Skip to main content

Molecular Landscape and Personalized Prognostic Prediction of MPNs

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia
  • 470 Accesses

Abstract

The past two decades have seen a plethora of studies and observations on driver and non-molecular alterations of prognostic significance in myeloproliferative neoplasm. In this chapter, we describe the molecular landscape of classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs). Their relevance in the classification and prognostic assessment of MPN will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferreira Cristina S, Polo B, Lacerda JF. Somatic mutations in Philadelphia chromosome-negative myeloproliferative neoplasms. Semin Hematol. 2018;55(4):215–22.

    PubMed  Google Scholar 

  2. Loscocco GG, Guglielmelli P, Vannucchi AM. Impact of mutational profile on the management of myeloproliferative neoplasms: a short review of the emerging data. Onco Targets Ther. 2020;13:12367–82.

    PubMed  PubMed Central  Google Scholar 

  3. Barbui T, Thiele J, Gisslinger H, Kvasnicka HM, Vannucchi AM, Guglielmelli P, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15.

    PubMed  PubMed Central  Google Scholar 

  4. Jang M-A, Choi CW. Recent insights regarding the molecular basis of myeloproliferative neoplasms. Korean J Intern Med. 2020;35(1):1–11.

    PubMed  Google Scholar 

  5. Grabek J, Straube J, Bywater M, Lane SW. MPN: the molecular drivers of disease initiation, progression and transformation and their effect on treatment. Cell. 2020;9(8):1901.

    Google Scholar 

  6. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2021 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95(12):1599–613.

    PubMed  Google Scholar 

  7. Chia YC, Ramli M, Woon PY, Johan MF, Hassan R, Islam MA. Molecular genetics of thrombotic myeloproliferative neoplasms: implications in precision oncology. Genes Dis. 2021; https://doi.org/10.1016/j.gendis.2021.01.002.

  8. Langabeer SE, Andrikovics H, Asp J, Bellosillo B, Carillo S, Haslam K, et al. Molecular diagnostics of myeloproliferative neoplasms. Eur J Haematol. 2015;95(4):270–9.

    PubMed  Google Scholar 

  9. Constantinescu SN, Vainchenker W, Levy G, Papadopoulos N. Functional consequences of mutations in myeloproliferative neoplasms. Hemasphere. 2021;5(6):e578.

    PubMed  PubMed Central  Google Scholar 

  10. Zhou A, Afzal A, Oh ST. Prognostication in Philadelphia chromosome negative myeloproliferative neoplasms: a review of the recent literature. Curr Hematol Malig Rep. 2017;12(5):397–405.

    PubMed  PubMed Central  Google Scholar 

  11. Tefferi A, Vannucchi AM. Genetic risk assessment in myeloproliferative neoplasms. Mayo Clin Proc. 2017;92(8):1283–90.

    PubMed  Google Scholar 

  12. McMullin MF, Harrison CN, Ali S, Cargo C, Chen F, Ewing J, et al. A guideline for the diagnosis and management of polycythaemia vera. A British society for haematology guideline. Br J Haematol. 2019;184(2):176–91.

    PubMed  Google Scholar 

  13. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    PubMed  Google Scholar 

  14. Marcellino BK, Hoffman R. Recent advances in prognostication and treatment of polycythemia vera. Fac Rev. 2021;10:29.

    PubMed  PubMed Central  Google Scholar 

  15. Awada H, Voso M, Guglielmelli P, Gurnari C. Essential thrombocythemia and acquired von Willebrand syndrome: the shadowlands between thrombosis and bleeding. Cancer. 2020;12(7):1746.

    Google Scholar 

  16. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2.

    PubMed  PubMed Central  Google Scholar 

  17. Stuckey R, Gómez-Casares MT. Recent advances in the use of molecular analyses to inform the diagnosis and prognosis of patients with polycythaemia vera. Int J Mol Sci. 2021;22(9):5042.

    PubMed  PubMed Central  Google Scholar 

  18. Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto J-C, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4(19):4887–97.

    PubMed  PubMed Central  Google Scholar 

  19. Cuthbert D, Stein BL. Polycythemia vera-associated complications: pathogenesis, clinical manifestations, and effects on outcomes. J Blood Med. 2019;10:359–71.

    PubMed  PubMed Central  Google Scholar 

  20. Song M-K, Park B-B, Uhm J-E. Understanding splenomegaly in myelofibrosis: association with molecular pathogenesis. Int J Mol Sci. 2018;19(3):898.

    PubMed  PubMed Central  Google Scholar 

  21. Emanuel RM, Dueck AC, Geyer HL, Kiladjian J-J, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30(33):4098–103.

    PubMed  PubMed Central  Google Scholar 

  22. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27(9):1874–81.

    PubMed  PubMed Central  Google Scholar 

  23. Palandri F, Mora B, Gangat N, Catani L. Is there a gender effect in polycythemia vera? Ann Hematol. 2021;100(1):11–25.

    PubMed  Google Scholar 

  24. Takenaka K, Shimoda K, Akashi K. Recent advances in the diagnosis and management of primary myelofibrosis. Korean J Intern Med. 2018;33(4):679–90.

    PubMed  PubMed Central  Google Scholar 

  25. Shallis RM, Zeidan AM, Wang R, Podoltsev NA. Epidemiology of the Philadelphia chromosome-negative classical myeloproliferative neoplasms. Hematol Oncol Clin North Am. 2021;35(2):177–89.

    PubMed  Google Scholar 

  26. Spivak JL. Polycythemia vera. Curr Treat Options in Oncol. 2018;19(2):12.

    Google Scholar 

  27. Accurso V, Santoro M, Raso S, Contrino AD, Casimiro P, Di Piazza F, et al. Splenomegaly impacts prognosis in essential thrombocythemia and polycythemia vera: a single center study. Hematol Rep. 2019;11(4):8281.

    PubMed  PubMed Central  Google Scholar 

  28. Rungjirajittranon T, Owattanapanich W, Ungprasert P, Siritanaratkul N, Ruchutrakool T. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19(1):184.

    PubMed  PubMed Central  Google Scholar 

  29. Barbui T, Thiele J, Ferrari A, Vannucchi AM, Tefferi A. The new WHO classification for essential thrombocythemia calls for revision of available evidences. Blood Cancer J. 2020;10(2):22.

    PubMed  PubMed Central  Google Scholar 

  30. Masarova L, Verstovsek S. The evolving understanding of prognosis in post-essential thrombocythemia myelofibrosis and post-polycythemia vera myelofibrosis vs primary myelofibrosis. Clin Adv Hematol Oncol. 2019;17(5):299–307.

    PubMed  Google Scholar 

  31. Iurlo A, Cattaneo D, Gianelli U. Blast transformation in myeloproliferative neoplasms: risk factors, biological findings, and targeted therapeutic options. Int J Mol Sci. 2019;20(8):1839.

    PubMed  PubMed Central  Google Scholar 

  32. Kjær L. Clonal hematopoiesis and mutations of myeloproliferative neoplasms. Cancer. 2020;12(8):2100.

    Google Scholar 

  33. Skov V. Next generation sequencing in MPNs. lessons from the past and prospects for use as predictors of prognosis and treatment responses. Cancer. 2020;12(8):2194.

    Google Scholar 

  34. Yow KS, Liu X, Chai CN, Tung ML, Yan B, Christopher D, et al. Relationship of JAK2 (V617F) allelic burden with clinico- haematological manifestations of Philadelphia-negative myeloproliferative neoplasms. Asian Pac J Cancer Prev. 2020;21(9):2805–10.

    PubMed  PubMed Central  Google Scholar 

  35. Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6.

    PubMed  Google Scholar 

  36. Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 2010;24(9):1574–9.

    PubMed  Google Scholar 

  37. Falchi L, Kantarjian HM, Verstovsek S. Assessing the thrombotic risk of patients with essential thrombocythemia in the genomic era. Leukemia. 2017;31(9):1845–54.

    PubMed  PubMed Central  Google Scholar 

  38. Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124(16):2507–13.

    PubMed  PubMed Central  Google Scholar 

  39. Singdong R, Siriboonpiputtana T, Chareonsirisuthigul T, Kongruang A, Limsuwanachot N, Sirirat T, et al. Characterization and prognosis significance of JAK2 (V617F), MPL, and CALR mutations in Philadelphia-negative myeloproliferative neoplasms. Asian Pac J Cancer Prev. 2016;17(10):4647–53.

    PubMed  PubMed Central  Google Scholar 

  40. Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117(10):2813–6.

    PubMed  Google Scholar 

  41. Guijarro-Hernández A, Vizmanos JL. A broad overview of signaling in Ph-negative classic myeloproliferative neoplasms. Cancer. 2021;13(5):984.

    Google Scholar 

  42. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2Exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    PubMed  PubMed Central  Google Scholar 

  43. Tavakoli V, Naing S. JAK2exon 12 mutation-positive myeloproliferative neoplasm associated with recurrent thromboembolism. Blood Res. 2017;52(1):67.

    PubMed  PubMed Central  Google Scholar 

  44. Tondeur S, Paul F, Riou J, Mansier O, Ranta D, Le Clech L, et al. Long-term follow-up of JAK2 exon 12 polycythemia vera: a French intergroup of myeloproliferative neoplasms (FIM) study. Leukemia. 2021;35(3):871–5.

    PubMed  Google Scholar 

  45. Wu Z, Zhang X, Xu X, Chen Y, Hu T, Kang Z, et al. The mutation profile of JAK2 and CALR in Chinese Han patients with Philadelphia chromosome-negative myeloproliferative neoplasms. J Hematol Oncol. 2014;7(1):48.

    PubMed  PubMed Central  Google Scholar 

  46. Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci. 2020;111(8):2682–8.

    PubMed  PubMed Central  Google Scholar 

  47. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.

    PubMed  PubMed Central  Google Scholar 

  48. Belčič Mikič T, Pajič T, Zver S, Sever M. The contemporary approach to CALR-positive myeloproliferative neoplasms. Int J Mol Sci. 2021;22(7):3371.

    PubMed  PubMed Central  Google Scholar 

  49. Levine RL. Another piece of the myeloproliferative neoplasms puzzle. N Engl J Med. 2013;369(25):2451–2.

    PubMed  Google Scholar 

  50. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    PubMed  Google Scholar 

  51. Kim SY, Im K, Park SN, Kwon J, Kim J-A, Lee DS. CALR, JAK2, and MPL mutation profiles in patients with four different subtypes of myeloproliferative neoplasms. Am J Clin Pathol. 2015;143(5):635–44.

    PubMed  Google Scholar 

  52. Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Mudireddy M, Bartalucci N, et al. GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia. 2018;32(7):1631–42.

    PubMed  PubMed Central  Google Scholar 

  53. Tefferi A, Guglielmelli P, Pardanani A, Vannucchi AM. Myelofibrosis treatment algorithm 2018. Blood Cancer J. 2018;8(8):72.

    PubMed  PubMed Central  Google Scholar 

  54. Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–51.

    PubMed  PubMed Central  Google Scholar 

  55. Tefferi A, Wassie EA, Guglielmelli P, Gangat N, Belachew AA, Lasho TL, et al. Type 1 versus type 2 calreticulin mutations in essential thrombocythemia: a collaborative study of 1027 patients. Am J Hematol. 2014;89(8):E121–E4.

    PubMed  Google Scholar 

  56. Eldeweny S, Ibrahim H, Elsayed G, Samra M. MPL W515 L/K mutations in myeloproliferative neoplasms. Egypt J Med Hum Genet. 2019;20(1):31.

    Google Scholar 

  57. Szuber N, Hanson CA, Lasho TL, Finke C, Ketterling RP, Pardanani A, et al. MPL-mutated essential thrombocythemia: a morphologic reappraisal. Blood Cancer J. 2018;8(12):121.

    PubMed  PubMed Central  Google Scholar 

  58. Vainchenker W, Plo I, Marty C, Varghese LN, Constantinescu SN. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications. Expert Rev Hematol. 2019;12(6):437–48.

    PubMed  Google Scholar 

  59. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69.

    PubMed  PubMed Central  Google Scholar 

  60. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12.

    PubMed  PubMed Central  Google Scholar 

  61. Pardanani A, Lasho TL, Finke CM, Mai M, McClure RF, Tefferi A. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia. 2010;24(6):1146–51.

    PubMed  Google Scholar 

  62. Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med. 2010;362(4):369–70.

    PubMed  Google Scholar 

  63. Wang Z, Liu W, Wang M, Li Y, Wang X, Yang E, et al. Prognostic value of ASXL1 mutations in patients with primary myelofibrosis and its relationship with clinical features: a meta-analysis. Ann Hematol. 2021;100(2):465–79.

    PubMed  PubMed Central  Google Scholar 

  64. Tefferi A, Lasho TL, Finke C, Gangat N, Hanson CA, Ketterling RP, et al. Prognostic significance of ASXL1 mutation types and allele burden in myelofibrosis. Leukemia. 2018;32(3):837–9.

    PubMed  Google Scholar 

  65. Alvarez-Larrán A, Senín A, Fernández-Rodríguez C, Pereira A, Arellano-Rodrigo E, Gómez M, et al. Impact of genotype on leukaemic transformation in polycythaemia vera and essential thrombocythaemia. Br J Haematol. 2017;178(5):764–71.

    PubMed  Google Scholar 

  66. Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500.

    PubMed  Google Scholar 

  67. Taylor J, Lee SC. Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Genes Chromosom Cancer. 2019;58(12):889–902.

    PubMed  Google Scholar 

  68. Tokumori FC, Talati C, Ali NA, Sallman D, Yun S, Sweet K, et al. MPN-398: U2AF1 and SRSF2 drive poor prognosis in myelofibrosis through different mechanisms. Clin Lymphoma Myeloma Leuk. 2020;20:S339–S40.

    Google Scholar 

  69. Bartels S, Lehmann U, Büsche G, Schlue J, Mozer M, Stadler J, et al. SRSF2 and U2AF1 mutations in primary myelofibrosis are associated with JAK2 and MPL but not calreticulin mutation and may independently reoccur after allogeneic stem cell transplantation. Leukemia. 2015;29(1):253–5.

    PubMed  Google Scholar 

  70. Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189(2):291–302.

    PubMed  Google Scholar 

  71. Lasho TL, Mudireddy M, Finke CM, Hanson CA, Ketterling RP, Szuber N, et al. Targeted next-generation sequencing in blast phase myeloproliferative neoplasms. Blood Adv. 2018;2(4):370–80.

    PubMed  PubMed Central  Google Scholar 

  72. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1(1):21–30.

    PubMed  PubMed Central  Google Scholar 

  73. Lasho TL, Pardanani A, Tefferi A. LNK Mutations inJAK2Mutation–negative erythrocytosis. N Engl J Med. 2010;363(12):1189–90.

    PubMed  Google Scholar 

  74. Maslah N, Cassinat B, Verger E, Kiladjian JJ, Velazquez L. The role of LNK/SH2B3 genetic alterations in myeloproliferative neoplasms and other hematological disorders. Leukemia. 2017;31(8):1661–70.

    PubMed  Google Scholar 

  75. Jäger R, Gisslinger H, Passamonti F, Rumi E, Berg T, Gisslinger B, et al. Deletions of the transcription factor ikaros in myeloproliferative neoplasms. Leukemia. 2010;24(7):1290–8.

    PubMed  Google Scholar 

  76. McNamara CJ, Panzarella T, Kennedy JA, Arruda A, Claudio JO, Daher-Reyes G, et al. The mutational landscape of accelerated- and blast-phase myeloproliferative neoplasms impacts patient outcomes. Blood Adv. 2018;2(20):2658–71.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, H., Yung, Y., Chu, C., Yip, A. (2023). Molecular Landscape and Personalized Prognostic Prediction of MPNs. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics