Skip to main content

Application of Upconversion Nanoparticles in Photochemistry

  • Chapter
  • First Online:
Upconversion Nanoparticles (UCNPs) for Functional Applications

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 24))

  • 333 Accesses

Abstract

Upconversion, the act of fusing many low-energy photons into one higher-energy photon, has progressed in recent years to a growing technique with rising interest in the development of novel luminous materials. Recent developments in sophisticated chemical synthesis of nanomaterials have made it feasible to create a wide range of practical upconversion nanoparticles (UCNPs). This chapter concentrates on the numerous photo-chemical applications for UCNPs that are based on the wavelength and intensity of their emitting luminescence. For this purpose, first, a brief explanation of the important factor in designing UCNPs that can affect the wavelength and intensity of upconversion luminescence (UCL) is provided. Then, the recent progress in employing UCNPs, in different photo-chemical applications including photopolymerization reactions, bio-imaging, biological labeling, drug delivery, security signatures, photocatalytic processes, optoelectronics, and optical photo-thermometry, based on the emitted UCL wavelength and intensity is thoroughly discussed. Finally, a conclusion, current limitations, and future directions to improve the applicability of UCNPs in functional photochemical applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Jalili, S. Basatani, M. Ghahari, E. Mohajerani, NaLuF4:Yb, Tm up-conversion materials: Investigation of UV emission intensity by experimental design. Adv. Powder Technol. 29(4), 855–862 (2018). https://doi.org/10.1016/j.apt.2018.01.002

    Article  Google Scholar 

  2. P. Ramasamy, P. Manivasakan, J. Kim, Upconversion nanophosphors for solar cell applications. RSC Adv. 4(66), 34873–34895 (2014)

    Article  Google Scholar 

  3. G. Blasse, B. Grabmaier, A General Introduction to Luminescent Materials. Luminescent Materials (Springer, 1994), pp. 1–9

    Google Scholar 

  4. T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21–22), 2560–2573 (2010)

    Article  Google Scholar 

  5. F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–174 (2004)

    Article  Google Scholar 

  6. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114(10), 5161–5214 (2014)

    Article  Google Scholar 

  7. X. Huang, S. Han, W. Huang, X. Liu, Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev. 42(1), 173–201 (2013)

    Article  Google Scholar 

  8. P. Villanueva-Delgado, K.W. Krämer, R. Valiente, Simulating energy transfer and upconversion in β-NaYF4: Yb3+, Tm3+. J. Phys. Chem. C 119(41), 23648–23657 (2015)

    Article  Google Scholar 

  9. T. Kushida, Energy transfer and cooperative optical transitions in rare-earth doped inorganic materials. I. Transition probability calculation. J. Phys. Soc. Jpn. 34(5), 1318–1326 (1973)

    Google Scholar 

  10. Q.-C. Sun, Y.C. Ding, D.M. Sagar, P. Nagpal, Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 92(4), 281–316 (2017). https://doi.org/10.1016/j.progsurf.2017.09.003

    Article  Google Scholar 

  11. A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Upconversion in Er3+: ZrO2 nanocrystals. J. Phys. Chem. B 106(8), 1909–1912 (2002)

    Article  Google Scholar 

  12. J.S. Chivian, W. Case, D. Eden, The photon avalanche: a new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 35(2), 124–125 (1979)

    Article  Google Scholar 

  13. K. Wang, J. Pena, J. Xing, Upconversion nanoparticle-assisted photopolymerization. Photochem. Photobiol. 96(4), 741–749 (2020)

    Article  Google Scholar 

  14. F. Auzel, Upconversion processes in coupled ion systems. J. Lumin. 45(1–6), 341–345 (1990)

    Article  Google Scholar 

  15. N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2(3), 84 (1959)

    Article  Google Scholar 

  16. M.F. Auzel, Électronique quantique. Compteur Quantique Par Transfert D’énergie de Yb3+ à Tm3+ Dans Un Tungstate Mixte Et Dans Un Verre Germanate. SPIE Milestone Series, vol. 161 (2000), pp. 11–13

    Google Scholar 

  17. M.K. Darani, S. Bastani, M. Ghahari, P. Kardar, E. Mohajerani, NIR induced photopolymerization of acrylate-based composite containing upconversion particles as an internal miniaturized UV sources. Prog. Org. Coat. 104, 97–103 (2017)

    Article  Google Scholar 

  18. M. Jalili, S. Bastani, M. Ghahari, E. Mohajerani, The use of upconversion microparticles as a novel internal radiation source for fabrication of composite materials. Polym. Compos. 40(3), 884–892 (2019)

