogeneous hydroamination and multicomponent coupling reactions. Dalton Trans 48:11352–11360

    Article  CAS  Google Scholar 

  20. Bauer EB (2017) Recent advances in iron catalyzed oxidation reactions of organic compounds. Isr J Chem 57:1131–1150

    Article  CAS  Google Scholar 

  21. Ballarini AD, Virgens CF, Rangel MC, Miguel SR, Grau JM (2019) Characterization and behaviour of Pt catalysts supported on basic materials in dry reforming of methane. Braz J Chem Eng 36(1):275–284

    Article  CAS  Google Scholar 

  22. Zhu C, Wei Y, Ji L (2010) Catalytic oxidation of alcohols to corresponding aldehydes or ketones with TEMPO-mediated iodosobenzene in water in the presence of a surfactant. Synth Commun 40(14):2057–2066

    Article  CAS  Google Scholar 

  23. Zhu J, Carabineiro SAC, Shan D, Faria JL, Zhu Y, Figueiredo JL (2010) Oxygen activation sites in gold and iron catalysts supported on carbon nitride and activated carbon. J Catal 274:207–214

    Google Scholar 

  24. Mallat T, Baiker A (2012) Potential of gold nanoparticles for oxidation in fine chemical synthesis. Annul Rev Chem Biomol Eng 3:11–28

    Article  CAS  Google Scholar 

  25. Mobley JK, Crocker M (2015) Catalytic oxidation of alcohols to carbonyl compounds over hydrotalcite and hydrotalcite-supported catalysts. RSC Adv 5:65780–65797

    Article  CAS  Google Scholar 

  26. Stevens R, Chapman KT, Weller HN (1980) Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones. J Org Chem 45(10):2030–2032

    Article  CAS  Google Scholar 

  27. Rajabimoghadam K, Darwish Y, Bashir U, Pitman D, Eichelberger S, Siegler MA, Swart M, Bosch IG (2018) Catalytic aerobic oxidation of alcohols by copper complexes bearing redox-active ligands with tunable H-bonding groups. J Am Chem Soc 140(48):16625–16634

    Article  CAS  Google Scholar 

  28. March J (1985) Advanced organic chemistry: reactions, mechanisms, and structure. Wiley, New York

    Google Scholar 

  29. Stoltz BM (2004) Palladium catalyzed aerobic dehydrogenation: from alcohols to indoles and asymmetric catalysis. Chem Lett 33(4):362–367

    Article  CAS  Google Scholar 

  30. Stahl SS (2004) Palladium oxidase catalysis: selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew Chem Int Ed 43(26):3400–3420

    Article  CAS  Google Scholar 

  31. Sigman MS, Schultz MJ (2004) The renaissance of palladium(ii)-catalyzed oxidation chemistry. Org Biomol Chem 2(18):2551–2554

    Article  CAS  Google Scholar 

  32. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  CAS  Google Scholar 

  33. Huber GW, Iborra I, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  34. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114:1827–1870

    Article  CAS  Google Scholar 

  35. Padhy RK, Sahu S (2022) Oxidation of iminodiethanol by Ce (IV) in microheterogeneous system: a comprehensive kinetic analysis. J Dispers Sci Technol. https://doi.org/10.1080/01932691.2022.2026783

    Article  Google Scholar 

  36. Padhy RK, Bhattamisra SD (2021) Surfactant catalyzed oxidation of ethanolamines by Cerium(IV). Asian J Chem 33(1):21–25

    Article  CAS  Google Scholar 

  37. Maiti K, Sen PK, Barik BK, Pal B (2018) Influence of microheterogeneous environments of sodium dodecyl sulfate on the kinetics of oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III). J Phys Chem A 122(24):5270–5282

    Article  CAS  Google Scholar 

  38. Moroi Y (1992) Micelles, theoretical and applied aspects. Plenum Press, New York

    Google Scholar 

  39. Kohl K, Nielson R (1997) Gas purification, 5th edn. Gulf Publishing Co., Houston

    Google Scholar 

  40. Arora N, Deo G, Wachs IE, Hirt AM (1996) Surface aspects of bismuth-metal oxide catalysts. J Catal 159(1):1–13

    Article  CAS  Google Scholar 

  41. Mitra B, Gao X, Wachs IE, Hirt AM, Deo G (2001) Characterization of supported rhenium oxide catalysts: effect of loading, support and additives. Phys Chem Chem Phys 3:1144–1152

    Article  CAS  Google Scholar 

  42. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902

    Article  CAS  Google Scholar 

  43. Bunton CA, Savelli G (1986) Organic reactivity in aqueous micelles and similar assemblies. Adv Phys Org Chem 22:213–309

    CAS  Google Scholar 

  44. Calvaruso G, Cavasino FP, Didio E (1986) Kinetic investigation of the base hydrolysis of the chloropentaamminecobalt (III) ion in micellar sodium dodecyl sulfate solution. Inorg Chim Acta 119(1):29–33

    Article  CAS  Google Scholar 

  45. Bhattamishra SD, Padhy RK (2009) Estimation of Ibuprofen solubilization in cationic and anionic surfactant media: application of micelle binding model. Ind J Chem Tech 16:426–430

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank NIST (Autonomous), Berhampur-761008, India, for providing the facilities to carry out the work.

Declaration of Interest Statement

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar Padhy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Padhy, R.K., Sahu, S. (2023). Heterogeneous Oxidation of Alcohols Catalyzed by Titania-Supported Palladium Nanoparticles in Aqueous Micellar Solution. In: Khan, Z.H., Jackson, M., Salah, N.A. (eds) Recent Advances in Nanotechnology. ICNOC 2022. Springer Proceedings in Materials, vol 28. Springer, Singapore. https://doi.org/10.1007/978-981-99-4685-3_74

Download citation

Publish with us

Policies and ethics