Skip to main content

Upconversion Luminescence Sensitized pH-Nanoprobes

  • Chapter
  • First Online:
Upconversion Nanoparticles (UCNPs) for Functional Applications

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 24))

  • 283 Accesses

Abstract

With the advancement in the field of nanotechnology, the functionalized UCNPs have shown promising results in the field of optical pH sensing at the intercellular as well as at the extracellular level. The accurate detection and monitoring of pH are very important for the proper functioning of various processes at the intercellular and extracellular level. This chapter begins with introduction part covering a brief overview of UCMs and their role in sensing followed by the importance of pH in various natural processes and the conventional pH detection methods used by the researchers. The definition and some of the basic concepts have been explained in the next section followed by a brief discussion of the various types of optical pH sensing schemes utilized in the current times. The luminescence-based pH detection schemes classified on the basis of measurand used as a pH-responsive parameter have been described. The forthcoming sections describe various types of functionalized UCNPs, upconversion-based pH sensing, future prospects and conclusions related to the UC-based optical pH sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104(1), 139–174 (2004)

    Article  Google Scholar 

  2. J. Chen, J.X. Zhao, Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors 12(3), 2414–2435 (2012)

    Article  Google Scholar 

  3. Z. Zhang, S. Shikha, J. Liu, J. Zhang, Q. Mei, Y. Zhang, Upconversion nanoprobes: recent advances in sensing applications. Anal. Chem. 91(1), 548–568 (2018)

    Article  Google Scholar 

  4. E.S. Tsai, S.F. Himmelstoß, L.M. Wiesholler, T. Hirsch, E.A. Hall, Upconversion nanoparticles for sensing pH. Analyst 144(18), 5547–5557 (2019)

    Article  Google Scholar 

  5. J. Yang, Y. Deng, Q. Wu, J. Zhou, H. Bao, Q. Li, …, D. Zhao, Mesoporous silica encapsulating upconversion luminescence rare-earth fluoride nanorods for secondary excitation. Langmuir, 26(11), 8850–8856 (2010)

    Google Scholar 

  6. J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hu, F. Li, Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12), 3287–3295 (2010)

    Article  Google Scholar 

  7. X. Wang, J. Zhuang, Q. Peng, Y. Li, A general strategy for nanocrystal synthesis. Nature 437(7055), 121–124 (2005)

    Article  Google Scholar 

  8. Z. Li, Y. Zhang, Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. 118(46), 7896–7899 (2006)

    Article  Google Scholar 

  9. G.S. Yi, G.M. Chow, Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19(3), 341–343 (2007)

    Article  Google Scholar 

  10. H. Hu, M. Yu, F. Li, Z. Chen, X. Gao, L. Xiong, C. Huang, Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem. Mater. 20(22), 7003–7009 (2008)

    Article  Google Scholar 

  11. R. Naccache, F. Vetrone, V. Mahalingam, L.A. Cuccia, J.A. Capobianco, Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem. Mater. 21(4), 717–723 (2009)

    Article  Google Scholar 

  12. H. Hu, L. Xiong, J. Zhou, F. Li, T. Cao, C. Huang, Multimodal‐luminescence core–shell nanocomposites for targeted imaging of tumor cells. Chem.—Eur. J. 15(14), 3577–3584 (2009)

    Google Scholar 

  13. S. Jiang, Y. Zhang, K.M. Lim, E.K. Sim, L. Ye, NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20(15), 155101 (2009)

    Article  Google Scholar 

  14. S. Jiang, Y. Zhang, Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir 26(9), 6689–6694 (2010)

    Article  Google Scholar 

  15. F. Zhang, G.B. Braun, Y. Shi, Y. Zhang, X. Sun, N.O. Reich, …, G. Stucky, Fabrication of Ag@ SiO2@ Y2O3: Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 132(9), 2850–2851 (2010)

    Google Scholar 

  16. Q. Liu, C. Li, T. Yang, T. Yi, F. Li, “Drawing” upconversion nanophosphors into water through host–guest interaction. Chem. Commun. 46(30), 5551–5553 (2010)

    Article  Google Scholar 

  17. T. Cao, Y. Yang, Y. Gao, J. Zhou, Z. Li, F. Li, High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32(11), 2959–2968 (2011)

    Article  Google Scholar 

  18. Q. Liu, M. Chen, Y. Sun, G. Chen, T. Yang, Y. Gao, …, F. Li, Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32(32), 8243–8253 (2011a)

    Google Scholar 

  19. Q. Liu, Y. Sun, C. Li, J. Zhou, C. Li, T. Yang, …, F. Li, 8F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5(4), 3146–3157 (2011b)

    Google Scholar 

  20. C. Chen, C. Li, Z. Shi, Current advances in lanthanide-doped upconversion nanostructures for detection and bioapplication. Adv. Sci. 3(10), 1600029 (2016)

    Article  Google Scholar 

  21. W. Fan, W. Bu, J. Shi, On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 28(21), 3987–4011 (2016)

    Article  Google Scholar 

  22. C. Wang, X. Li, F. Zhang, Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors. Analyst 141(12), 3601–3620 (2016)

    Article  Google Scholar 

  23. X. Zhu, Q. Su, W. Feng, F. Li, Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 46(4), 1025–1039 (2017)

    Article  Google Scholar 

  24. Q. Su, W. Feng, D. Yang, F. Li, Resonance energy transfer in upconversion nanoplatforms for selective biodetection. Acc. Chem. Res. 50(1), 32–40 (2017)

    Article  Google Scholar 

  25. W.M. Clark, The Determination of Hydrogen Ions: An Elementary Treatise on the Hydrogen Electrode, Indicator and Supplementary Methods with an Indexed Bibliography on Applications (Williams & Wilkins, 1922)

    Google Scholar 

  26. R.J. Myers, One-hundred years of pH. J. Chem. Educ. 87(1), 30–32 (2010)

    Article  Google Scholar 

  27. H.H. Tsai, W. Schmidt, The enigma of environmental pH sensing in plants. Nat. Plants 7(2), 106–115 (2021)

    Article  Google Scholar 

  28. J. Liu, Y. Huang, A. Kumar, A. Tan, S. Jin, A. Mozhi, X.J. Liang, pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 32(4), 693–710 (2014)

    Article  Google Scholar 

  29. G. Hao, Z.P. Xu, L. Li, Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv. 8(39), 22182–22192 (2018)

    Article  Google Scholar 

  30. T.L. Chipako, D.G. Randall, Urine treatment technologies and the importance of pH. J. Environ. Chem. Eng. 8(1), 103622 (2020)

    Article  Google Scholar 

  31. A.S. Varela, The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opinion Green Sustain. Chem. 26, 100371 (2020)

    Article  Google Scholar 

  32. P. Yu, W. Tu, M. Wu, Z. Zhang, H. Wang, Pilot-scale fermentation of urban food waste for volatile fatty acids production: the importance of pH. Biores. Technol. 332, 125116 (2021)

    Article  Google Scholar 

  33. J. Srivastava, D.L. Barber, M.P. Jacobson, Intracellular pH sensors: design principles and functional significance. Physiology (2007)

    Google Scholar 

  34. W. Shi, X. Li, H. Ma, Fluorescent probes and nanoparticles for intracellular sensing of pH values. Methods Appl. Fluorescence 2(4), 042001 (2014)

    Article  Google Scholar 

  35. A. Steinegger, O.S. Wolfbeis, S.M. Borisov, Optical sensing and imaging of pH values: spectroscopies, materials, and applications. Chem. Rev. 120(22), 12357–12489 (2020)

    Article  Google Scholar 

  36. F.E. Prichard, R. Lawn, Measurement of pH: a practical handbook (Royal Society of Chemistry, London, 2003)

    Google Scholar 

  37. J. Janata, Do optical sensors really measure pH? Anal. Chem. 59(9), 1351–1356 (1987)

    Article  Google Scholar 

  38. N. Opitz, D.W. Lübbers, New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities. Sens. Actuat. 4, 473–479 (1983)

    Article  Google Scholar 

  39. H. Offenbacher, O.S. Wolfbeis, E. Fürlinger, Fluorescence optical sensors for continuous determination of near-neutral pH values. Sens. Actuat. 9(1), 73–84 (1986)

    Article  Google Scholar 

  40. D. Wencel, T. Abel, C. McDonagh, Optical chemical pH sensors. Anal. Chem. 86(1), 15–29 (2014)

    Article  Google Scholar 

  41. M.T. Ghoneim, A. Nguyen, N. Dereje, J. Huang, G.C. Moore, P.J. Murzynowski, C. Dagdeviren, Recent progress in electrochemical pH-sensing materials and configurations for biomedical applications. Chem. Rev. 119(8), 5248–5297 (2019)

    Article  Google Scholar 

  42. M. Shamsipur, A. Barati, Z. Nematifar, Fluorescent pH nanosensors: design strategies and applications. J. Photochem. Photobiol., C 39, 76–141 (2019)

    Article  Google Scholar 

  43. D.A. MacInnes, Criticism of a definition of pH. Science 108(2816), 693–693 (1948)

    Article  Google Scholar 

  44. R.P. Buck, S. Rondinini, A.K. Covington, F.G.K. Baucke, C.M. Brett, M.F. Camoes, …, G.S. Wilson, Measurement of pH. Definition, standards, and procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 74(11), 2169–2200 (2002)

    Google Scholar 

  45. A.K. Covington, R.G. Bates, R.A. Durst, Definition of pH scales, standard reference values, measurement of pH and related terminology (Recommendations 1984). Pure Appl. Chem. 57(3), 531–542 (1985)

    Article  Google Scholar 

  46. G.B. Harper, Reusable glass-bound pH indicators. Anal. Chem. 47(2), 348–351 (1975)

    Article  Google Scholar 

  47. D.W. Lübbers, N. Opitz, P.P. Speiser, H.J. Bisson, Nanoencapsulated fluorescence indicator molecules measuring pH and pO2 down to submicroscopical regions on the basis of the optode-principle. Zeitschrift für Naturforschung C 32(1–2), 133–134 (1977)

    Google Scholar 

  48. J.I. Peterson, S.R. Goldstein, R.V. Fitzgerald, D.K. Buckhold, Fiber optic pH probe for physiological use. Anal. Chem. 52(6), 864–869 (1980)

    Article  Google Scholar 

  49. S.R. Goldstein, J.I. Peterson, R.V. Fitzgerald, A miniature fiber optic pH sensor for physiological use (1980)

    Google Scholar 

  50. G.A. Tait, R.B. Young, G.J. Wilson, D.J. Steward, D.C. MacGregor, Myocardial pH during regional ischemia: evaluation of a fiber-optic photometric probe. Am. J. Physiol.-Heart Circul. Physiol. 243(6), H1027–H1031 (1982)

    Article  Google Scholar 

  51. L.A. Saari, W.R. Seitz, pH sensor based on immobilized fluoresceinamine. Anal. Chem. 54(4), 821–823 (1982)

    Article  Google Scholar 

  52. J.S. Suidan, B.K. Young, F.W. Hetzel, H.R. Seal, pH Measurement with a fiber-optic tissue-pH monitor and a standard blood-pH meter. Clin. Chem. 29(8), 1566–1566 (1983)

    Article  Google Scholar 

  53. O.S. Wolfbeis, E. Fürlinger, H. Kroneis, H. Marsoner, Fluorimetric analysis. Fresenius Z. Anal. Chem. 314(2), 119–124 (1983)

    Article  Google Scholar 

  54. G.F. Kirkbright, R. Narayanaswamy, N.A. Welti, Fibre-optic pH probe based on the use of an immobilised colorimetric indicator. Analyst 109(8), 1025–1028 (1984)

    Article  Google Scholar 

  55. Z. Zhujun, W.R. Seitz, A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5. Anal. Chim. Acta 160, 47–55 (1984)

    Article  Google Scholar 

  56. M.J. Goldfinch, C.R. Lowe, Solid-phase optoelectronic sensors for biochemical analysis. Anal. Biochem. 138(2), 430–436 (1984)

    Article  Google Scholar 

  57. O.S. Wolfbeis, H. Offenbacher, Fluorescence sensor for monitoring ionic strength and physiological pH values. Sens. Actuat. 9(1), 85–91 (1986)

    Article  Google Scholar 

  58. A.M. Scheggi, F. Baldini, pH sensing by fibre optics. Optica Acta: Int. J. Opt. 33(12), 1587–1597 (1986)

    Article  Google Scholar 

  59. B.A. Woods, J. Ruzicka, G.D. Christian, R.J. Charlson, Measurement of pH in solutions of low buffering capacity and low ionic strength by optosensing flow injection analysis. Anal. Chem. 58(12), 2496–2502 (1986)

    Article  Google Scholar 

  60. J.L. Gehrich, D.W. Lubbers, N. Opitz, D.R. Hansmann, W.W. Miller, J.K. Tusa, M. Yafuso, Optical fluorescence and its application to an intravascular blood gas monitoring system. IEEE Trans. Biomed. Eng. 2, 117–132 (1986)

    Article  Google Scholar 

  61. Y. Kawabata, K. Tsuchida, T. Imasaka, N. Ishibashi, Fiber-optic pH sensor with monolayer indicator. Anal. Sci. 3(1), 7–9 (1987)

    Article  Google Scholar 

  62. G. Boisde, J.J. Perez, Miniature chemical optical fiber sensors for pH measurementsm, in Fiber Optic Sensors II, vol. 798 (SPIE, 1987), pp. 238–245

    Google Scholar 

  63. D.M. Jordan, D.R. Walt, F.P. Milanovich, Physiological pH fiber-optic chemical sensor based on energy transfer. Anal. Chem. 59(3), 437–439 (1987)

    Article  Google Scholar 

  64. M. Monici, R. Roniforti, G. Buzziyoli, B. De Rossi, A. Nannini, Fibre-optic pH sensor for seawater monitoring, in Fiber Optic Sensors II, vol. 798 (SPIE, 1987), pp. 294–300

    Google Scholar 

  65. O.S. Wolfbeis, H. Marhold, A new group of fluorescent pH-indicators for an extended pH-range. Fresenius’ Zeitschrift für Analytische Chemie 327(3), 347–350 (1987)

    Article  Google Scholar 

  66. J.W. Attridge, K.D. Leaver, J.R. Cozens, Design of a fibre-optic pH sensor with rapid response. J. Phys. E: Sci. Instrum. 20(5), 548 (1987)

    Article  Google Scholar 

  67. T.P. Jones, M.D. Porter, Optical pH sensor based on the chemical modification of a porous polymer film. Anal. Chem. 60(5), 404–406 (1988)

    Article  Google Scholar 

  68. E.T. Knobbe, B. Dunn, M. Gold, Organic molecules entrapped in a silica host for use as biosensor probe materials, in Optical Fibers in Medicine III, vol. 906 (SPIE, 1988), pp. 39–41

    Google Scholar 

  69. H.E. Posch, M.J. Leiner, O.S. Wolfbeis, Towards a gastric pH-sensor: an optrode for the pH 0–7 range. Fresenius’ Zeitschrift für Analytische Chemie 334(2), 162–165 (1989)

    Article  Google Scholar 

  70. W.P. Carey, M.D. DeGrandpre, B.S. Jorgensen, Polymer-coated cylindrical waveguide absorption sensor for high acidities. Anal. Chem. 61(15), 1674–1678 (1989)

    Article  Google Scholar 

  71. W.P. Carey, B.S. Jorgensen, Optical sensors for high acidities based on fluorescent polymers. Appl. Spectrosc. 45(5), 834–838 (1991)

    Article  Google Scholar 

  72. G. Gabor, D.R. Walt, Sensitivity enhancement of fluorescent pH indicators by inner filter effects. Anal. Chem. 63(8), 793–796 (1991)

    Article  Google Scholar 

  73. W. Tan, Z.Y. Shi, S. Smith, D. Birnbaum, R. Kopelman, Submicrometer intracellular chemical optical fiber sensors. Science 258(5083), 778–781 (1992)

    Article  Google Scholar 

  74. T. Werner, O.S. Wolfbeis, Optical sensor for the pH 10–13 range using a new support material. Fresenius J. Anal. Chem. 346(6), 564–568 (1993)

    Article  Google Scholar 

  75. Z. Ge, C.W. Brown, L. Sun, S.C. Yang, Fiber-optic pH sensor based on evanescent wave absorption spectroscopy. Anal. Chem. 65(17), 2335–2338 (1993)

    Article  Google Scholar 

  76. J.W. Parker, O. Laksin, C. Yu, M.L. Lau, S. Klima, R. Fisher, …, B.W. Atwater, Fiber-optic sensors for pH and carbon dioxide using a self-referencing dye. Anal. Chem. 65(17), 2329–2334 (1993)

    Google Scholar 

  77. G.J. Mohr, O.S. Wolfbeis, Optical sensors for a wide pH range based on azo dyes immobilized on a novel support. Anal. Chim. Acta 292(1–2), 41–48 (1994)

    Article  Google Scholar 

  78. G.J. Mohr, T. Werner, O.S. Wolfbeis, R. Janoschek, Synthesis of reactive vinylsulphonyl azo dyes for application in optical pH sensing. Dyes Pigm. 24(3), 223–240 (1994)

    Article  Google Scholar 

  79. M.F. McCurley, An optical biosensor using a fluorescent, swelling sensing element. Biosens. Bioelectron. 9(7), 527–533 (1994)

    Article  Google Scholar 

  80. K.S. Bronk, D.R. Walt, Fabrication of patterned sensor arrays with aryl azides on a polymer-coated imaging optical fiber bundle. Anal. Chem. 66(20), 3519–3520 (1994)

    Article  Google Scholar 

  81. W.C. Michie, B. Culshaw, I. McKenzie, M. Konstantakis, N.B. Graham, C. Moran, …, B. Carlstrom, Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems. Opt. Lett. 20(1), 103–105 (1995)

    Google Scholar 

  82. R. Koncki, G.J. Mohr, O.S. Wolfbeis, Enzyme biosensor for urea based on a novel pH bulk optode membrane. Biosens. Bioelectron. 10(8), 653–659 (1995)

    Article  Google Scholar 

  83. S.G. Schulman, S. Chen, F. Bai, M.J. Leiner, L. Weis, O.S. Wolfbeis, Dependence of the fluorescence of immobilized 1-hydroxypyrene-3, 6, 8-trisulfonate on solution pH: extension of the range of applicability of a pH fluorosensor. Anal. Chim. Acta 304(2), 165–170 (1995)

    Article  Google Scholar 

  84. Z. Zhang, Z. Shakhsher, W.R. Seitz, Aminated polystyrene membranes for a fiber optic pH sensor based on reflectance changes accompanying polymer swelling. Microchim. Acta 121(1), 41–50 (1995)

    Article  Google Scholar 

  85. M.N. Taib, R. Andres, R. Narayanaswamy, Extending the response range of an optical fibre pH sensor using an artificial neural network. Anal. Chim. Acta 330(1), 31–40 (1996)

    Article  Google Scholar 

  86. S. de Marcos, O.S. Wolfbeis, Optical sensing of pH based on polypyrrole films. Anal. Chim. Acta 334(1–2), 149–153 (1996)

    Article  Google Scholar 

  87. S. Draxler, M.E. Lippitsch, pH sensors using fluorescence decay time. Sens. Actuat., B Chem. 29(1–3), 199–203 (1995)

    Article  Google Scholar 

  88. S. Draxler, M.E. Lippitsch, Lifetime-based sensing: influence of the microenvironment. Anal. Chem. 68(5), 753–757 (1996)

    Article  Google Scholar 

  89. T. Werner, C. Huber, S. Heinl, M. Kollmannsberger, J. Daub, O.S. Wolfbeis, Novel optical pH-sensor based on a boradiaza-indacene derivative. Fresenius J. Anal. Chem. 359(2), 150–154 (1997)

    Article  Google Scholar 

  90. E. Pringsheim, E. Terpetschnig, O.S. Wolfbeis, Optical sensing of pH using thin films of substituted polyanilines. Anal. Chim. Acta 357(3), 247–252 (1997)

    Article  Google Scholar 

  91. D.B. Papkovsky, G.V. Ponomarev, O.S. Wolfbeis, Protonation of porphyrins in liquid PVC membranes: effects of anionic additives and application to pH-sensing. J. Photochem. Photobiol., A 104(1–3), 151–158 (1997)

    Article  Google Scholar 

  92. A. Safavi, H. Abdollahi, Optical sensor for high pH values. Anal. Chim. Acta 367(1–3), 167–173 (1998)

    Article  Google Scholar 

  93. X. Li, X. Gao, W. Shi, H. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114(1), 590–659 (2014)

    Article  Google Scholar 

  94. M.E. Lippitsch, S. Draxler, M.J. Leiner, Time-domain fluorescence methods as applied to pH sensing, in Chemical, Biochemical, and Environmental Fiber Sensors IV, vol. 1796 (SPIE, 1993), pp. 202–209

    Google Scholar 

  95. A.G. Ryder, S. Power, T.J. Glynn, Fluorescence-lifetime-based pH sensing using resorufin, in Opto-Ireland 2002: Optics and Photonics Technologies and Applications, vol. 4876 (SPIE, 2003), pp. 827–835

    Google Scholar 

  96. C. DeCusatis. Handbook of Applied Photometry (Optical Society of America, Washington DC, 1997)

    Google Scholar 

  97. G. Liebsch, I. Klimant, C. Krause, O.S. Wolfbeis, Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Anal. Chem. 73(17), 4354–4363 (2001)

    Article  Google Scholar 

  98. S.K. Panigrahi, A.K. Mishra, Inner filter effect in fluorescence spectroscopy: as a problem and as a solution. J. Photochem. Photobiol., C 41, 100318 (2019)

    Article  Google Scholar 

  99. S. Chen, Y.L. Yu, J.H. Wang, Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 999, 13–26 (2018)

    Article  MathSciNet  Google Scholar 

  100. B. Chen, F. Wang, Emerging frontiers of upconversion nanoparticles. Trends Chem. 2(5), 427–439 (2020)

    Article  Google Scholar 

  101. S. Hu, H. Cao, X. Wu, S. Zhan, Q. Wu, Z. Tang, Y. Liu, Upconversion luminescence and magnetic turning of NaLuF4: Yb3+/Tm3+/Gd3+ nanoparticles and their application for detecting acriflavine. J. Nanomater. (2016)

    Google Scholar 

  102. A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8(27), 13099–13130 (2016)

    Article  Google Scholar 

  103. M. Mondal, V.K. Rai, C. Srivastava, Influence of silica surface coating on optical properties of Er3+-Yb3+: YMoO4 upconverting nanoparticles. Chem. Eng. J. 327, 838–848 (2017)

    Article  Google Scholar 

  104. H.X. Mai, Y.W. Zhang, L.D. Sun, C.H. Yan, Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111(37), 13721–13729 (2007)

    Article  Google Scholar 

  105. F. Vetrone, R. Naccache, V. Mahalingam, C.G. Morgan, J.A. Capobianco, The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Func. Mater. 19(18), 2924–2929 (2009)

    Article  Google Scholar 

  106. B. Chen, F. Wang, Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 53(2), 358–367 (2019)

    Article  Google Scholar 

  107. Q. Chen, X. Xie, B. Huang, L. Liang, S. Han, Z. Yi, …, X. Liu, Confining excitation energy in Er3+‐sensitized upconversion nanocrystals through Tm3+‐mediated transient energy trapping. Angewandte Chemie 129(26), 7713–7717 (2017)

    Google Scholar 

  108. J. Zuo, Q. Li, B. Xue, C. Li, Y. Chang, Y. Zhang, …, X. Kong, Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 9(23), 7941–7946 (2017)

    Google Scholar 

  109. T. Cheng, R. Marin, A. Skripka, F. Vetrone, Small and bright lithium-based upconverting nanoparticles. J. Am. Chem. Soc. 140(40), 12890–12899 (2018)

    Article  Google Scholar 

  110. D.J. Garfield, N.J. Borys, S.M. Hamed, N.A. Torquato, C.A. Tajon, B. Tian, …, P.J. Schuck, Enrichment of molecular antenna triplets amplifies upconverting nanoparticle emission. Nat. Photon. 12(7), 402–407 (2018)

    Google Scholar 

  111. X. Wang, R.R. Valiev, T.Y. Ohulchanskyy, H. Ågren, C. Yang, G. Chen, Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 46(14), 4150–4167 (2017)

    Article  Google Scholar 

  112. G. Tessitore, G.A. Mandl, M.G. Brik, W. Park, J.A. Capobianco, Recent insights into upconverting nanoparticles: spectroscopy, modeling, and routes to improved luminescence. Nanoscale 11(25), 12015–12029 (2019)

    Article  Google Scholar 

  113. P. Bharadwaj, B. Deutsch, L. Novotny, Optical antennas. Adv. Opt. Photon. 1(3), 438–483 (2009)

    Article  Google Scholar 

  114. A.I. Kuznetsov, A.E. Miroshnichenko, M.L Brongersma, Y.S. Kivshar, B. Luk’yanchuk, Optically resonant dielectric nanostructures. Science 354(6314), aag2472 (2016)

    Google Scholar 

  115. W. Park, D. Lu, S. Ahn, Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44(10), 2940–2962 (2015)

    Article  Google Scholar 

  116. L. Zhang, M. Liu, Z. Fang, Q. Ju, Synthesis and biomedical application of nanocomposites integrating metal-organic frameworks with upconversion nanoparticles. Coord. Chem. Rev. 468, 214641 (2022)

    Article  Google Scholar 

  117. X. Xu, Y. Long, P. Lei, L. Dong, K. Du, J. Feng, H. Zhang, A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles. J. Mater. Chem. C 5(37), 9666–9672 (2017)

    Article  Google Scholar 

  118. J. Dutta, V.K. Rai, APTES Modified GO-PEI-Er3+/Yb3+: NaYF4 upconverting nanoparticles hybrid film-based optical pH sensor and NIR photoelectric response. IEEE Sens. J. 19(10), 3609–3615 (2019)

    Article  Google Scholar 

  119. B. Kumar, A. Murali, S. Giri, Upconversion nanoplatform for FRET-based sensing of dopamine and pH. Chem. Select 4(19), 5407–5414 (2019)

    Google Scholar 

  120. X. Liu, S.Q. Zhang, X. Wei, T. Yang, M.L. Chen, J.H. Wang, A novel “modularized” optical sensor for pH monitoring in biological matrixes. Biosens. Bioelectron. 109, 150–155 (2018)

    Article  Google Scholar 

  121. R. Arppe, T. Näreoja, S. Nylund, L. Mattsson, S. Koho, J.M. Rosenholm, …, M. Schäferling, Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 6(12), 6837–6843 (2014)

    Google Scholar 

  122. M.K. Mahata, K.T. Lee, Development of near-infrared sensitized core–shell–shell upconverting nanoparticles as pH-responsive probes. Nanosc. Adv. 1(6), 2372–2381 (2019)

    Article  Google Scholar 

  123. S. Du, J. Hernández-Gil, H. Dong, X. Zheng, G. Lyu, M. Bañobre-López, …, N.J. Long, Design and validation of a new ratiometric intracellular pH imaging probe using lanthanide-doped upconverting nanoparticles. Dalton Trans. 46(40), 13957–13965 (2017)

    Google Scholar 

  124. T. Ma, Y. Ma, S. Liu, L. Zhang, T. Yang, H.R. Yang, …, W. Huang, Dye-conjugated upconversion nanoparticles for ratiometric imaging of intracellular pH values. J. Mater. Chem. C 3(26), 6616–6620 (2015)

    Google Scholar 

  125. C. Li, J. Zuo, L. Zhang, Y. Chang, Y. Zhang, L. Tu, …, X. Kong, Accurate quantitative sensing of intracellular pH based on self-ratiometric upconversion luminescent nanoprobe. Sci. Rep. 6(1), 1–9 (2016)

    Google Scholar 

  126. S. Radunz, E. Andresen, C. Würth, A. Koerdt, H.R. Tschiche, U. Resch-Genger, Simple self-referenced luminescent pH sensors based on upconversion nanocrystals and pH-sensitive fluorescent BODIPY dyes. Anal. Chem. 91(12), 7756–7764 (2019)

    Article  Google Scholar 

  127. M. Strobl, T. Mayr, I. Klimant, S.M. Borisov, Photostable upconverting and downconverting pH sensors based on combination of a colorimetric NIR indicator and stable inorganic phosphors as secondary emitters. Sens. Actuat., B Chem. 245, 972–979 (2017)

    Article  Google Scholar 

  128. M. Luo, Q. Li, M. Chen, Y. He, H. Ye, X. Yu, Controlled assembly of gold and rare-earth upconversion nanoparticles for ratiometric sensing applications. Wuhan Univ. J. Nat. Sci. 18(4), 277–282 (2013)

    Article  Google Scholar 

  129. C. Ding, S. Cheng, C. Zhang, Y. Xiong, M. Ye, Y. Xian, Ratiometric upconversion luminescence nanoprobe with near-infrared Ag2S nanodots as the energy acceptor for sensing and imaging of pH in vivo. Anal. Chem. 91(11), 7181–7188 (2019)

    Article  Google Scholar 

  130. V.K. Rai (ed.), Upconverting Nanoparticles: From Fundamentals to Applications (Wiley, 2022). ISBN: 978-3-527-34965-4

    Google Scholar 

  131. L.N. Sun, H. Peng, M.I. Stich, D. Achatz, O.S. Wolfbeis, pH sensor based on upconverting luminescent lanthanide nanorods. Chem. Commun. 33, 5000–5002 (2009)

    Article  Google Scholar 

  132. W. Zimmerli, Prosthetic-joint-associated infections. Best Pract. Res. Clin. Rheumatol. 20(6), 1045–1063 (2006)

    Article  Google Scholar 

  133. R.M. Mody, M. Zapor, J.D. Hartzell, P.M. Robben, P. Waterman, R. Wood-Morris, …, G. Wortmann, Infectious complications of damage control orthopedics in war trauma. J. Trauma Acute Care Surg. 67(4), 758–761 (2009)

    Google Scholar 

  134. F. Wang, Y. Raval, H. Chen, T.R.J. Tzeng, J.D. DesJardins, J.N. Anker, Development of luminescent pH sensor films for monitoring bacterial growth through tissue. Adv. Healthc. Mater. 3(2), 197–204 (2014)

    Article  Google Scholar 

  135. M.K. Mahata, H. Bae, K.T. Lee, Upconversion luminescence sensitized pH-nanoprobes. Molecules 22(12), 2064 (2017)

    Article  Google Scholar 

  136. L. Yan, Y.N. Chang, W. Yin, X. Liu, D. Xiao, G. Xing, …, Y. Zhao, Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Phys. Chem. Chem. Phys. 16(4), 1576–1582 (2014)

    Google Scholar 

  137. L. Xie, Y. Qin, H.Y. Chen, Polymeric optodes based on upconverting nanorods for fluorescent measurements of pH and metal ions in blood samples. Anal. Chem. 84(4), 1969–1974 (2012)

    Article  Google Scholar 

  138. R.J. Meier, J.M. Simbürger, T. Soukka, M. Schaferling, Background-free referenced luminescence sensing and imaging of pH using upconverting phosphors and color camera read-out. Anal. Chem. 86(11), 5535–5540 (2014)

    Article  Google Scholar 

  139. M. Schäferling, Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH. Wiley Interdisc. Rev.: Nanomed. Nanobiotechnol. 8(3), 378–413 (2016)

    Google Scholar 

  140. T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. 437(1–2), 55–75 (1948)

    Article  MATH  Google Scholar 

  141. R.M. Clegg, Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6(1), 103–110 (1995)

    Article  Google Scholar 

  142. R. Deng, J. Wang, R. Chen, W. Huang, X. Liu, Enabling Förster resonance energy transfer from large nanocrystals through energy migration. J. Am. Chem. Soc. 138(49), 15972–15979 (2016)

    Article  Google Scholar 

  143. E. Hemmer, P. Acosta-Mora, J. Mendez-Ramos, S. Fischer, Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J. Mater. Chem. B 5(23), 4365–4392 (2017)

    Article  Google Scholar 

  144. J.C. Waters, Accuracy and precision in quantitative fluorescence microscopy. J. Cell Biol. 185(7), 1135–1148 (2009)

    Article  Google Scholar 

  145. J.A. Mindell, Lysosomal acidification mechanisms. Ann. Rev. Physiol. 74, 69–86 (2012)

    Article  Google Scholar 

  146. T. Nareoja, T. Deguchi, S. Christ, R. Peltomaa, N. Prabhakar, E. Fazeli, …, M. Schäferling, Ratiometric sensing and imaging of intracellular pH using polyethylenimine-coated photon upconversion nanoprobes. Anal. Chem. 89(3), 1501–1508 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Kumar Rai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kesarwani, V., Rai, V.K. (2023). Upconversion Luminescence Sensitized pH-Nanoprobes. In: Kumar, V., Ayoub, I., Swart, H.C., Sehgal, R. (eds) Upconversion Nanoparticles (UCNPs) for Functional Applications. Progress in Optical Science and Photonics, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-99-3913-8_10

Download citation

Publish with us

Policies and ethics