    Article  Google Scholar 

  19. R. Liu, H. Chen, Z. Li, F. Shi, X. Liu, Extremely deep photopolymerization using upconversion particles as internal lamps. Polym. Chem. 7(14), 2457–2463 (2016)

    Article  Google Scholar 

  20. J. Méndez-Ramos, J. Ruiz-Morales, P. Acosta-Mora, N. Khaidukov, Infrared-light induced curing of photosensitive resins through photon up-conversion for novel cost-effective luminescent 3D-printing technology. J. Mater. Chem. C 4(4), 801–806 (2016)

    Article  Google Scholar 

  21. Y. Liu, S. Liang, C. Yuan, A. Best, M. Kappl, K. Koynov et al., Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles. Adv. Func. Mater. 31(37), 2103908 (2021)

    Article  Google Scholar 

  22. Y. Hu, Q. Shao, X. Deng, S. Han, D. Song, J. Jiang, Core/shell upconversion nanocrystal hybrids with temperature-dependent emission color changes for multilevel anticounterfeiting applications. Adv. Mater. Technol. 4(3), 1800498 (2019)

    Article  Google Scholar 

  23. Y. Hu, Q. Shao, X. Deng, D. Song, S. Han, Y. Dong et al., Thermally induced multicolor emissions of upconversion hybrids with large color shifts for anticounterfeiting applications. J. Mater. Chem. C 7(38), 11770–11775 (2019)

    Article  Google Scholar 

  24. H. Tan, G. Gong, S. Xie, Y. Song, C. Zhang, N. Li et al., Upconversion nanoparticles@ carbon dots@ meso-SiO2 sandwiched core–shell nanohybrids with tunable dual-mode luminescence for 3D anti-counterfeiting barcodes. Langmuir 35(35), 11503–11511 (2019)

    Article  Google Scholar 

  25. D. Li, J. Mo, C. Wang, Z. Wu, A. Hao, J. She, Enhanced upconversion emission of NaGdF4: Yb3+/Tm3+ crystals by introducing Li+ ions for anti-counterfeiting recognition. Appl. Phys. A 127(7), 1–7 (2021)

    Article  Google Scholar 

  26. D. Li, S.H. Yu, H.L. Jiang, From UV to near-infrared light-responsive metal–organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv. Mater. 30(27), 1707377 (2018)

    Article  Google Scholar 

  27. Y. Luo, S. Du, W. Zhang, Z. Liao, F. Zuo, S. Yang, Core@ shell Fe3O4@ Mn2+-doped NaYF4: Yb/Tm nanoparticles for triple-modality T1/T2-weighted MRI and NIR-to-NIR upconversion luminescence imaging agents. RSC Adv. 7(60), 37929–37937 (2017)

    Article  Google Scholar 

  28. K. Zhang, Q. Zhao, S. Qin, Y. Fu, R. Liu, J. Zhi et al., Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interf. Sci. 537, 316–324 (2019)

    Article  Google Scholar 

  29. Z. Zhang, M.K.G. Jayakumar, S. Shikha, Y. Zhang, X. Zheng, Y. Zhang, Modularly assembled upconversion nanoparticles for orthogonally controlled cell imaging and drug delivery. ACS Appl. Mater. Interf. 12(11), 12549–12556 (2020)

    Article  Google Scholar 

  30. S. Yamini, M. Gunaseelan, G. Kumar, S. Singh, G.C. Dannangoda, K.S. Martirosyan et al., NaGdF4: Yb, Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications. Microchim. Acta 187(6), 1–10 (2020)

    Article  Google Scholar 

  31. S. Li, R. Liu, X. Jiang, Y. Qiu, X. Song, G. Huang et al., Near-infrared light-triggered sulfur dioxide gas therapy of cancer. ACS Nano 13(2), 2103–2113 (2019)

    Google Scholar 

  32. H. Li, R. Wei, G.-H. Yan, J. Sun, C. Li, H. Wang et al., Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for ph-responsive drug delivery. ACS Appl. Mater. Interf. 10(5), 4910–4920 (2018)

    Article  Google Scholar 

  33. Q. Xiao, X. Zheng, W. Bu, W. Ge, S. Zhang, F. Chen et al., A Core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 135(35), 13041–13048 (2013). https://doi.org/10.1021/ja404985w

    Article  Google Scholar 

  34. S. Liu, W. Li, S. Dong, F. Zhang, Y. Dong, B. Tian et al., An all-in-one theranostic nanoplatform based on upconversion dendritic mesoporous silica nanocomposites for synergistic chemodynamic/photodynamic/gas therapy. Nanoscale 12(47), 24146–24161 (2020)

    Article  Google Scholar 

  35. P. Dawson, M. Romanowski, Designing ultraviolet upconversion for photochemistry. J. Lumin. 222, 117143 (2020)

    Article  Google Scholar 

  36. C. Chen, C. Li, Z. Shi, Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv. Sci. 3(10), 1600029 (2016)

    Article  Google Scholar 

  37. J. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer et al., Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27(6), 1111–1130 (2005)

    Article  Google Scholar 

  38. L.C. Ong, M.K. Gnanasammandhan, S. Nagarajan, Y. Zhang, Upconversion: road to El Dorado of the fluorescence world. Luminescence 25(4), 290–293 (2010)

    Article  Google Scholar 

  39. A. Tymiński, T. Grzyb, Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO4 (RE=Y, La, Gd, Lu) doped with Yb3+ and Eu3+, Tb3+, Ho3+, Er3+ or Tm3+ ions. J. Lumin. 181, 411–420 (2017)

    Article  Google Scholar 

  40. A. Khare, A critical review on the efficiency improvement of upconversion assisted solar cells. J. Alloy. Compd. 821, 153214 (2020)

    Article  Google Scholar 

  41. S. Ye, E.H. Song, Q.Y. Zhang, Transition metal-involved photon upconversion. Adv. Sci. 3(12), 1600302 (2016)

    Article  Google Scholar 

  42. D.R. Gamelin, H.U. Gudel, Upconversion processes in transition metal and rare earth metal systems. Transition metal and rare earth compounds, 1–56 (2001)

    Google Scholar 

  43. O.S. Wenger, M. Wermuth, H.U. Güdel, Chemical tuning of transition metal upconversion properties. J. Alloy. Compd. 341(1–2), 342–348 (2002)

    Article  Google Scholar 

  44. M. Wermuth, H.U. Güdel, Luminescence spectroscopy and NIR to VIS upconversion of Cs2GeF6: 2% Re4+. J. Phys.: Condens. Matter 13(42), 9583 (2001)

    Google Scholar 

  45. H. Liu, Advancing upconversion emissions for biomedical imaging. Lund University (2014)

    Google Scholar 

  46. T. Nonaka, T. Kanamori, K. Ohyama, S.-I. Yamamoto, Characteristics of up-conversion phosphor prepared by metal–organic decomposition method. Japanese J. Appl. Phys. 54(3S), 03CA2 (2015)

    Google Scholar 

  47. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013)

    Article  Google Scholar 

  48. S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar et al., Stable metal–organic frameworks: design, synthesis, and applications. Adv. Mater. 30(37), 1704303 (2018)

    Article  Google Scholar 

  49. P. Mahato, A. Monguzzi, N. Yanai, T. Yamada, N. Kimizuka, Fast and long-range triplet exciton diffusion in metal–organic frameworks for photon upconversion at ultralow excitation power. Nat. Mater. 14(9), 924–930 (2015)

    Article  Google Scholar 

  50. I. Roy, S. Goswami, R.M. Young, I. Schlesinger, M.R. Mian, A.E. Enciso et al., Photon upconversion in a glowing metal–organic framework. J. Am. Chem. Soc. 143(13), 5053–5059 (2021)

    Article  Google Scholar 

  51. K. Kömpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Möller et al., Green-emitting CePO4: Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. 42(44), 5513–5516 (2003)

    Article  Google Scholar 

  52. J.W. Stouwdam, F.C. Van Veggel, Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 20(26), 11763–11771 (2004)

    Article  Google Scholar 

  53. R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2012)

    Article  Google Scholar 

  54. J. Shen, G. Chen, T.Y. Ohulchanskyy, S.J. Kesseli, S. Buchholz, Z. Li, et al., Tunable near infrared to ultraviolet upconversion luminescence enhancement in (α‐NaYF4: Yb, Tm)/CaF2 core/shell nanoparticles for in situ real‐time recorded biocompatible photoactivation. Small 9(19), 3213–3217 (2013)

    Google Scholar 

  55. X. Chen, L. Jin, W. Kong, T. Sun, W. Zhang, X. Liu et al., Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 7(1), 1–6 (2016)

    Google Scholar 

  56. F. Vetrone, R. Naccache, V. Mahalingam, C.G. Morgan, J.A. Capobianco, The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Func. Mater. 19(18), 2924–2929 (2009)

    Article  Google Scholar 

  57. X. Chen, L. Jin, T. Sun, W. Kong, S.F. Yu, F. Wang, Energy migration upconversion in Ce (III)-doped heterogeneous core− Shell− Shell nanoparticles. Small 13(43), 1701479 (2017)

    Article  Google Scholar 

  58. T.S. Troutman, S.J. Leung, M. Romanowski, Light-induced content release from plasmon-resonant liposomes. Adv. Mater. 21(22), 2334–2338 (2009)

    Article  Google Scholar 

  59. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography. Nano Lett. 4(6), 1085–1088 (2004)

    Article  Google Scholar 

  60. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuat. 4, 299–304 (1983)

    Article  Google Scholar 

  61. S.J. Leung, M. Romanowski, Light-activated content release from liposomes. Theranostics 2(10), 1020 (2012)

    Article  Google Scholar 

  62. J. He, W. Zheng, F. Ligmajer, C.-F. Chan, Z. Bao, K.-L. Wong, et al., Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@ SiO2@ CaF2: Yb3+, Er3+ hybrid core–shell–satellite nanostructures. Light: Sci. Appl. 6(5), e16217-e (2017)

    Google Scholar 

  63. H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49(16), 2865–2868 (2010)

    Article  Google Scholar 

  64. T. Jiang, Y. Liu, S. Liu, N. Liu, W. Qin, Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@ NaYF4 nanostructures codoped with Gd3+–Yb3+–Tm3+ ions. J. Colloid Interf. Sci. 377(1), 81–87 (2012)

    Article  Google Scholar 

  65. D. Piatkowski, N. Hartmann, T. Macabelli, M. Nyk, S. Mackowski, A. Hartschuh, Silver nanowires as receiving-radiating nanoantennas in plasmon-enhanced up-conversion processes. Nanoscale 7(4), 1479–1484 (2015)

    Article  Google Scholar 

  66. A. El Halawany, S. He, H. Hodaei, A. Bakry, M.A. Razvi, A. Alshahrie et al., Enhanced UV upconversion emission using plasmonic nanocavities. Opt. Exp. 24(13), 13999–14009 (2016)

    Article  Google Scholar 

  67. J. Fisher, B. Zhao, C. Lin, M. Berry, P.S. May, S. Smith, Spectroscopic imaging and power dependence of near-infrared to visible upconversion luminescence from NaYF4: Yb3+, Er3+ nanoparticles on nanocavity arrays. J. Phys. Chem. C 119(44), 24976–24982 (2015)

    Article  Google Scholar 

  68. D.M. Wu, A. Garcia-Etxarri, A. Salleo, J.A. Dionne, Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5(22), 4020–4031 (2014)

    Article  Google Scholar 

  69. Q. Shao, X. Li, P. Hua, G. Zhang, Y. Dong, J. Jiang, Enhancing the upconversion luminescence and photothermal conversion properties of ∼800 nm excitable core/shell nanoparticles by dye molecule sensitization. J. Colloid Interf. Sci. 486, 121–127 (2017)

    Article  Google Scholar 

  70. G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev et al., Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15(11), 7400–7407 (2015)

    Article  Google Scholar 

  71. P.P. Nampi, A. Vakurov, S. Saha, G. Jose, P.A. Millner, Surface modified hexagonal upconversion nanoparticles for the development of competitive assay for biodetection. Biomater. Adv. 136, 212763 (2022)

    Article  Google Scholar 

  72. P. Kardar, M. Ebrahimi, S. Bastani, Study the effect of nano-alumina particles on physical–mechanical properties of UV cured epoxy acrylate via nano-indentation. Prog. Org. Coat. 62(3), 321–325 (2008)

    Article  Google Scholar 

  73. M. Mohseni, S. Bastani, A. Jannesari, Influence of silane structure on curing behavior and surface properties of sol–gel based UV-curable organic–inorganic hybrid coatings. Prog. Org. Coat. 77(7), 1191–1199 (2014)

    Article  Google Scholar 

  74. P. Kardar, M. Ebrahimi, S. Bastani, M. Jalili, Using mixture experimental design to study the effect of multifunctional acrylate monomers on UV cured epoxy acrylate resins. Prog. Org. Coat. 64(1), 74–80 (2009)

    Article  Google Scholar 

  75. A.B.S. Jalali Kandeloos, M. Jalili, M. Ghahari, Upconversion particles’ role in composite materials: from light absorption to energy conversion. Res. Dev. Mater. Sci. 16(2), 2576–8840 (2022)

    Google Scholar 

  76. E. Bakhshandeh, S. Sobhani, C. Croutxé-Barghorn, X. Allonas, S. Bastani, Siloxane-modified waterborne UV-curable polyurethane acrylate coatings: chemorheology and viscoelastic analyses. Prog. Org. Coat. 158, 106323 (2021)

    Article  Google Scholar 

  77. E. Bakhshandeh, S. Bastani, M.R. Saeb, C. Croutxé-Barghorn, X. Allonas, High-performance water-based UV-curable soft systems with variable chain architecture for advanced coating applications. Prog. Org. Coat. 130, 99–113 (2019)

    Article  Google Scholar 

  78. M. Sarrafi, B. Kaffashi, S. Bastani, Investigation of cure advancement in dual-cure polyurethane-acrylate coatings over metal substrates. J. Coat. Technol. Res. 15(3), 527–534 (2018)

    Article  Google Scholar 

  79. Z. Li, H. Chen, C. Wang, L. Chen, J. Liu, R. Liu, Efficient photopolymerization of thick pigmented systems using upconversion nanoparticles-assisted photochemistry. J. Polym. Sci., Part A: Polym. Chem. 56(9), 994–1002 (2018)

    Article  Google Scholar 

  80. V.V. Rocheva, A.V. Koroleva, A.G. Savelyev, K.V. Khaydukov, A.N. Generalova, A.V. Nechaev et al., High-resolution 3D photopolymerization assisted by upconversion nanoparticles for rapid prototyping applications. Sci. Rep. 8(1), 1–10 (2018)

    Article  Google Scholar 

  81. K. Soga, A. Okada, Y. Saito, Y. Kameyama, T. Konishi, Coating on upconversion emissive nano-particles with photocuring resin. J. Photopolym. Sci. Technol. 20(1), 7–9 (2007)

    Article  Google Scholar 

  82. M. Uo, E. Kudo, A. Okada, K. Soga, Y. Jogo, Preparation and properties of dental composite resin cured under near infrared irradiation. J. Photopolym. Sci. Technol. 22(5), 551–554 (2009)

    Article  Google Scholar 

  83. A. Stepuk, D. Mohn, R.N. Grass, M. Zehnder, K.W. Krämer, F. Pellé et al., Use of NIR light and upconversion phosphors in light-curable polymers. Dent. Mater. 28(3), 304–311 (2012)

    Article  Google Scholar 

  84. K. Gwon, E.-J. Jo, A. Sahu, J.Y. Lee, M.-G. Kim, G. Tae, Improved near infrared-mediated hydrogel formation using diacrylated Pluronic F127-coated upconversion nanoparticles. Mater. Sci. Eng., C 90, 77–84 (2018)

    Article  Google Scholar 

  85. Q. Xiao, Y. Ji, Z. Xiao, Y. Zhang, H. Lin, Q. Wang, Novel multifunctional NaYF4: Er3+, Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem. Commun. 49(15), 1527–1529 (2013)

    Article  Google Scholar 

  86. S. Beyazit, S. Ambrosini, N. Marchyk, E. Palo, V. Kale, T. Soukka et al., Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources. Angew. Chem. Int. Ed. 53(34), 8919–8923 (2014)

    Article  Google Scholar 

  87. R. Liu, X. Zou, Y. Xu, X. Liu, Z. Li, Deep thiol-ene photopolymerization using upconversion nanoparticle-assisted photochemistry. Chem. Lett. 45(9), 1054–1056 (2016)

    Article  Google Scholar 

  88. P. Hu, H. Xu, Y. Pan, X. Sang, R. Liu, Laser induced thermal effect on the polymerization behavior in upconversion particle assisted near-infrared photopolymerization. ChemPhysChem 23(1), e202100670 (2022). https://doi.org/10.1002/cphc.202100670

    Article  Google Scholar 

  89. A.B.S. Jalali Kandeloos, S. Mashayekhan, 3D bioprinting and natural bioinks: principles and applications. J. Stud. Color World 10(4), 31–51 (2021)

    Google Scholar 

  90. M. Yan, L. Guo, P. Cai, Y. Huang, Q. Zhang, Q. Lue, Hydrothermal synthesis of NaYF4: Yb3+, Tm3+ upconversion microparticles and their effects on polymerization for stereolithography. Opt. Mater. 109, 110311 (2020)

    Article  Google Scholar 

  91. A. Zhakeyev, J. Marques-Hueso, Centimeter-Scale Curing Depths in Laser-Assisted 3D Printing of Photopolymers Enabled by Er3+ Upconversion and Green Light-Absorbing Photosensitizer. Photonics: MDPI (2022), p. 498

    Google Scholar 

  92. M. Hunt, M. Taverne, J. Askey, A. May, A. Van Den Berg, Y.-L.D. Ho, et al., Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 13(3), 761 (2020)

    Google Scholar 

  93. M. Farsari, B.N. Chichkov, Two-photon fabrication. Nat. Photon. 3(8), 450–452 (2009)

    Article  Google Scholar 

  94. V. Harinarayana, Y. Shin, Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review. Opt. Laser Technol. 142, 107180 (2021)

    Article  Google Scholar 

  95. S.N. Sanders, T.H. Schloemer, M.K. Gangishetty, D. Anderson, M. Seitz, A.O. Gallegos et al., Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604(7906), 474–478 (2022)

    Article  Google Scholar 

  96. L.H. Mullenders, Solar UV damage to cellular DNA: from mechanisms to biological effects. Photochem. Photobiol. Sci. 17(12), 1842–1852 (2018)

    Article  Google Scholar 

  97. G.P. Pfeifer, A. Besaratinia, UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 11(1), 90–97 (2012)

    Article  Google Scholar 

  98. K. Rass, J. Reichrath, UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Sunlight, Vitamin D Skin Cancer, 162–178 (2008)

    Google Scholar 

  99. J.E. Choi, H.-K. Kim, Y. Kim, G. Kim, T.S. Lee, S. Kim et al., 800 nm near-infrared light-excitable intense green-emitting Li (Gd, Y) F4: Yb, Er-based core/shell/shell upconversion nanophosphors for efficient liver cancer cell imaging. Mater. Des. 195, 108941 (2020)

    Article  Google Scholar 

  100. T. Liang, Q. Wang, Z. Li, P. Wang, J. Wu, M. Zuo et al., Removing the obstacle of dye-sensitized upconversion luminescence in aqueous phase to achieve high-contrast deep imaging in vivo. Adv. Func. Mater. 30(16), 1910765 (2020)

    Article  Google Scholar 

  101. Y. Sun, X. Zhu, J. Peng, F. Li, Core–shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7(12), 11290–11300 (2013)

    Article  Google Scholar 

  102. P. Mukherjee, A. Kumar, K. Bhamidipati, N. Puvvada, S.K. Sahu, Facile strategy to synthesize magnetic upconversion nanoscale metal–organic framework composites for theranostics application. ACS Appl. Bio Mater. 3(2), 869–880 (2019)

    Article  Google Scholar 

  103. B. Ding, S. Shao, F. Jiang, P. Dang, C. Sun, S. Huang et al., MnO2-disguised upconversion hybrid nanocomposite: an ideal architecture for tumor microenvironment-triggered UCL/MR bioimaging and enhanced chemodynamic therapy. Chem. Mater. 31(7), 2651–2660 (2019)

    Article  Google Scholar 

  104. X. Li, L. Liu, Y. Fu, H. Chen, M.M. Abualrejal, H. Zhang et al., Peptide-enhanced tumor accumulation of upconversion nanoparticles for sensitive upconversion luminescence/magnetic resonance dual-mode bioimaging of colorectal tumors. Acta Biomater. 104, 167–175 (2020)

    Article  Google Scholar 

  105. K. Du, J. Feng, X. Gao, H. Zhang, Nanocomposites based on lanthanide-doped upconversion nanoparticles: diverse designs and applications. Light: Sci. Appl. 11(1), 222 (2022). https://doi.org/10.1038/s41377-022-00871-z

  106. Y. Wang, Y. Li, Z. Zhang, L. Wang, D. Wang, B.Z. Tang, Triple-jump photodynamic theranostics: MnO2 combined upconversion nanoplatforms involving a type-I photosensitizer with aggregation-induced emission characteristics for potent cancer treatment. Adv. Mater. 33(41), 2103748 (2021)

    Article  Google Scholar 

  107. K. Jeong, D. Kim, H.J. Kim, Y.-D. Lee, J. Yoo, D. Jang et al., Photoechogenic inflatable nanohybrids for upconversion-mediated sonotheranostics. ACS Nano 15(11), 18394–18402 (2021). https://doi.org/10.1021/acsnano.1c07898

    Article  Google Scholar 

  108. N.A.A. Halim, M.Z. Hussein, M.K. Kandar, Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int. J. Nanomed. 16, 6477 (2021)

    Article  Google Scholar 

  109. A. Das, K. Bae, W. Park, Enhancement of upconversion luminescence using photonic nanostructures. Nanophotonics 9(6), 1359–1371 (2020)

    Article  Google Scholar 

  110. X. Liu, Y. Wang, X. Li, Z. Yi, R. Deng, L. Liang et al., Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 8(1), 1–7 (2017)

    Google Scholar 

  111. L. Yan, X. Wang, Z. An, Z. Hu, H. Liu, S. Xu et al., Enhancing upconversion of manganese through spatial control of energy migration for multi-level anti-counterfeiting. Nanoscale 13(33), 13995–14000 (2021)

    Article  Google Scholar 

  112. X. Wang, L. Yan, S. Liu, P. Zhang, R. Huang, B. Zhou, Enhancing energy migration upconversion through a migratory interlayer in the core–shell–shell nanostructure towards latent fingerprinting. Nanoscale 12(36), 18807–18814 (2020)

    Article  Google Scholar 

  113. Y. Sang, H. Liu, A. Umar, Photocatalysis from UV/Vis to near-infrared light: towards full solar-light spectrum activity. ChemCatChem 7(4), 559–573 (2015)

    Article  Google Scholar 

  114. G. Wang, B. Huang, X. Ma, Z. Wang, X. Qin, X. Zhang et al., Cu2(OH)PO4, a near-infrared-activated photocatalyst. Angew. Chem. Int. Ed. 52(18), 4810–4813 (2013)

    Article  Google Scholar 

  115. J.M. Wu, W.T. Kao, Heterojunction nanowires of AgxZn1–x O-ZnO photocatalytic and antibacterial activities under visible-light and dark conditions. J. Phys. Chem. C 119(3), 1433–1441 (2015)

    Article  Google Scholar 

  116. M. Alkahtani, H. Qasem, S.M. Alenzi, N. Alsofyani, A. Alfahd, A. Aljuwayr et al., Electrodeposition of lithium-based upconversion nanoparticle thin films for efficient perovskite solar cells. Nanomaterials 12(12), 2115 (2022)

    Article  Google Scholar 

  117. M. Tou, Z. Luo, S. Bai, F. Liu, Q. Chai, S. Li et al., Sequential coating upconversion NaYF4: Yb, Tm nanocrystals with SiO2 and ZnO layers for NIR-driven photocatalytic and antibacterial applications. Mater. Sci. Eng., C 70, 1141–1148 (2017)

    Article  Google Scholar 

  118. L. Tan, D. Li, L. Zhang, L. Xu, Y. Zhao, L. Zhu et al., Preparation of multishell-structured NaYF4: Yb, Tm, Nd@ NaYF4: Yb, Nd@ SiO2@ ZnO nanospheres with effective NIR-induced photocatalytic activity. J. Phys. Chem. C 124(33), 18081–18090 (2020)

    Article  Google Scholar 

  119. Y. Zhao, L. Xu, L. Tan, D. Li, R. Qiao, ZnO flowerlike microspheres loaded with upconversion nanoparticles for high-performance NIR-driven photocatalytic activity. Mater. Lett. 293, 129719 (2021)

    Article  Google Scholar 

  120. A. Jain, A. Kumar, H. Kaur, V. Krishnan, Strategic combination of ultra violet-visible-near infrared light active materials towards maximum utilization of full solar spectrum for photocatalytic chromium reduction. Chemosphere 267, 128884 (2021)

    Article  Google Scholar 

  121. J. Xu, N. Liu, D. Wu, Z. Gao, Y.-Y. Song, P. Schmuki, Upconversion nanoparticle-assisted payload delivery from TiO2 under near-infrared light irradiation for bacterial inactivation. ACS Nano 14(1), 337–346 (2019)

    Article  Google Scholar 

  122. M. Tou, Y. Mei, S. Bai, Z. Luo, Y. Zhang, Z. Li, Depositing CdS nanoclusters on carbon-modified NaYF4: Yb, Tm upconversion nanocrystals for NIR-light enhanced photocatalysis. Nanoscale 8(1), 553–562 (2016)

    Article  Google Scholar 

  123. W. Feng, L. Zhang, Y. Zhang, Y. Yang, Z. Fang, B. Wang et al., Near-infrared-activated NaYF4: Yb3+, Er3+/Au/CdS for H2 production via photoreforming of bio-ethanol: plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. J. Mater. Chem. A 5(21), 10311–10320 (2017)

    Article  Google Scholar 

  124. H. Zhu, Y. Yang, Y. Kang, P. Niu, X. Kang, Z. Yang et al., Strong interface contact between NaYF4: Yb, Er and CdS promoting photocatalytic hydrogen evolution of NaYF4: Yb, Er/CdS composites. J. Mater. Sci. Technol. 102, 1–7 (2022)

    Article  Google Scholar 

  125. Z.-Y. Liu, X.-Y. Tang, C.-Q. Huang, J. Zhang, W.-Q. Huang, Y. Ye, 808 nm NIR-triggered Camellia sapogein/curcumin-based antibacterial upconversion nanoparticles for synergistic photodynamic-chemical combined therapy. Inorg. Chem. Front. 9(8), 1836–1846 (2022). https://doi.org/10.1039/D1QI01569A

    Article  Google Scholar 

  126. D.V. Yanykin, D.E. Burmistrov, A.V. Simakin, J.A. Ermakova, S.V. Gudkov, Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on solanum lycopersicum growth. Agronomy 12(1), 108 (2022)

    Article  Google Scholar 

  127. D.E. Burmistrov, D.V. Yanykin, A.V. Simakin, M.O. Paskhin, V.V. Ivanyuk, S.V. Kuznetsov et al., Cultivation of solanum lycopersicum under glass coated with nanosized upconversion luminophore. Appl. Sci. 11(22), 10726 (2021)

    Article  Google Scholar 

  128. D.V. Yanykin, M.O. Paskhin, A.V. Simakin, D.E. Burmistrov, R.V. Pobedonostsev, A.A. Vyatchinov et al., Plant photochemistry under glass coated with upconversion luminescent film. Appl. Sci. 12(15), 7480 (2022)

    Article  Google Scholar 

  129. L.H. Fischer, G.S. Harms, O.S. Wolfbeis, Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 50(20), 4546–4551 (2011)

    Article  Google Scholar 

  130. F. Vetrone, R. Naccache, Z.A.A. Juarranz de la Fuente, F. Sanz-Rodríguez, L.M. Maestro, E.M. Rodríguez, D. Jaque, J.G. Solé, J.A. Capobianco. Acs Nano 4, 3254 (2010)

    Google Scholar 

  131. W. Chen, A.G. Joly, J.Z. Zhang, Up-conversion luminescence of Mn2+ in ZnS:Mn2+ nanoparticles. Phys. Rev. B 64(4), 041202 (2001)

    Article  Google Scholar 

  132. G. Maciel, L. Menezes, A. Gomes, C.B. De Araujo, Y. Messaddeq, A. Florez, et al., Temperature sensor based on frequency upconversion in Er/sup3+-doped fluoroindate glass. IEEE Photon. Technol. Lett. 7(12), 1474–1476 (1995)

    Google Scholar 

  133. S.A. Wade, S.F. Collins, G.W. Baxter, Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 94(8), 4743–4756 (2003)

    Article  Google Scholar 

  134. S. Zhou, S. Jiang, X. Wei, Y. Chen, C. Duan, M. Yin, Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4. J. Alloy. Compd. 588, 654–657 (2014)

    Article  Google Scholar 

  135. A. Singh, S. Singh, B.K. Gupta, R. Prakash, S. Rai, Probing a highly efficient dual mode: down–upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors. Dalton Trans. 42(4), 1065–1072 (2013)

    Article  Google Scholar 

  136. Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, M. Malinowski, Blue emissions in Dy3+ doped Y4Al2O9 crystals for temperature sensing. Opt. Lett. 37(24), 5214–5216 (2012)

    Article  Google Scholar 

  137. G. Jiang, X. Wei, S. Zhou, Y. Chen, C. Duan, M. Yin, Neodymium doped lanthanum oxysulfide as optical temperature sensors. J. Lumin. 152, 156–159 (2014)

    Article  Google Scholar 

  138. K. Zheng, Z. Liu, C. Lv, W. Qin, Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+–Tm3+–Gd3+ codoped NaLuF4 microcrystals. J. Mater. Chem. C 1(35), 5502–5507 (2013)

    Article  Google Scholar 

  139. H. Lv, L. Liu, D. Wang, Z. Mai, F. Yan, G. Xing et al., Enhanced upconversion emission in Er3+/Yb3+-codoped Al2Mo3O12 microparticles via doping strategy: towards multimode visual optical thermometer. J. Lumin. 252, 119333 (2022). https://doi.org/10.1016/j.jlumin.2022.119333

    Article  Google Scholar 

  140. K. Saidi, M. Dammak, K. Soler-Carracedo, I.R. Martín, Optical thermometry based on upconversion emissions in Na3Gd (VO4)2: Yb3+-Er3+/Ho3+ micro crystals. J. Alloy. Compd. 891, 161993 (2022). https://doi.org/10.1016/j.jallcom.2021.161993

    Article  Google Scholar 

  141. X. Wang, X. Kong, Y. Yu, Y. Sun, H. Zhang, Effect of annealing on upconversion luminescence of ZnO: Er3+ nanocrystals and high thermal sensitivity. J. Phys. Chem. C 111(41), 15119–15124 (2007)

    Article  Google Scholar 

  142. R. An, Y. Liang, R. Deng, P. Lei, H. Zhang, Hollow nanoparticles synthesized via Ostwald ripening and their upconversion luminescence-mediated Boltzmann thermometry over a wide temperature range. Light: Sci. Appl. 11(1), 217 (2022). https://doi.org/10.1038/s41377-022-00867-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bastani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastani, S., Kandeloos, A.J., Jalili, M., Ghahari, M. (2023). Application of Upconversion Nanoparticles in Photochemistry. In: Kumar, V., Ayoub, I., Swart, H.C., Sehgal, R. (eds) Upconversion Nanoparticles (UCNPs) for Functional Applications. Progress in Optical Science and Photonics, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-99-3913-8_12

Download citation

Publish with us

Policies and ethics