Skip to main content

Low-Power LNA in Analog Front End for Biomedical Applications

  • Conference paper
  • First Online:
Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS 2023)

Abstract

Biomedical devices have enormous possibilities in health applications. A low-noise amplifier (LNA) is a crucial circuit in neural recording, ECG, and EEG systems. The performance of LNAs has to vary with the characteristics of their different components. This contribution presents an empirical comparison between the latest state-of-the-art LNAs in health applications. Using the specter tool of MOS technology, LNAs have implemented at 180, 90, and 65 nm and simulated at a wide supply voltage (1–1.8 V) range. There are 99.9% power variation, 103.7% bandwidth range, 93.18% gain range, 91.17% noise figure vary, and IIP3 97.5% area variation for different LNA designs. Different LNAs have used in analog front end (AFE) design/circuits. A comparison of AFE designs has shown that there are 85.07% power saving, 79.78% maximal bandwidth, and 93.54% best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Yang, J. Holleman, An ultralow-power low-noise CMOS biopotential amplifier for neural recording. IEEE Trans. Circ. Syst. II Express Briefs 62(10), 927–931 (2015)

    Google Scholar 

  2. T.Y. Wang, L.H. Liu, S.Y. Peng, A power-efficient highly linear reconfigurable biopotential sensing amplifier using gate-balanced pseudoresistors. IEEE Trans. Circ. Syst. II Express Briefs 62(2), 199–203 (2015)

    Google Scholar 

  3. R. Nagulapalli, K. Hayatleh, S. Barker, A.A. Tammam, N. Yassine, B. Yassine, M. Ben-Esmael, A Low noise amplifier suitable for biomedical recording analog front-end in 65 nm CMOS technology. J. Circ. Syst. Comput. 28(08), 1950137 (2019)

    Article  Google Scholar 

  4. M. Meghdadi, M. Piri, A. Medi, A highly linear dual-gain CMOS low-noise amplifier for X-band. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1604–1608 (2017)

    Google Scholar 

  5. Y. Liu, T. Ma, P. Guan, L. Mao, B. Chi, A G-band wideband bidirectional transceiver front-end in 40-nm CMOS. IEEE Trans. Circ. Syst. II Express Briefs 66(5), 798–802 (2019)

    Google Scholar 

  6. L. Belostotski, E.A. Klumperink, Figures of merit for CMOS low-noise amplifiers and estimates for their theoretical limits (Express Briefs, IEEE Transactions on Circuits and Systems II, 2021)

    Google Scholar 

  7. S. Dey, M. Pattanaik, G. Kaushal, A low power low noise analog front-end for ECG recording. Analog Integr. Circ. Sig. Proc. 109(2), 449–458 (2021)

    Article  Google Scholar 

  8. T.Y. Wang, M.R. Lai, C.M. Twigg, S.Y. Peng. A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor. IEEE Trans. Biomed. Circ. Syst. 8(3), 411–422 (2013)

    Google Scholar 

  9. H.C. Hsieh, A.D. Nguyen, J.S. Lai, Low noise ZVS switch sharing multichannel switching amplifier for magnetic bearing applications. IEEE Trans. Circ. Syst. II Express Briefs 67(10), 1999–2003 (2019)

    Google Scholar 

  10. J. Elkind, E. Socher, Noise figure optimization tool for millimeter-wave receivers at Near- fmax frequencies. IEEE Trans. Circ. Syst. II Express Briefs 63(10), 914–918 (2016)

    Google Scholar 

  11. J.Y. Hsieh, K.Y. Lin. A 0.6-V low-power variable-gain LNA in 0.18-µm CMOS Technology. IEEE Trans. Circ. Syst. II: Express Briefs, 67(1), 23–26 (2019)

    Google Scholar 

  12. H. Yu, Y. Chen, C.C. Boon, C. Li, P.I. Mak, R.P. Martins. A 0.044-mm 2 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB. IEEE Trans. Circ. Syst. II: Express Briefs 66(1), 71–75 (2018)

    Google Scholar 

  13. Y. Yu, J. Zhu, Z. Zong, P. Tang, H. Liu, C. Zhao, Y. Wu, K. Kang, A 21-to-41-GHz high-gain low noise amplifier with triple-coupled technique for multiband wireless applications. IEEE Trans. Circ. Syst. II Express Briefs 68(6), 1857–1861 (2020)

    Google Scholar 

  14. S.S. Regulagadda, B.D. Sahoo, A. Dutta, K.Y. Varma, V.S. Rao, A packaged noise-canceling high-gain wideband low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 66(1), 11–15 (2018)

    Google Scholar 

  15. T. Ma, F. Hu, A wideband flat gain low noise amplifier using active inductor for input matching. IEEE Trans. Circ. Syst. II Express Briefs 66(6), 904–908 (2018)

    Google Scholar 

  16. L. Ma, Z.G. Wang, J. Xu, N.M. Amin, A high-linearity wideband common-gate LNA with a differential active inductor. IEEE Trans. Circ. Syst. II Express Briefs 64(4), 402–406 (2016)

    Google Scholar 

  17. F.D. Baumgratz, C. Saavedra, M. Steyaert, F. Tavernier, S. Bampi. A wideband low-noise variable-gain amplifier with a 3.4 dB NF and up to 45 dB gain tuning range in 130-nm CMOS. IEEE Trans. Circ. Syst. II: Express Briefs, 66(7), 1104–1108 (2018)

    Google Scholar 

  18. M. Davulcu, C. Çalışkan, İ Kalyoncu, Y. Gurbuz, An X-Band SiGe BiCMOS Triple-Cascode LNA with boosted gain and P 1dB. IEEE Trans. Circ. Syst. II Express Briefs 65(8), 994–998 (2018)

    Google Scholar 

  19. J. Hu, K. Ma, S. Mou, F. Meng. Analysis and design of a 0.1–23 GHz LNA MMIC using frequency-dependent feedback. IEEE Trans. Circ. Syst. II: Express Briefs 66(9), 1517–1521 (2019)

    Google Scholar 

  20. M.K. Hedayati, A. Abdipour, R.S. Shirazi, C. Cetintepe, R.B. Staszewski, A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans. Circuits Syst. II Express Briefs 65(10), 1460–1464 (2018)

    Google Scholar 

  21. S.J. Jung, S.K. Hong, O.K. Kwon, Low-power low-noise amplifier using attenuation-adaptive noise control for ultrasound imaging systems. IEEE Trans. Biomed. Circuits Syst. 11(1), 108–116 (2016)

    Article  Google Scholar 

  22. A.A. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circ. Syst. II Express Briefs 65(7), 834–838 (2017)

    Google Scholar 

  23. C.H. Chang, A forward-body-bias CMOS LNA with ultra-low device junction leakage using intrinsic self-balanced pseudo resistor. IEEE Trans. Circuits Syst. II Express Briefs 66(4), 697–701 (2018)

    Google Scholar 

  24. D. Lee, C. Nguyen, Dual Q/V-band SiGe BiCMOS low noise amplifiers using Q-enhanced metamaterial transmission lines. IEEE Trans. Circ. Syst. II Express Briefs 68(3), 898–902 (2020)

    Google Scholar 

  25. G. Nikandish, A. Medi, A 40-GHz bandwidth tapered distributed LNA. IEEE Trans. Circ. Syst. II Express Briefs 65(11), 1614–1618 (2017)

    Google Scholar 

  26. R.A. Shaheen, T. Rahkonen, A. Pärssinen, Millimeter-wave frequency reconfigurable low noise amplifiers for 5G. IEEE Trans. Circ. Syst. II Express Briefs 68(2), 642–646 (2020)

    Google Scholar 

  27. C. Zhao, Y. Yu. A K-/Ka-band broadband low-noise amplifier based on the multiple resonant frequency technique. IEEE CAS-I: Regular Papers 69(8) (2022)

    Google Scholar 

  28. L. Lyu, D. Ye, C.J.R. Shi, A 340 nW/Channel 110 dB PSRR neural recording analog front-end using replica-biasing LNA, level-shifter assisted PGA, and averaged LFP servo loop in 65 nm CMOS. IEEE Trans. Biomed. Circuits Syst. 14(4), 811–824 (2020)

    Article  Google Scholar 

  29. S.-Y. Lee , P.-H. Cheng, C.-F. Tsou, C.-C. Lin, G.-S. Shieh. A 2.4 GHz ISM band OOK transceiver with high energy efficiency for biomedical implantable applications. IEEE Trans. Biomed. Circ. Syst. 14(1) (2020)

    Google Scholar 

  30. B. Liu, Y. Zhang, J. Qiu, W. Deng, Z. Xu, H. Zhang, J. Pang, Y. Wang , R. Wu, T. Someya, A. Shirane, K. Okada, An HDL-described Fully-synthesizable Sub-GHz IoT transceiver with ring oscillator based frequency synthesizer and digital background EVM calibration, in IEEE Custom Integrated Circuits Conference, pp. 2152–3630 (2019)

    Google Scholar 

  31. D. Martinez-Perez, F. Aznar et al. Design-Window Methodology for Inductorless Noise-Cncelling CMOS LNAs. IEEE Access 10 (2022)

    Google Scholar 

  32. R. Wang, C. Li, et al. A 18–44 GHz low noise amplifier with input matching and bandwidth extension techniques. IEEE Microwave Wireless Components Lett. (2022)

    Google Scholar 

  33. H.-H. Chen, W.-C. Cheng, C.-H. Hsieh, Design and analysis of high-gain and compact single-input differential-output low noise amplifier for 5G applications. IEEE Microw. Wireless Comp. Lett. 32(6) (2022)

    Google Scholar 

  34. Pritty, M. Jhamb. High-performance current mirror-based voltage-controlled oscillator for implantable devices, in Micro and Nanoelectronics Devices, Circuits and Systems Select Proceedings of MNDCS 2021, vol. 32 (Springer, 2021).

    Google Scholar 

  35. Z. Liu, C.C. Boon, A 0.092-mm2 2–12-GHz Noise-cancelling low-noise amplifier with gain improvement and noise reduction. IEEE TCAS-II: Express Briefs 69, 4013–4017 (2022)

    Google Scholar 

  36. M. Tarkhan, M. Sawan, A novel current density based design approach of low noise amplifiers. IEEE Access 10 (2022)

    Google Scholar 

  37. L. Qiu, J. Liu et al., Ultra low power E-band Low noise amplifier with three stacked current-sharing amplification stages in 28-nm CMOS. IEEE Microwave Wirel. Compon. Lett. 32(6), 732–735 (2022)

    Article  Google Scholar 

  38. G. Atzeni, et. al. An impedance-boosted switched-capacitor low-noise amplifier achieving 0.4 NEF, in 2022 IEEE Symposium on VLSI Technology and Circuits (2022), pp. 116–117

    Google Scholar 

  39. J. Zhang, H. Zhang, Q. Sun, R. Zhang, A low-noise, low-power amplifier with current-reused OTA for ECG recordings. IEEE Trans. Biomed. Circuits Syst. 12(3), 700–708 (2018)

    Article  Google Scholar 

  40. L. Liu, D. Gao, Y. Tain, Y. Yu, Z. Qin, A low mismatch and high input impedance multi-channel Tine-division multiplexing analog front end for bio-sensors. IEEE Sens. J. 22(7), 6755–6763 (2022)

    Article  Google Scholar 

  41. Y. Wang, F. Miao, Qi An, Z. Liu, C. Chen, Y. Li. Wearable multimodal vital sign monitoring sensor with fully integrated analog front end. IEEE Sens. J. 22(3) 13462–13471 (2022)

    Google Scholar 

  42. Y. Chen, H. Tang, Z. Wang, P. Xu Y. Zhuang. A programmable analog front-end IC applied for Biomedical signal monitoring systems. Circ. Syst. Sig. Proc. 1–25 (2022)

    Google Scholar 

  43. B.G. Perumana, J.H.C. Zhan, S.S. Taylor, B.R. Carlton, J. Laskar, Resistive-feedback CMOS low-noise amplifiers for multiband applications. IEEE Trans. Microw. Theory Techn. 56(5), 1218–1225 (2008)

    Article  Google Scholar 

  44. T. Chang, J. Chen, L.A. Rigge, J. Lin, ESD-protected wideband CMOS LNAs using modified resistive feedback techniques with chipon- board packaging. IEEE Trans. Microw. Theory Techn. 56(8), 1817–1826 (2008)

    Article  Google Scholar 

  45. Y. Wang, B. Afshar, T.-Y. Cheng, V. Gaudet, and A. M. Niknejad. A 2.5mW inductor less wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology in Proceeding IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp 91–94 (2008)

    Google Scholar 

  46. T. Chang, J. Chen, L. Rigge, J. Lin, A packaged and ESD protected inductorless 0.1–8 GHz wideband CMOS LNA. IEEE Microw. Compon. Lett. 18(6), 416–418 (2008)

    Article  Google Scholar 

  47. Pritty, M. Jhamb, Low power and highly reliable 8-Bit carry select adder, in Innovations in Elect and Electronic Engineering (Springer, Singapore, 2021), pp. 537–549

    Google Scholar 

  48. Pritty, M. Jhamb. Ultra low power current mirror design with enhanced bandwidth. Microelectronics J. 113, 105063 (2021)

    Google Scholar 

  49. M. El-Nozahi, A.A. Helmy, E. Sanchez-Sinencio, K. Entesari, An inductor-less noise-canceling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology. IEEE J. Solid-State Circ. 46(5), 1111–1122 (2011)

    Article  Google Scholar 

  50. K.-W. Cheng, W.-W. Chen, S.-D. Yang, A low power sub-GHz wideband LNA employing current-reuse and device-reuse positive shunt-feedback technique. IEEE Microw. Wireless Components Lett. (2022)

    Google Scholar 

Download references

Acknowledgements

Authors are grateful for IP research fellowship from USIC&T, Guru Gobind Singh Indraprastha University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pritty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pritty, Jhamb, M. (2024). Low-Power LNA in Analog Front End for Biomedical Applications. In: Lenka, T.R., Saha, S.K., Fu, L. (eds) Micro and Nanoelectronics Devices, Circuits and Systems. MNDCS 2023. Lecture Notes in Electrical Engineering, vol 1067. Springer, Singapore. https://doi.org/10.1007/978-981-99-4495-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4495-8_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4494-1

  • Online ISBN: 978-981-99-4495-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics