Skip to main content

Adaptive Tracking Control for Underwater Vehicle Manipulator System via a Terminal Sliding Mode and Barrier Function

  • Conference paper
  • First Online:
2023 International Conference on Marine Equipment & Technology and Sustainable Development (METSD 2023)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 375))

  • 606 Accesses

Abstract

The trajectory tracking of Underwater Vehicle Manipulator system (UVMS) under hydrodynamic, parameter uncertainties, unknown disturbance is studied in this paper. A novel nonsingular fast terminal sliding mode surface (NFTSM) control is proposed to achieve the trajectory tracking of UVMS. The proposed controller consists of two parts: (1) In order to solve the disturbances (current and payload), a novel NFTSM surface is designed. Then an equivalent control is provided based on the nominal dynamics of UVMS. It is robust to external disturbance; hence it enhances the tracking quality. (2) Considering the time-varying properties, an adaptive switching law is adopted through the barrier function. It converges faster, and the motion trajectory and sliding surface are constrained in the predefined compacts. It is also worth pointing out that this adaptive method has fewer parameters to adjust. The validity of the proposed controller is verified by Lyapunov stability theory, and the reliability of the proposed controller is verified in the simulation cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marani, G., Song, K.C., Yuh, J.J.O.E.: Underwater autonomous manipulation for intervention missions AUVs. 36(1), 15–23 (2009)

    Google Scholar 

  2. Melchiorri, C., Pere, R., Fernandez, J., Ribas, J., David, P. J. I. A. t. o. m. A. j. p. o. t. I. I. Society, E., Systems, A.D., Division, C.: I-AUV mechatronics integration for the TRIDENT FP7 Project (2015)

    Google Scholar 

  3. Huang, H., Zhou, Z., Li, J., Tang, Q., Zhang, W., Gang, W.: Investigation on the mechanical design and manipulation hydrodynamics for a small sized, single body and streamlined I-AUV. Ocean Eng. 186, 106106.1–106106.13 (2019)

    Google Scholar 

  4. Antonelli, G.: Underwater Robots: Motion and Force Control of Vehicle-Manipulator Systems (2010)

    Google Scholar 

  5. Chung, G.B., Eom, K.S., Yi, B.J., Suh, I.H., Oh, S.R., Cho, Y.J.: Disturbance observer-based robust control for underwater robotic systems with passive joints. pp. 1775–1780. (2001)

    Google Scholar 

  6. Huang, H., Li, J., Zhang, G., Tang, Q., Wan, L.: Adaptive recurrent neural network motion control for observation class remotely operated vehicle manipulator system with modeling uncertainty. Adv. Mechan. Eng. 10(10) (2018)

    Google Scholar 

  7. Mohan, S., Kim, J.: Indirect adaptive control of an autonomous underwater vehicle-manipulator system for underwater manipulation tasks. Ocean Eng. 54, 233–243 (2012)

    Article  Google Scholar 

  8. Dai, Y., Yu, S.: Design of an indirect adaptive controller for the trajectory tracking of UVMS. Ocean Eng. 151c, 234–245 (2018)

    Google Scholar 

  9. Dai, Y., Yu, S., Yan, Y.: An adaptive EKF-FMPC for the trajectory tracking of UVMS. IEEE J. Oceanic Eng. 45(3), 699–713 (2020)

    Article  Google Scholar 

  10. Antonelli, G., Arrichiello, F., S. J. I. T. o. C. S. Chiaverini, T.: Experiments of formation control with multirobot systems using the null-space-based behavioral control. 17(5), 1173–1182 (2009)

    Google Scholar 

  11. Wit, C., Diaz, E.O., Perrier, M.: Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics

    Google Scholar 

  12. Wang, Y., Gu, L., Xu, Y., Cao, X.: Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode. IEEE Trans. Indus. Electron 6194–6204 (2016)

    Google Scholar 

  13. He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybernet. 47(10), 3136–3147 (2017)

    Article  Google Scholar 

  14. Liu, Q., Li, D., Ge, S.S., Ji, R., Ouyang, Z., Tee, K.P.: Adaptive bias RBF neural network control for a robotic manipulator. Neurocomputing 447, 213–223 (2021)

    Article  Google Scholar 

  15. Mishra, P.K., Dhar, N.K., Verma, N.K.: Adaptive neural-network control of MIMO nonaffine nonlinear systems with asymmetric time-varying state constraints. IEEE Trans. Cybernet. 51(4), 2042–2054 (2021)

    Article  Google Scholar 

  16. Q. J. J. o. t. B. S. o. M. S. Yao, Q.: and engineering. Adaptive trajectory tracking control of a free-flying space robot subject to input nonlinearities 42(11) (2020)

    Google Scholar 

  17. Salloom, T., Yu, X., He, W., Kaynak, O.: Adaptive neural network control of underwater robotic manipulators tuned by a genetic algorithm. J. Intell. Rob. Syst. 97(3–4), 657–672 (2019). https://doi.org/10.1007/s10846-019-01008-y

    Article  Google Scholar 

  18. Fossen, T.I.: In: Handbook of Marine Craft Hydrodynamics and Motion Control (2011)

    Google Scholar 

  19. Canudas, D.W.C., O. J. I. T. o. C. S. T. Diaz, O.: Nonlinear control of an underwater vehicle/manipulator with composite dynamics. 8(6), 948–960 (2000)

    Google Scholar 

  20. Lin, H.G., Chen, K., Lin, R.Q.: Finite-time formation control of unmanned vehicles using nonlinear sliding mode control with disturbances. Int. J. Innov. Comp. Inf. Control 15(6), 2341–2353 (2019)

    Google Scholar 

  21. Zhang, P., Zhang, X.: A novel adaptive three-dimensional finite-time guidance law with terminal angle constraints for interception of maneuvering targets. Int. J. Control 2, 1–17 (2020)

    Google Scholar 

  22. Obeid, H., Fridman, L.M., Laghrouche, S., Harmouche, M.: Barrier function-based adaptive sliding mode control. Automatica 93, 540–544 (2018)

    Article  MathSciNet  Google Scholar 

  23. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  Google Scholar 

  24. Tee, K.P., Ge, S.S.: Control of state-constrained nonlinear systems using integral barrier Lyapunov Functionals.

    Google Scholar 

  25. Dong, H., Yang, X.: Adaptive neural finite-time control for space circumnavigation mission with uncertain input constraints. J. Franklin Institute-Eng. Appl. Mathem. 358(7), 3353–3375 (2021)

    Google Scholar 

  26. Borlaug, I.-L.G., Pettersen, K.Y., Gravdahl, J.T.: Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: theory and experimental results. Ocean Eng. 222 (2021)

    Google Scholar 

  27. Edwards, C., Shtessel, Y.: Adaptive continuous higher order sliding mode control. IFAC Proc. 47(3), 10826–10831 (2014)

    Google Scholar 

  28. Liu, Y.J., Tong, S.: Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. Automatica 64(C), 70–75 (2016)

    Google Scholar 

  29. Ortega, R., Gromov, V., Nuno, E., Pyrkin, A., Romero, J.G.: Parameter estimation of nonlinearly parameterized regressions without overparameterization: application to adaptive control. Automatica 127, 14 (2021)

    Google Scholar 

  30. Qiao, L., Zhang, W.: Trajectory tracking control of AUVs via adaptive fast nonsingular integral terminal sliding mode control. IEEE Trans. Industr. Inf. 16(2), 1248–1258 (2020)

    Article  Google Scholar 

  31. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

  32. Wang, Y., Zhu, K., Chen, B., Jin, M.: Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA Trans 98, 483–495 (2020)

    Article  Google Scholar 

  33. Galicki, M.: Finite-time control of robotic manipulators. Automatica 51, 49–54 (2015)

    Article  MathSciNet  Google Scholar 

  34. Han, H., Wei, Y., Ye, X., Liu, W.: Motion planning and coordinated control of underwater vehicle-manipulator systems with inertial delay control and fuzzy compensator. Appl. Sci. (Switzerland) 10(11) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Harbin Engineering University

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Lu, T., Wu, H., Zhu, X., Wang, S., Yang, T. (2023). Adaptive Tracking Control for Underwater Vehicle Manipulator System via a Terminal Sliding Mode and Barrier Function. In: Yang, D. (eds) 2023 International Conference on Marine Equipment & Technology and Sustainable Development. METSD 2023. Lecture Notes in Civil Engineering, vol 375. Springer, Singapore. https://doi.org/10.1007/978-981-99-4291-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4291-6_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4290-9

  • Online ISBN: 978-981-99-4291-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics