Skip to main content

In the Pipeline—Emerging Therapy for ALL

  • Chapter
  • First Online:
Pathogenesis and Treatment of Leukemia

Abstract

Despite medical advances in recent decades with improvement in survival rates (Lenk et al., Cancer Metastasis Rev. 2020;39:173–87; Meyer and Hermiston. Cancer Drug Resist. 2019;2: 313–25), decreased treatment tolerance, persistent minimal residual disease positivity, and subsequent disease recurrence remain issues of concern (Scheffold et al. Venetoclax: targeting BCL2 in hematological cancers. Cham: Springer; 2018. pp. 215–42). Relapses often confer a dismal prognosis with poor outcome. In addition, not all patients possess the capacity to withstand intensive chemotherapy or receive hematopoietic stem cell transplantation (HSCT) due to old age, frail state, or the presence of comorbidities (Sas et al. J Clin Med. 2019;8:1175). Therefore, novel therapies with better safety profile and higher efficacy are of paramount importance in improving relapse rates, disease response, and preventing chemoresistance. We review the novel agents targeting different pathways, receptors, or systems involved in the leukemogenesis of ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577-e.

    Google Scholar 

  2. Hunger SP, Teachey DT, Grupp S, Aplenc R. Childhood leukemia. Amsterdam: Elsevier; 2020. p. 1748–64.e4.

    Google Scholar 

  3. Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The unfolded protein response: a novel therapeutic target in acute leukemias. Cancers. 2020;12(2):333.

    PubMed  PubMed Central  Google Scholar 

  4. Eryılmaz E, Canpolat C. Novel agents for the treatment of childhood leukemia: an update. Onco Targets Ther. 2017;10:3299–306.

    PubMed  PubMed Central  Google Scholar 

  5. Lenk L, Alsadeq A, Schewe DM. Involvement of the central nervous system in acute lymphoblastic leukemia: opinions on molecular mechanisms and clinical implications based on recent data. Cancer Metastasis Rev. 2020;39(1):173–87.

    PubMed  PubMed Central  Google Scholar 

  6. Meyer LK, Hermiston ML. The epigenome in pediatric acute lymphoblastic leukemia: drug resistance and therapeutic opportunities. Cancer Drug Resist. 2019;2(2):313–25.

    PubMed  PubMed Central  Google Scholar 

  7. Scheffold A, Jebaraj BMC, Stilgenbauer S. Venetoclax: targeting BCL2 in hematological cancers. Cham: Springer; 2018. p. 215–42.

    Google Scholar 

  8. Sas V, Moisoiu V, Teodorescu P, Tranca S, Pop L, Iluta S, et al. Approach to the adult acute lymphoblastic leukemia patient. J Clin Med. 2019;8(8):1175.

    PubMed  PubMed Central  Google Scholar 

  9. Gomes AM, Soares MVD, Ribeiro P, Caldas J, Povoa V, Martins LR, et al. Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica. 2014;99(6):1062–8.

    PubMed  PubMed Central  Google Scholar 

  10. Simioni C, Martelli A, Zauli G, Melloni E, Neri L. Targeting mTOR in acute lymphoblastic leukemia. Cell. 2019;8(2):190.

    Google Scholar 

  11. Sanchez V, Nichols C, Kim H, Gang E, Kim Y-M. Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci. 2019;20(2):412.

    PubMed  PubMed Central  Google Scholar 

  12. Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, et al. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal. 2017;38:10–25.

    PubMed  Google Scholar 

  13. Martelli AM, Paganelli F, Fazio A, Bazzichetto C, Conciatori F, McCubrey JA. The key roles of PTEN in T-cell acute lymphoblastic leukemia development, progression, and therapeutic response. Cancers. 2019;11(5):629.

    PubMed  PubMed Central  Google Scholar 

  14. Jenkinson S, Kirkwood AA, Goulden N, Vora A, Linch DC, Gale RE. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial. Leukemia. 2016;30(1):39–47.

    PubMed  Google Scholar 

  15. Richter A, Roolf C, Hamed M, Gladbach YS, Sender S, Konkolefski C, et al. Combined Casein Kinase II inhibition and epigenetic modulation in acute B-lymphoblastic leukemia. BMC Cancer. 2019;19(1):1–11.

    Google Scholar 

  16. Cani A, Simioni C, Martelli AM, Zauli G, Tabellini G, Ultimo S, et al. Triple Akt inhibition as a new therapeutic strategy in T-cell acute lymphoblastic leukemia. Oncotarget. 2015;6(9):6597–610.

    PubMed  PubMed Central  Google Scholar 

  17. Badura S, Tesanovic T, Pfeifer H, Wystub S, Nijmeijer BA, Liebermann M, et al. Differential effects of selective inhibitors targeting the PI3K/AKT/mTOR pathway in acute lymphoblastic leukemia. PLoS One. 2013;8(11):e80070.

    PubMed  PubMed Central  Google Scholar 

  18. Adam E, Kim HN, Gang EJ, Schnair C, Lee S, Lee S, et al. The PI3Kδ Inhibitor Idelalisib Inhibits Homing in an in Vitro and in Vivo Model of B ALL. Cancers. 2017;9(12):121.

    PubMed  PubMed Central  Google Scholar 

  19. Safaroghli-Azar A, Bashash D, Sadr P, Momeny M, Ghaffari S. PI3K-δ inhibition using CAL-101 exerts apoptotic effects and increases doxorubicin-induced cell death in pre-B-acute lymphoblastic leukemia cells. Anti-Cancer Drugs. 2017;28:1.

    Google Scholar 

  20. Eldfors S, Kuusanmäki H, Kontro M, Majumder MM, Parsons A, Edgren H, et al. Idelalisib sensitivity and mechanisms of disease progression in relapsed TCF3-PBX1 acute lymphoblastic leukemia. Leukemia. 2017;31(1):51–7.

    PubMed  Google Scholar 

  21. Sklarz LM, Gladbach YS, Ernst M, Hamed M, Roolf C, Sender S, et al. Combination of the PI3K inhibitor Idelalisib with the conventional cytostatics cytarabine and dexamethasone leads to changes in pathway activation that induce anti-proliferative effects in B lymphoblastic leukaemia cell lines. Cancer Cell Int. 2020;20(1):390.

    PubMed  PubMed Central  Google Scholar 

  22. Silveira AB, Laranjeira ABA, Rodrigues GOL, Leal PC, Cardoso BA, Barata JT, et al. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia. Oncotarget. 2015;6(15):13105–18.

    PubMed  PubMed Central  Google Scholar 

  23. Ridge S, Yao H, Price TT, Whiteley AE, Burns M, Sipkins DA. PI3Kα/δ inhibitor, copanlisib, inhibits acute lymphoblastic leukemia cell growth, increases survival and inhibits CNS disease progression in leukemic mice. Blood. 2019;134(Supplement_1):2758.

    Google Scholar 

  24. Lonetti A, Cappellini A, Spartà AM, Chiarini F, Buontempo F, Evangelisti C, et al. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors. Oncotarget. 2015;6(12):10399–414.

    PubMed  PubMed Central  Google Scholar 

  25. Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, et al. Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol. 2018;233(3):1796–811.

    PubMed  Google Scholar 

  26. Lonetti A, Cappellini A, Bertaina A, Locatelli F, Pession A, Buontempo F, et al. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol. 2016;9(1):114.

    PubMed  PubMed Central  Google Scholar 

  27. Lonetti A, Antunes IL, Chiarini F, Orsini E, Buontempo F, Ricci F, et al. Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28(6):1196–206.

    PubMed  Google Scholar 

  28. Bashash D, Safaroghli-Azar A, Delshad M, Bayati S, Nooshinfar E, Ghaffari SH. Inhibitor of pan class-I PI3K induces differentially apoptotic pathways in acute leukemia cells: Shedding new light on NVP-BKM120 mechanism of action. Int J Biochem Cell Biol. 2016;79:308–17.

    PubMed  Google Scholar 

  29. Ragon BK, Kantarjian H, Jabbour E, Ravandi F, Cortes J, Borthakur G, et al. Buparlisib, a PI3K inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I trial of patients with advanced leukemias. Am J Hematol. 2017;92(1):7–11.

    PubMed  Google Scholar 

  30. Simioni C, Neri LM, Tabellini G, Ricci F, Bressanin D, Chiarini F, et al. Cytotoxic activity of the novel Akt inhibitor, MK-2206, in T-cell acute lymphoblastic leukemia. Leukemia. 2012;26(11):2336–42.

    PubMed  Google Scholar 

  31. Richter A, Fischer E, Holz C, Schulze J, Lange S, Sekora A, et al. Combined application of Pan-AKT inhibitor MK-2206 and BCL-2 antagonist venetoclax in B-cell precursor acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(5):2771.

    PubMed  PubMed Central  Google Scholar 

  32. Lynch JT, McEwen R, Crafter C, McDermott U, Garnett MJ, Barry ST, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7(16):22128–39.

    PubMed  PubMed Central  Google Scholar 

  33. Wang F, Demir S, Gehringer F, Osswald CD, Seyfried F, Enzenmüller S, et al. Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(26):2929–42.

    PubMed  Google Scholar 

  34. Levy DS, Kahana JA, Kumar R. AKT inhibitor, GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood. 2009;113(8):1723–9.

    PubMed  Google Scholar 

  35. Wong J, Welschinger R, Hewson J, Bradstock KF, Bendall LJ. Efficacy of dual PI-3K and mTOR inhibitors in vitro and in vivo in acute lymphoblastic leukemia. Oncotarget. 2014;5(21):10460–72.

    PubMed  PubMed Central  Google Scholar 

  36. Crazzolara R, Cisterne A, Thien M, Hewson J, Baraz R, Bradstock KF, et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood. 2009;113(14):3297–306.

    PubMed  Google Scholar 

  37. Daver N, Boumber Y, Kantarjian H, Ravandi F, Cortes J, Rytting ME, et al. A Phase I/II study of the mTOR inhibitor everolimus in combination with HyperCVAD chemotherapy in patients with relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(12):2704–14.

    PubMed  PubMed Central  Google Scholar 

  38. Place AE, Pikman Y, Stevenson KE, Harris MH, Pauly M, Sulis M-L, et al. Phase I trial of the mTOR inhibitor everolimus in combination with multi-agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65(7):e27062.

    PubMed  Google Scholar 

  39. Rheingold SR, Tasian SK, Whitlock JA, Teachey DT, Borowitz MJ, Liu X, et al. A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukaemia: a Children’s Oncology Group study (ADVL1114). Br J Haematol. 2017;177(3):467–74.

    PubMed  PubMed Central  Google Scholar 

  40. Hall CP, Reynolds CP, Kang MH. Modulation of glucocorticoid resistance in pediatric t-cell acute lymphoblastic leukemia by increasing BIM expression with the PI3K/mTOR inhibitor BEZ235. Clin Cancer Res. 2016;22(3):621–32.

    PubMed  Google Scholar 

  41. Lang F, Wunderle L, Badura S, Schleyer E, Brüggemann M, Serve H, et al. A phase I study of a dual PI3-kinase/mTOR inhibitor BEZ235 in adult patients with relapsed or refractory acute leukemia. BMC Pharmacol Toxicol. 2020;21(1):70.

    PubMed  PubMed Central  Google Scholar 

  42. Tasian SK, Teachey DT, Li Y, Shen F, Harvey RC, Chen IM, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129(2):177–87.

    PubMed  PubMed Central  Google Scholar 

  43. Gazi M, Moharram SA, Marhäll A, Kazi JU. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett. 2017;392:9–16.

    PubMed  Google Scholar 

  44. Biondani G, Peyron J-F. Metformin, an anti-diabetic drug to target leukemia. Front Endocrinol. 2018;9:446.

    Google Scholar 

  45. Ramos-Peñafiel C, Olarte-Carrillo I, Cerón-Maldonado R, Rozen-Fuller E, Kassack-Ipiña JJ, Meléndez-Mier G, et al. Effect of metformin on the survival of patients with ALL who express high levels of the ABCB1 drug resistance gene. J Transl Med. 2018;16(1):245.

    PubMed  PubMed Central  Google Scholar 

  46. Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmacogenomics Pers Med. 2017;10:169–81.

    Google Scholar 

  47. Adnan-Awad S, Kim D, Hohtari H, Javarappa KK, Brandstoetter T, Mayer I, et al. Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia. 2020;35(7):1964–75.

    PubMed  PubMed Central  Google Scholar 

  48. Kang Z-J, Liu Y-F, Xu L-Z, Long Z-J, Huang D, Yang Y, et al. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35(1):48.

    PubMed  PubMed Central  Google Scholar 

  49. Vinhas R, Lourenço A, Santos S, Lemos M, Ribeiro P, Botelho De Sousa A, et al. A novel <em>BCR-ABL1</em> mutation in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia. Onco Targets Ther. 2018;11:8589–98.

    PubMed  PubMed Central  Google Scholar 

  50. Byun JM, Koh Y, Shin D-Y, Kim I, Yoon S-S, Lee J-O, et al. BCR-ABL translocation as a favorable prognostic factor in elderly patients with acute lymphoblastic leukemia in the era of potent tyrosine kinase inhibitors. Haematologica. 2017;102(5):e187–e90.

    PubMed  PubMed Central  Google Scholar 

  51. Sanford DS, Kantarjian H, O’Brien S, Jabbour E, Cortes J, Ravandi F. The role of ponatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia. Expert Rev Anticancer Ther. 2015;15(4):365–73.

    PubMed  Google Scholar 

  52. Tan FH, Putoczki TL, Stylli SS, Luwor RB. Ponatinib: a novel multi-tyrosine kinase inhibitor against human malignancies. Onco Targets Ther. 2019;12:635–45.

    PubMed  PubMed Central  Google Scholar 

  53. Kaur P, Feldhahn N, Zhang B, Trageser D, Müschen M, Pertz V, et al. Nilotinib treatment in mouse models of P190 Bcr/Abl lymphoblastic leukemia. Mol Cancer. 2007;6(1):67.

    PubMed  PubMed Central  Google Scholar 

  54. Ottmann OG, Pfeifer H, Cayuela J-M, Spiekermann K, Beck J, Jung WE, et al. Nilotinib (Tasigna®) and chemotherapy for first-line treatment in elderly patients with de novo Philadelphia chromosome/BCR-ABL1 positive acute lymphoblastic leukemia (ALL): A Trial of the European Working Group for Adult ALL (EWALL-PH-02). Blood. 2014;124(21):798.

    Google Scholar 

  55. Kim D-Y, Joo Y-D, Lim S-N, Kim S-D, Lee J-H, Lee J-H, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126(6):746–56.

    PubMed  Google Scholar 

  56. Hijiya N, Zwaan CM, Rizzari C, Foà R, Abbink F, Lancaster D, et al. Pharmacokinetics of nilotinib in pediatric patients with Philadelphia chromosome–positive chronic myeloid leukemia or acute lymphoblastic leukemia. Clin Cancer Res. 2020;26(4):812–20.

    PubMed  Google Scholar 

  57. Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia chromosome-positive leukemia in the lymphoid lineage—similarities and differences with the myeloid lineage and specific vulnerabilities. Int J Mol Sci. 2020;21(16):5776.

    PubMed  PubMed Central  Google Scholar 

  58. Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1):84.

    PubMed  PubMed Central  Google Scholar 

  59. Montaño A, Forero-Castro M, Marchena-Mendoza D, Benito R, Hernández-Rivas J. New challenges in targeting signaling pathways in acute lymphoblastic leukemia by NGS approaches: an update. Cancers. 2018;10(4):110.

    PubMed  PubMed Central  Google Scholar 

  60. Shiraz P, Payne KJ, Muffly L. The current genomic and molecular landscape of philadelphia-like acute lymphoblastic leukemia. Int J Mol Sci. 2020;21(6):2193.

    PubMed  PubMed Central  Google Scholar 

  61. Tran TH, Loh ML. Ph-like acute lymphoblastic leukemia. Hematology. 2016;2016(1):561–6.

    PubMed  PubMed Central  Google Scholar 

  62. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome–like acute lymphoblastic leukemia. Blood. 2017;130(19):2064–72.

    PubMed  PubMed Central  Google Scholar 

  63. Jain S, Abraham A. BCR-ABL1–like B-acute lymphoblastic leukemia/lymphoma: a comprehensive review. Arch Pathol Lab Med. 2020;144(2):150–5.

    PubMed  Google Scholar 

  64. Meyer LK, Delgado-Martin C, Maude SL, Shannon KM, Teachey DT, Hermiston ML. CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition. PLoS One. 2019;14(7):e0220026.

    PubMed  PubMed Central  Google Scholar 

  65. Palmi C, Savino AM, Silvestri D, Bronzini I, Cario G, Paganin M, et al. CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia. Oncotarget. 2016;7(37):59260–72.

    PubMed  PubMed Central  Google Scholar 

  66. Jain N, Roberts KG, Jabbour E, Patel K, Eterovic AK, Chen K, et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood. 2017;129(5):572–81.

    PubMed  PubMed Central  Google Scholar 

  67. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568–76.

    PubMed  PubMed Central  Google Scholar 

  68. Senkevitch E, Li W, Hixon JA, Andrews C, Cramer SD, Pauly GT, et al. Inhibiting Janus Kinase 1 and BCL-2 to treat T cell acute lymphoblastic leukemia with IL7-Rα mutations. Oncotarget. 2018;9(32):22605–17.

    PubMed  PubMed Central  Google Scholar 

  69. Zhang Q, Shi C, Han L, Jain N, Roberts KG, Ma H, et al. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget. 2018;9(8):8027–41.

    PubMed  PubMed Central  Google Scholar 

  70. Hurtz C, Wertheim GB, Loftus JP, Blumenthal D, Lehman A, Li Y, et al. Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL. J Clin Investig. 2020;130(7):3637–53.

    PubMed  PubMed Central  Google Scholar 

  71. Tasian SK, Assad A, Hunter DS, Du Y, Loh ML. A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the part 1 safety phase. Blood. 2018;132(Supplement 1):555.

    Google Scholar 

  72. Cheng Z, Yi Y, Xie S, Yu H, Peng H, Zhang G. The effect of the JAK2 inhibitor TG101209 against T cell acute lymphoblastic leukemia (T-ALL) is mediated by inhibition of JAK-STAT signaling and activation of the crosstalk between apoptosis and autophagy signaling. Oncotarget. 2017;8(63):106753–63.

    PubMed  PubMed Central  Google Scholar 

  73. Suryani S, Bracken LS, Harvey RC, Sia KCS, Carol H, Chen IM, et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther. 2015;14(2):364–74.

    PubMed  Google Scholar 

  74. Katoh M, Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 2019;45(2):279–97.

    PubMed  PubMed Central  Google Scholar 

  75. Mendes RD, Cante-Barrett K, Pieters R, Meijerink JPP. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia. Haematologica. 2016;101(9):1010–7.

    PubMed  PubMed Central  Google Scholar 

  76. Brandstadter JD, Maillard I. Notch signalling in T cell homeostasis and differentiation. Open Biol. 2019;9(11):190187.

    PubMed  PubMed Central  Google Scholar 

  77. Burns M, Armstrong SA, Gutierrez A. Pathobiology of acute lymphoblastic leukemia. Amsterdam: Elsevier; 2018. p. 1005–19.e11.

    Google Scholar 

  78. Litzow MR, Ferrando AA. How I treat T-cell acute lymphoblastic leukemia in adults. Blood. 2015;126(7):833–41.

    PubMed  Google Scholar 

  79. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16(8):494–507.

    PubMed  Google Scholar 

  80. Habets RA, De Bock CE, Serneels L, Lodewijckx I, Verbeke D, Nittner D, et al. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci Transl Med. 2019;11(494):eaau6246.

    PubMed  Google Scholar 

  81. Choi SH, Severson E, Pear WS, Liu XS, Aster JC, Blacklow SC. The common oncogenomic program of NOTCH1 and NOTCH3 signaling in T-cell acute lymphoblastic leukemia. PLoS One. 2017;12(10):e0185762.

    PubMed  PubMed Central  Google Scholar 

  82. Cordo V, Van Der Zwet JCG, Canté-Barrett K, Pieters R, Meijerink JPP. T-cell acute lymphoblastic leukemia: a roadmap to targeted therapies. Blood Cancer Discov. 2021;2(1):19–31.

    PubMed  Google Scholar 

  83. Tosello V, Ferrando AA. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol. 2013;4(3):199–210.

    PubMed  PubMed Central  Google Scholar 

  84. Chougule RA, Shah K, Moharram SA, Vallon-Christersson J, Kazi JU. Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation. NPJ Genomic Med. 2019;4(1):7.

    Google Scholar 

  85. Takam Kamga P, Dal Collo G, Midolo M, Adamo A, Delfino P, Mercuri A, et al. Inhibition of notch signaling enhances chemosensitivity in b-cell precursor acute lymphoblastic leukemia. Cancer Res. 2019;79(3):639–49.

    PubMed  Google Scholar 

  86. Borthakur G, Martinelli G, Raffoux E, Chevallier P, Chromik J, Lithio A, et al. Phase 1 study to evaluate Crenigacestat (LY3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer. 2021;127(3):372–80.

    PubMed  Google Scholar 

  87. Papayannidis C, Deangelo DJ, Stock W, Huang B, Shaik MN, Cesari R, et al. A Phase 1 study of the novel gamma-secretase inhibitor PF-03084014 in patients with T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Blood Cancer Journal. 2015;5(9):e350-e.

    Google Scholar 

  88. Zweidler-McKay PA, DeAngelo DJ, Douer D, Dombret H, Ottmann OG, Vey N, et al. The safety and activity of BMS-906024, a gamma secretase inhibitor (GSI) with anti-notch activity, in patients with relapsed T-cell acute lymphoblastic leukemia (T-ALL): initial results of a phase 1 trial. Blood. 2014;124(21):968.

    Google Scholar 

  89. Hounjet J, Habets R, Schaaf MB, Hendrickx TC, Barbeau LMO, Yahyanejad S, et al. The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition. Oncogene. 2019;38(27):5457–68.

    PubMed  Google Scholar 

  90. Agnusdei V, Minuzzo S, Frasson C, Grassi A, Axelrod F, Satyal S, et al. Therapeutic antibody targeting of Notch1 in T-acute lymphoblastic leukemia xenografts. Leukemia. 2014;28(2):278–88.

    PubMed  Google Scholar 

  91. Pikman Y, Alexe G, Roti G, Conway AS, Furman A, Lee ES, et al. Synergistic drug combinations with a CDK4/6 inhibitor in T-cell acute lymphoblastic leukemia. Clin Cancer Res. 2017;23(4):1012–24.

    PubMed  Google Scholar 

  92. Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget. 2015;6(20):17873–90.

    PubMed  PubMed Central  Google Scholar 

  93. Jin D, Tran N, Thomas N, Tran DD. Combining CDK4/6 inhibitors ribociclib and palbociclib with cytotoxic agents does not enhance cytotoxicity. PLoS One. 2019;14(10):e0223555.

    PubMed  PubMed Central  Google Scholar 

  94. González-Gil C, Ribera J, Ribera JM, Genescà E. The Yin and Yang-like clinical Implications of the CDKN2A/ARF/CDKN2B gene cluster in acute lymphoblastic leukemia. Genes. 2021;12(1):79.

    PubMed  PubMed Central  Google Scholar 

  95. Zhang W, Kuang P, Liu T. Prognostic significance of CDKN2A/B deletions in acute lymphoblastic leukaemia: a meta-analysis. Ann Med. 2019;51(1):28–40.

    PubMed  PubMed Central  Google Scholar 

  96. Bortolozzi R, Mattiuzzo E, Trentin L, Accordi B, Basso G, Viola G. Ribociclib, a Cdk4/Cdk6 kinase inhibitor, enhances glucocorticoid sensitivity in B-acute lymphoblastic leukemia (B-All). Biochem Pharmacol. 2018;153:230–41.

    PubMed  Google Scholar 

  97. Jena N, Sheng J, Hu JK, Li W, Zhou W, Lee G, et al. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia. 2016;30(5):1033–43.

    PubMed  Google Scholar 

  98. Jang W, Park J, Kwon A, Choi H, Kim J, Lee GD, et al. CDKN2B downregulation and other genetic characteristics in T-acute lymphoblastic leukemia. Exp Mol Med. 2019;51(1):1–15.

    PubMed  Google Scholar 

  99. Van Der Linden M, Willekes M, Van Roon E, Seslija L, Schneider P, Pieters R, et al. MLL fusion-driven activation of CDK6 potentiates proliferation inMLL-rearranged infant ALL. Cell Cycle. 2014;13(5):834–44.

    PubMed  PubMed Central  Google Scholar 

  100. Moharram SA, Shah K, Khanum F, Marhäll A, Gazi M, Kazi JU. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia. Cancer Lett. 2017;405:73–8.

    PubMed  Google Scholar 

  101. Goldenson B, Crispino JD. The aurora kinases in cell cycle and leukemia. Oncogene. 2015;34(5):537–45.

    PubMed  Google Scholar 

  102. Goto H, Yoshino Y, Ito M, Nagai J, Kumamoto T, Inukai T, et al. Aurora B kinase as a therapeutic target in acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2020;85(4):773–83.

    PubMed  Google Scholar 

  103. Hartsink-Segers SA, Zwaan CM, Exalto C, Luijendijk MWJ, Calvert VS, Petricoin EF, et al. Aurora kinases in childhood acute leukemia: the promise of aurora B as therapeutic target. Leukemia. 2013;27(3):560–8.

    PubMed  Google Scholar 

  104. Moreira-Nunes CA, Mesquita FP, Portilho AJDS, Mello Júnior FAR, Maués JHDS, Pantoja LDC, et al. Targeting aurora kinases as a potential prognostic and therapeutical biomarkers in pediatric acute lymphoblastic leukaemia. Sci Rep. 2020;10(1):21272.

    PubMed  PubMed Central  Google Scholar 

  105. Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, et al. Direct Phosphorylation and stabilization of MYC by aurora B kinase promote T-cell leukemogenesis. Cancer Cell. 2020;37(2):200–15.e5.

    PubMed  PubMed Central  Google Scholar 

  106. Jayanthan A, Cooper TM, Hoeksema KA, Lotfi S, Woldum E, Lewis VA, et al. Occurrence and modulation of therapeutic targets of Aurora kinase inhibition in pediatric acute leukemia cells. Leuk Lymphoma. 2013;54(7):1505–16.

    PubMed  Google Scholar 

  107. Iacobucci I, Di Rorà AGL, Falzacappa MVV, Agostinelli C, Derenzini E, Ferrari A, et al. In vitro and in vivo single-agent efficacy of checkpoint kinase inhibition in acute lymphoblastic leukemia. J Hematol Oncol. 2015;8(1):125.

    PubMed  PubMed Central  Google Scholar 

  108. Sarmento LM, Póvoa V, Nascimento R, Real G, Antunes I, Martins LR, et al. CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress. Oncogene. 2015;34(23):2978–90.

    PubMed  Google Scholar 

  109. Delia D, Mizutani S. The DNA damage response pathway in normal hematopoiesis and malignancies. Int J Hematol. 2017;106(3):328–34.

    PubMed  Google Scholar 

  110. Ghelli Luserna Di Rora’ A, Iacobucci I, Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol. 2017;10(1):77.

    PubMed  PubMed Central  Google Scholar 

  111. Nguyen T, Hawkins E, Kolluri A, Kmieciak M, Park H, Lin H, et al. Synergism between bosutinib (SKI-606) and the Chk1 inhibitor (PF-00477736) in highly imatinib-resistant BCR/ABL+ leukemia cells. Leuk Res. 2015;39(1):65–71.

    PubMed  Google Scholar 

  112. Ghelli Luserna Di Rorà A, Beeharry N, Imbrogno E, Ferrari A, Robustelli V, Righi S, et al. Targeting WEE1 to enhance conventional therapies for acute lymphoblastic leukemia. J Hematol Oncol. 2018;11(1):99.

    PubMed  PubMed Central  Google Scholar 

  113. Ford JB, Baturin D, Burleson TM, Van Linden AA, Kim Y-M, Porter CC. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair. Oncotarget. 2015;6(29):28001–10.

    PubMed  PubMed Central  Google Scholar 

  114. Ghelli Luserna Di Rorà A, Bocconcelli M, Ferrari A, Terragna C, Bruno S, Imbrogno E, et al. Synergism through WEE1 and CHK1 inhibition in acute lymphoblastic leukemia. Cancers. 2019;11(11):1654.

    PubMed  PubMed Central  Google Scholar 

  115. Huang M, Zhang H, Liu T, Tian D, Gu L, Zhou M. Triptolide inhibits MDM2 and induces apoptosis in acute lymphoblastic leukemia cells through a p53-independent pathway. Mol Cancer Ther. 2013;12(2):184–94.

    PubMed  Google Scholar 

  116. Allahbakhshian Farsani M, Rafiee M, Aghaee Nezhad H, Salari S, Gharehbaghian A, Mohammadi MH. The expression of P53, MDM2, c-myc, and P14ARF genes in newly diagnosed acute lymphoblastic leukemia patients. Indian J Hematol Blood Transfus. 2020;36(2):277–83.

    PubMed  Google Scholar 

  117. Comeaux EQ, Mullighan CG. TP53 Mutations in hypodiploid acute lymphoblastic leukemia. Cold Spring Harb Perspect Med. 2017;7(3):a026286.

    PubMed  PubMed Central  Google Scholar 

  118. Richmond J, Carol H, Evans K, High L, Mendomo A, Robbins A, et al. Effective targeting of the P53–MDM2 axis in preclinical models of infant MLL-rearranged acute lymphoblastic leukemia. Clin Cancer Res. 2015;21(6):1395–405.

    PubMed  PubMed Central  Google Scholar 

  119. Kaindl U, Morak M, Portsmouth C, Mecklenbräuker A, Kauer M, Zeginigg M, et al. Blocking ETV6/RUNX1-induced MDM2 overexpression by Nutlin-3 reactivates p53 signaling in childhood leukemia. Leukemia. 2014;28(3):600–8.

    PubMed  Google Scholar 

  120. Bell HL, Singh M, Blair HJ, van Delft FW, Moorman AV, Lunec J, et al. Preclinical investigation of the p53-MDM2 antagonist idasanutlin (RG7388) demonstrates significant activity in high risk adult acute lymphoblastic leukemia. Blood. 2020;136(Supplement 1):38.

    Google Scholar 

  121. Loftus JP, Yahiaoui A, Brown PA, Niswander LM, Bagashev A, Wang M, et al. Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia. Haematologica. 2020:haematol.2019.2.

    Google Scholar 

  122. Sender S, Sekora A, Villa Perez S, Chabanovska O, Becker A, Ngezahayo A, et al. Precursor B-ALL cell lines differentially respond to SYK inhibition by entospletinib. Int J Mol Sci. 2021;22(2):592.

    PubMed  PubMed Central  Google Scholar 

  123. Bhanumathy KK, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. protein tyrosine kinases: their roles and their targeting in leukemia. Cancers. 2021;13(2):184.

    Google Scholar 

  124. Hug E, Hobeika E, Reth M, Jumaa H. Inducible expression of hyperactive Syk in B cells activates Blimp-1-dependent terminal differentiation. Oncogene. 2014;33(28):3730–41.

    PubMed  Google Scholar 

  125. Perova T, Grandal I, Nutter LMJ, Papp E, Matei IR, Beyene J, et al. Therapeutic potential of spleen tyrosine kinase inhibition for treating high-risk precursor B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(236):236ra62-ra62.

    Google Scholar 

  126. Köhrer S, Havranek O, Seyfried F, Hurtz C, Coffey GP, Kim E, et al. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia. 2016;30(6):1246–54.

    PubMed  PubMed Central  Google Scholar 

  127. Serafin V, Porcù E, Cortese G, Mariotto E, Veltri G, Bresolin S, et al. SYK targeting represents a potential therapeutic option for relapsed resistant pediatric ETV6-RUNX1 B-acute lymphoblastic leukemia patients. Int J Mol Sci. 2019;20(24):6175.

    PubMed  PubMed Central  Google Scholar 

  128. Brown PA, Kairalla JA, Hilden JM, Dreyer ZE, Carroll AJ, Heerema NA, et al. FLT3 inhibitor lestaurtinib plus chemotherapy for newly diagnosed KMT2A-rearranged infant acute lymphoblastic leukemia: Children’s Oncology Group trial AALL0631. Leukemia. 2021;35(5):1279–90.

    PubMed  PubMed Central  Google Scholar 

  129. Annesley CE, Brown P. The biology and targeting of FLT3 in pediatric leukemia. Front Oncol. 2014;4:263.

    PubMed  PubMed Central  Google Scholar 

  130. Cooper TM, Cassar J, Eckroth E, Malvar J, Sposto R, Gaynon P, et al. A Phase I study of quizartinib combined with chemotherapy in relapsed childhood leukemia: a therapeutic advances in childhood leukemia & lymphoma (TACL) Study. Clin Cancer Res. 2016;22(16):4014–22.

    PubMed  Google Scholar 

  131. De Groot AP, Saito Y, Kawakami E, Hashimoto M, Aoki Y, Ono R, et al. Targeting critical kinases and anti-apoptotic molecules overcomes steroid resistance in MLL-rearranged leukaemia. EBioMedicine. 2021;64:103235.

    PubMed  PubMed Central  Google Scholar 

  132. Ruan Y, Kim HN, Ogana H, Kim Y-M. Wnt signaling in leukemia and its bone marrow microenvironment. Int J Mol Sci. 2020;21(17):6247.

    PubMed  PubMed Central  Google Scholar 

  133. Chiarini F, Paganelli F, Martelli AM, Evangelisti C. The role played by Wnt/β-catenin signaling pathway in acute lymphoblastic leukemia. Int J Mol Sci. 2020;21(3):1098.

    PubMed  PubMed Central  Google Scholar 

  134. Yang Y, Mallampati S, Sun B, Zhang J, Kim S-B, Lee J-S, et al. Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 2013;333(1):9–17.

    PubMed  Google Scholar 

  135. Duque-Afonso J, Lin C-H, Han K, Morgens DW, Jeng EE, Weng Z, et al. CBP modulates sensitivity to dasatinib in pre-BCR+ acute lymphoblastic leukemia. Cancer Res. 2018;78(22):6497–508.

    PubMed  PubMed Central  Google Scholar 

  136. Gang EJ, Hsieh YT, Pham J, Zhao Y, Nguyen C, Huantes S, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2014;33(17):2169–78.

    PubMed  Google Scholar 

  137. Dandekar S, Romanos-Sirakis E, Pais F, Bhatla T, Jones C, Bourgeois W, et al. Wnt inhibition leads to improved chemosensitivity in paediatric acute lymphoblastic leukaemia. Br J Haematol. 2014;167(1):87–99.

    PubMed  PubMed Central  Google Scholar 

  138. Gekas C, D’Altri T, Aligué R, González J, Espinosa L, Bigas A. β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 2016;30(10):2002–10.

    PubMed  Google Scholar 

  139. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, et al. A comprehensive review on MAPK: a promising therapeutic target in cancer. Cancers. 2019;11(10):1618.

    PubMed  PubMed Central  Google Scholar 

  140. Akin Bali DF. A molecular look at the RAS/RAF/MEK/ERK pathway in pediatric acute lymphocytic leukemia (ALL). MOJ Cell Sci Rep. 2018;5(3):1618.

    Google Scholar 

  141. Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cell. 2020;9(1):198.

    Google Scholar 

  142. Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, et al. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia. 2018;32(4):931–40.

    PubMed  Google Scholar 

  143. Knight T, Irving JAE. Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol. 2014;4:160.

    PubMed  PubMed Central  Google Scholar 

  144. Matheson EC, Thomas H, Case M, Blair H, Jackson RK, Masic D, et al. Glucocorticoids and selumetinib are highly synergistic in RAS pathway-mutated childhood acute lymphoblastic leukemia through upregulation of BIM. Haematologica. 2019;104(9):1804–11.

    PubMed  PubMed Central  Google Scholar 

  145. Kerstjens M, Driessen EMC, Willekes M, Pinhanços SS, Schneider P, Pieters R, et al. MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations. Oncotarget. 2017;8(9):14835–46.

    PubMed  Google Scholar 

  146. Kerstjens M, Pinhancos SS, Castro PG, Schneider P, Wander P, Pieters R, et al. Trametinib inhibits RAS -mutant MLL -rearranged acute lymphoblastic leukemia at specific niche sites and reduces ERK phosphorylation in vivo. Haematologica. 2018;103(4):e147–e50.

    PubMed  PubMed Central  Google Scholar 

  147. Chu SH, Song EJ, Chabon JR, Minehart J, Matovina CN, Makofske JL, et al. Inhibition of MEK and ATR is effective in a B-cell acute lymphoblastic leukemia model driven by Mll-Af4 and activated Ras. Blood Adv. 2018;2(19):2478–90.

    PubMed  PubMed Central  Google Scholar 

  148. Wang AY, Muffly LS, Stock W. Philadelphia chromosome–negative B-cell acute lymphoblastic leukemia in adolescents and young adults. JCO Oncol Pract. 2020;16(5):231–8.

    PubMed  Google Scholar 

  149. Pikman Y, Stegmaier K. Targeted therapy for fusion-driven high-risk acute leukemia. Blood. 2018;132(12):1241–7.

    PubMed  PubMed Central  Google Scholar 

  150. Montaño A, Ordoñez JL, Alonso-Pérez V, Hernández-Sánchez J, Santos S, González T, et al. ETV6/RUNX1 fusion gene abrogation decreases the oncogenicity of tumour cells in a preclinical model of acute lymphoblastic leukaemia. Cell. 2020;9(1):215.

    Google Scholar 

  151. Lausten-Thomsen U, Madsen HO, Vestergaard TR, Hjalgrim H, Nersting J, Schmiegelow K. Prevalence of t(12;21)[ETV6-RUNX1]–positive cells in healthy neonates. Blood. 2011;117(1):186–9.

    PubMed  Google Scholar 

  152. Sun C, Chang L, Zhu X. Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget. 2017;8(21):35445–59.

    PubMed  PubMed Central  Google Scholar 

  153. Polak R, Bierings MB, Van Der Leije CS, Sanders MA, Roovers O, Marchante JRM, et al. Autophagy inhibition as a potential future targeted therapy for ETV6-RUNX1-driven B-cell precursor acute lymphoblastic leukemia. Haematologica. 2019;104(4):738–48.

    PubMed  PubMed Central  Google Scholar 

  154. Park J, Cho J, Song EJ. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 2020;43(11):1144–61.

    PubMed  PubMed Central  Google Scholar 

  155. Pellegrini P, Selvaraju K, Faustini E, Mofers A, Zhang X, Ternerot J, et al. Induction of ER stress in acute lymphoblastic leukemia cells by the deubiquitinase inhibitor VLX1570. Int J Mol Sci. 2020;21(13):4757.

    PubMed  PubMed Central  Google Scholar 

  156. Bastian L, Hof J, Pfau M, Fichtner I, Eckert C, Henze G, et al. Synergistic activity of bortezomib and HDACi in preclinical models of B-cell precursor acute lymphoblastic leukemia via modulation of p53, PI3K/AKT, and NF-κB. Clin Cancer Res. 2013;19(6):1445–57.

    PubMed  Google Scholar 

  157. Messinger YH, Gaynon PS, Sposto R, Van Der Giessen J, Eckroth E, Malvar J, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90.

    PubMed  Google Scholar 

  158. Gao M, Gao L, Tao Y, Hou J, Yang G, Wu X, et al. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Acta Biochim Biophys Sin. 2014;46(6):484–91.

    PubMed  Google Scholar 

  159. Amrein PC, Ballen KK, Stevenson KE, Blonquist TM, Brunner AM, Hobbs GS, et al. Phase I study of ixazomib added to chemotherapy in the treatment of acute lymphoblastic leukemia in older adults. Blood. 2020;136(Supplement 1):41–2.

    Google Scholar 

  160. Han K, Wang Q, Cao H, Qiu G, Cao J, Li X, et al. The NEDD8-activating enzyme inhibitor MLN4924 induces G2 arrest and apoptosis in T-cell acute lymphoblastic leukemia. Oncotarget. 2016;7(17):23812–24.

    PubMed  PubMed Central  Google Scholar 

  161. Yoshimura C, Muraoka H, Ochiiwa H, Tsuji S, Hashimoto A, Kazuno H, et al. TAS4464, A highly potent and selective inhibitor of NEDD8-activating enzyme, suppresses neddylation and shows antitumor activity in diverse cancer models. Mol Cancer Ther. 2019;18(7):1205–16.

    PubMed  Google Scholar 

  162. Zheng S, Leclerc GM, Li B, Swords RT, Barredo JC. Inhibition of the NEDD8 conjugation pathway induces calcium-dependent compensatory activation of the pro-survival MEK/ERK pathway in acute lymphoblastic leukemia. Oncotarget. 2018;9(5):5529–44.

    PubMed  Google Scholar 

  163. Navarrete-Meneses MDP, Pérez-Vera P. Epigenetic alterations in acute lymphoblastic leukemia. Bol Med Hosp Infant Mex. 2017;74(4):243–64.

    PubMed  Google Scholar 

  164. Poreba E, Lesniewicz K, Durzynska J. Aberrant activity of histone–lysine N-methyltransferase 2 (KMT2) complexes in oncogenesis. Int J Mol Sci. 2020;21(24):9340.

    PubMed  PubMed Central  Google Scholar 

  165. Forgione MO, McClure BJ, Eadie LN, Yeung DT, White DL. KMT2A rearranged acute lymphoblastic leukaemia: Unravelling the genomic complexity and heterogeneity of this high-risk disease. Cancer Lett. 2020;469:410–8.

    PubMed  Google Scholar 

  166. Britten O, Ragusa D, Tosi S, Kamel YM. MLL-rearranged acute leukemia with t(4;11)(q21;q23)—current treatment options: Is there a role for CAR-T cell therapy? Cells. 2019;8(11):1341.

    PubMed  PubMed Central  Google Scholar 

  167. Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. Hematology. 2018;2018(1):286–300.

    PubMed  PubMed Central  Google Scholar 

  168. Tomizawa D. Recent progress in the treatment of infant acute lymphoblastic leukemia. Pediatr Int. 2015;57(5):811–9.

    PubMed  Google Scholar 

  169. El Chaer F, Keng M, Ballen KK. MLL-rearranged acute lymphoblastic leukemia. Curr Hematol Malig Rep. 2020;15(2):83–9.

    PubMed  Google Scholar 

  170. Zhang H, Liu B, Cheng J, Ma H, Li Z, Xi Y. Identification of co-expressed genes associated with MLL rearrangement in pediatric acute lymphoblastic leukemia. Bioscience Reports. 2020;40(5):BSR20200514.

    PubMed  PubMed Central  Google Scholar 

  171. Garrido Castro P, Van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, et al. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia. 2018;32(2):323–31.

    PubMed  Google Scholar 

  172. Stein EM, Garcia-Manero G, Rizzieri DA, Tibes R, Berdeja JG, Savona MR, et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood. 2018;131(24):2661–9.

    PubMed  PubMed Central  Google Scholar 

  173. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood. 2013;122(6):1017–25.

    PubMed  PubMed Central  Google Scholar 

  174. Benito JM, Godfrey L, Kojima K, Hogdal L, Wunderlich M, Geng H, et al. MLL-rearranged acute lymphoblastic leukemias activate BCL-2 through H3K79 methylation and are sensitive to the BCL-2-specific antagonist ABT-199. Cell Rep. 2015;13(12):2715–27.

    PubMed  PubMed Central  Google Scholar 

  175. Shukla N, Wetmore C, O’Brien MM, Silverman LB, Brown P, Cooper TM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood. 2016;128(22):2780.

    Google Scholar 

  176. Huang Y, Zou Y, Lin L, Ma X, Huang X. Effect of BIX-01294 on proliferation, apoptosis and histone methylation of acute T lymphoblastic leukemia cells. Leuk Res. 2017;62:34–9.

    PubMed  Google Scholar 

  177. Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, et al. Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics. 2014;9(3):459–67.

    PubMed  PubMed Central  Google Scholar 

  178. Rahmani M, Talebi M, Hagh MF, Feizi AAH, Solali S. Aberrant DNA methylation of key genes and acute lymphoblastic leukemia. Biomed Pharmacother. 2018;97:1493–500.

    PubMed  Google Scholar 

  179. Roolf C, Richter A, Konkolefski C, Knuebel G, Sekora A, Krohn S, et al. Decitabine demonstrates antileukemic activity in B cell precursor acute lymphoblastic leukemia with MLL rearrangements. J Hematol Oncol. 2018;11(1):62.

    PubMed  PubMed Central  Google Scholar 

  180. Schneider P, Castro PG, Pinhanços SM, Kerstjens M, Roon EH, Essing AHW, et al. Decitabine mildly attenuates MLL -rearranged acute lymphoblastic leukemia in vivo, and represents a poor chemo-sensitizer. eJHaem. 2020;1(2):527–36.

    PubMed  PubMed Central  Google Scholar 

  181. Burke MJ, Kostadinov R, Sposto R, Gore L, Kelley SM, Rabik C, et al. Decitabine and vorinostat with chemotherapy in relapsed pediatric acute lymphoblastic leukemia: a TACL pilot study. Clin Cancer Res. 2020:clincanres.1251.

    Google Scholar 

  182. Mehrpouri M, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, Momeny M, Bashash D. Anti-leukemic effects of histone deacetylase (HDAC) inhibition in acute lymphoblastic leukemia (ALL) cells: Shedding light on mitigating effects of NF-κB and autophagy on panobinostat cytotoxicity. Eur J Pharmacol. 2020;875:173050.

    PubMed  Google Scholar 

  183. Jing B, Jin J, Xiang R, Liu M, Yang L, Tong Y, et al. Vorinostat and quinacrine have synergistic effects in T-cell acute lymphoblastic leukemia through reactive oxygen species increase and mitophagy inhibition. Cell Death Dis. 2018;9(6):589.

    PubMed  PubMed Central  Google Scholar 

  184. Zhang C, Zhong JF, Stucky A, Chen X-L, Press MF, Zhang X. Histone acetylation: novel target for the treatment of acute lymphoblastic leukemia. Clin Epigenetics. 2015;7(1):117.

    PubMed  PubMed Central  Google Scholar 

  185. Stubbs MC, Kim W, Bariteau M, Davis T, Vempati S, Minehart J, et al. Selective inhibition of HDAC1 and HDAC2 as a potential therapeutic option for B-ALL. Clin Cancer Res. 2015;21(10):2348–58.

    PubMed  PubMed Central  Google Scholar 

  186. Bachmann PS, Piazza RG, Janes ME, Wong NC, Davies C, Mogavero A, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblastic leukemia, and its reversal by histone deacetylase inhibition. Blood. 2010;116(16):3013–22.

    PubMed  Google Scholar 

  187. Goossens S, Van Vlierberghe P. Overcoming steroid resistance in T cell acute lymphoblastic leukemia. PLoS Med. 2016;13(12):e1002208.

    PubMed  PubMed Central  Google Scholar 

  188. Cheung LC, Cruickshank MN, Hughes AM, Singh S, Chua G-A, Ford J, et al. Romidepsin enhances the efficacy of cytarabine in vivo, revealing histone deacetylase inhibition as a promising therapeutic strategy for KMT2A-rearranged infant acute lymphoblastic leukemia. Haematologica. 2019;104(7):e300–e3.

    PubMed  PubMed Central  Google Scholar 

  189. Roti G, Stegmaier K. New approaches to target T-ALL. Front Oncol. 2014;4:170.

    PubMed  PubMed Central  Google Scholar 

  190. Peirs S, Frismantas V, Matthijssens F, Van Loocke W, Pieters T, Vandamme N, et al. Targeting BET proteins improves the therapeutic efficacy of BCL-2 inhibition in T-cell acute lymphoblastic leukemia. Leukemia. 2017;31(10):2037–47.

    PubMed  Google Scholar 

  191. Zhang MY, Liu SL, Huang WL, Tang DB, Zheng WW, Zhou N, et al. Bromodomains and extra-terminal (BET) inhibitor JQ1 suppresses proliferation of acute lymphocytic leukemia by inhibiting c-Myc-mediated glycolysis. Med Sci Monit. 2020;26:e923411.

    PubMed  PubMed Central  Google Scholar 

  192. Wu S, Jiang Y, Hong Y, Chu X, Zhang Z, Tao Y, et al. BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting ‘undruggable’. Myc-pathway genes. 2020;21:230.

    Google Scholar 

  193. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T, et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012;120(14):2843–52.

    PubMed  PubMed Central  Google Scholar 

  194. Da Costa D, Agathanggelou A, Perry T, Weston V, Petermann E, Zlatanou A, et al. BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia. Blood Cancer J. 2013;3(7):e126.

    PubMed  PubMed Central  Google Scholar 

  195. Coudé M-M, Braun T, Berrou J, Dupont M, Bertrand S, Masse A, et al. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget. 2015;6(19):17698–712.

    PubMed  PubMed Central  Google Scholar 

  196. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3(4):e186–95.

    PubMed  Google Scholar 

  197. Bardini M, Trentin L, Rizzo F, Vieri M, Savino AM, Garrido Castro P, et al. Antileukemic efficacy of BET inhibitor in a preclinical mouse model of MLL-AF4+ infant ALL. Mol Cancer Ther. 2018;17(8):1705–16.

    PubMed  Google Scholar 

  198. Khaw SL, Suryani S, Evans K, Richmond J, Robbins A, Kurmasheva RT, et al. Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia. Blood. 2016;128(10):1382–95.

    PubMed  PubMed Central  Google Scholar 

  199. Brown LM, Hanna DT, Khaw SL, Ekert PG. Dysregulation of BCL-2 family proteins by leukemia fusion genes. J Biol Chem. 2017;292(35):14325–33.

    PubMed  PubMed Central  Google Scholar 

  200. Massimino M, Tirrò E, Stella S, Pennisi MS, Vitale SR, Puma A, et al. Targeting BCL-2 as a therapeutic strategy for primary p210BCR-ABL1-positive B-ALL cells. In Vivo. 2020;34(2):511–6.

    PubMed  PubMed Central  Google Scholar 

  201. Ding Y-Y, Kim H, Madden K, Loftus JP, Chen GM, Allen DH, et al. Network analysis reveals synergistic genetic dependencies for rational combination therapy in Philadelphia chromosome-like acute lymphoblastic leukemia. Clin Cancer Res. 2021;27(18):5109–22.

    PubMed  PubMed Central  Google Scholar 

  202. Pullarkat VA, Lacayo NJ, Jabbour E, Rubnitz JE, Bajel A, Laetsch TW, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021:candisc.1465.20.

    Google Scholar 

  203. Moujalled DM, Hanna DT, Hediyeh-Zadeh S, Pomilio G, Brown L, Litalien V, et al. Cotargeting BCL-2 and MCL-1 in high-risk B-ALL. Blood Adv. 2020;4(12):2762–7.

    PubMed  PubMed Central  Google Scholar 

  204. Place AE, Goldsmith K, Bourquin J-P, Loh ML, Gore L, Morgenstern DA, et al. Accelerating drug development in pediatric cancer: a novel Phase I study design of venetoclax in relapsed/refractory malignancies. Future Oncol. 2018;14(21):2115–29.

    PubMed  Google Scholar 

  205. Heidari N, Hicks MA, Harada H. GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death Dis. 2010;1(9):e76-e.

    Google Scholar 

  206. Stefanzl G, Berger D, Cerny-Reiterer S, Blatt K, Eisenwort G, Sperr WR, et al. The pan-BCL-2-blocker obatoclax (GX15-070) and the PI3-kinase/mTOR-inhibitor BEZ235 produce cooperative growth-inhibitory effects in ALL cells. Oncotarget. 2017;8(40):67709–22.

    PubMed  PubMed Central  Google Scholar 

  207. Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, et al. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol. 2021;14(1):48.

    PubMed  PubMed Central  Google Scholar 

  208. Tsaouli G, Ferretti E, Bellavia D, Vacca A, Felli MP. Notch/CXCR4 partnership in acute lymphoblastic leukemia progression. J Immunol Res. 2019;2019:5601396.

    PubMed  PubMed Central  Google Scholar 

  209. Randhawa S, Cho BS, Ghosh D, Sivina M, Koehrer S, Müschen M, et al. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia. Br J Haematol. 2016;174(3):425–36.

    PubMed  PubMed Central  Google Scholar 

  210. Wang S, Wang X, Liu S, Zhang S, Wei X, Song Y, et al. The CXCR4 antagonist, AMD3100, reverses mesenchymal stem cell-mediated drug resistance in relapsed/refractory acute lymphoblastic leukemia. Onco Targets Ther. 2020;13:6583–91.

    PubMed  PubMed Central  Google Scholar 

  211. Cancilla D, Rettig MP, Dipersio JF. Targeting CXCR4 in AML and ALL. Front Oncol. 2020;10:1672.

    Google Scholar 

  212. Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, et al. CXCL12-Producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell. 2015;27(6):755–68.

    PubMed  PubMed Central  Google Scholar 

  213. Sison EA, Magoon D, Li L, Annesley CE, Romagnoli B, Douglas GJ, et al. POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL. Oncotarget. 2015;6(31):30902–18.

    PubMed  PubMed Central  Google Scholar 

  214. Jabbour E, Kantarjian H. Immunotherapy in adult acute lymphoblastic leukemia: the role of monoclonal antibodies. Blood Adv. 2016;1(3):260–4.

    PubMed  PubMed Central  Google Scholar 

  215. Li L, Wang Y. Recent updates for antibody therapy for acute lymphoblastic leukemia. Exp Hematol Oncol. 2020;9(1):33.

    Google Scholar 

  216. Guerra VA, Jabbour EJ, Ravandi F, Kantarjian H, Short NJ. Novel monoclonal antibody-based treatment strategies in adults with acute lymphoblastic leukemia. Ther Adv Hematol. 2019;10:204062071984949.

    Google Scholar 

  217. Shang Y, Zhou F. Current advances in immunotherapy for acute leukemia: an overview of antibody, chimeric antigen receptor, immune checkpoint, and natural killer. Front Oncol. 2019;9:917.

    PubMed  PubMed Central  Google Scholar 

  218. Farhadfar N, Litzow MR. New monoclonal antibodies for the treatment of acute lymphoblastic leukemia. Leuk Res. 2016;49:13–21.

    PubMed  Google Scholar 

  219. Mohseni M, Uludag H, Brandwein JM. Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. Am J Blood Res. 2018;8(4):29–56.

    PubMed  PubMed Central  Google Scholar 

  220. Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105(6):1494–506.

    PubMed  PubMed Central  Google Scholar 

  221. Raponi S, De Propris MS, Intoppa S, Laura Milani M, Vitale A, Elia L, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52(6):1098–107.

    PubMed  Google Scholar 

  222. Thomas DA, O’Brien S, Jorgensen JL, Cortes J, Faderl S, Garcia-Manero G, et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.

    PubMed  PubMed Central  Google Scholar 

  223. Dinner S, Liedtke M. Antibody-based therapies in patients with acute lymphoblastic leukemia. Hematology. 2018;2018(1):9–15.

    PubMed  PubMed Central  Google Scholar 

  224. Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother. 2018;14(12):2820–41.

    PubMed  PubMed Central  Google Scholar 

  225. Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F, et al. Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med. 2016;375(11):1044–53.

    PubMed  Google Scholar 

  226. Sasaki K, Kantarjian HM, Ravandi F, Daver N, Kadia TM, Khouri RB, et al. Frontline ofatumumab in combination with hyper-CVAD for adult patients with CD-20 positive acute lymphoblastic leukemia (ALL): interim result of a phase II clinical trial. Blood. 2016;128(22):2783.

    Google Scholar 

  227. Maiti A, Kantarjian H, Ravandi F, Thomas D, Khouri M, Garcia-Manero G, et al. Frontline ofatumumab with hyper-CVAD in CD20+ acute lymphoblastic leukemia (ALL): updated results of a phase II trial. Clin Lymphoma Myeloma Leuk. 2017;17:S256–S7.

    Google Scholar 

  228. Jabbour E, Richard-Carpentier G, Sasaki Y, Konopleva M, Patel K, Roberts K, et al. Hyper-CVAD regimen in combination with ofatumumab as frontline therapy for adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia: a single-arm, phase 2 trial. Lancet Haematol. 2020;7(7):e523–e33.

    PubMed  Google Scholar 

  229. Stock W, Luger SM, Advani AS, Yin J, Harvey RC, Mullighan CG, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: results of CALGB 10403. Blood. 2019;133(14):1548–59.

    PubMed  PubMed Central  Google Scholar 

  230. Wei G, Wang J, Huang H, Zhao Y. Novel immunotherapies for adult patients with B-lineage acute lymphoblastic leukemia. J Hematol Oncol. 2017;10(1):150.

    PubMed  PubMed Central  Google Scholar 

  231. Awasthi A, Ayello J, van de Ven C, Elmacken M, Reggio C, Barth MJ, et al. Comparative study of obinutuzumab (GA101) vs. rituximab against CD20+ rituximab-sensitive and -resistant burkitt (BL) and acute lymphoblastic leukemia (B-ALL): potential targeted therapy in patients with high risk BL and Pre-B-ALL. Blood. 2014;124(21):2251.

    Google Scholar 

  232. Jabbour E, O’Brien S, Ravandi F, Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6.

    PubMed  PubMed Central  Google Scholar 

  233. Raetz EA, Cairo MS, Borowitz MJ, Lu X, Devidas M, Reid JM, et al. Re-induction chemoimmunotherapy with epratuzumab in relapsed acute lymphoblastic leukemia (ALL): phase II results from Children’s Oncology Group (COG) study ADVL04P2. Pediatr Blood Cancer. 2015;62(7):1171–5.

    PubMed  PubMed Central  Google Scholar 

  234. Chevallier P, Chantepie S, Huguet F, Raffoux E, Thomas X, Leguay T, et al. Hyper-CVAD + epratuzumab as a salvage regimen for younger patients with relapsed/refractory CD22-positive precursor B-cell acute lymphocytic leukemia. Haematologica. 2017;102(5):e184–e6.

    PubMed  PubMed Central  Google Scholar 

  235. Liao C, Shen D-Y, Xu X-J, Song H, Xu W-Q, Zhao F-Y, et al. High CD38 expression in childhood T-cell acute lymphoblastic leukemia is not associated with prognosis. Cancer Biomark. 2020;27(2):277–84.

    PubMed  Google Scholar 

  236. Bayón-Calderón F, Toribio ML, González-García S. Facts and challenges in immunotherapy for T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2020;21(20):7685.

    PubMed  PubMed Central  Google Scholar 

  237. Wynne J, Stock W. “Dar”-ing to target CD38 in T-ALL. Blood. 2018;131(9):948–9.

    PubMed  Google Scholar 

  238. Bride KL, Vincent TL, Im S-Y, Aplenc R, Barrett DM, Carroll WL, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood. 2018;131(9):995–9.

    PubMed  PubMed Central  Google Scholar 

  239. Ofran Y, Ringelstein-Harlev S, Slouzkey I, Zuckerman T, Yehudai-Ofir D, Henig I, et al. Daratumumab for eradication of minimal residual disease in high-risk advanced relapse of T-cell/CD19/CD22-negative acute lymphoblastic leukemia. Leukemia. 2020;34(1):293–5.

    PubMed  Google Scholar 

  240. Naik J, Themeli M, De Jong-Korlaar R, Ruiter RWJ, Poddighe PJ, Yuan H, et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica. 2019;104(3):e100–e3.

    PubMed  PubMed Central  Google Scholar 

  241. Mihara K, Yoshida T, Ishida S, Takei Y, Kitanaka A, Shimoda K, et al. All-trans retinoic acid and interferon-α increase CD38 expression on adult T-cell leukemia cells and sensitize them to T cells bearing anti-CD38 chimeric antigen receptors. Blood cancer journal. 2016;6(5):e421-e.

    Google Scholar 

  242. Gorin N-C, Isnard F, Garderet L, Ikhlef S, Corm S, Quesnel B, et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol. 2013;91:315–21.

    PubMed  Google Scholar 

  243. Jabbour E, Paul S, Kantarjian H. The clinical development of antibody–drug conjugates — lessons from leukaemia. Nat Rev Clin Oncol. 2021; https://doi.org/10.1038/s41571-021-00484-2.

  244. Yu B, Liu D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 2019;12(1):94.

    PubMed  PubMed Central  Google Scholar 

  245. Walter RB. Brief overview of antibody–drug conjugate therapy for acute leukemia. Expert Opin Biol Ther. 2021;21(7):795–9.

    Google Scholar 

  246. Wynne J, Wright D, Stock W. Inotuzumab: from preclinical development to success in B-cell acute lymphoblastic leukemia. Blood Adv. 2019;3(1):96–104.

    PubMed  PubMed Central  Google Scholar 

  247. Inaba H, Pui C-H. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019;38(4):595–610.

    PubMed  PubMed Central  Google Scholar 

  248. Barsan V, Ramakrishna S, Davis KL. Immunotherapy for the treatment of acute lymphoblastic leukemia. Curr Oncol Rep. 2020;22(2):2524–39.

    Google Scholar 

  249. Winters A, Gore L. Moving immunotherapy into the front line in ALL. Hematology. 2019;2019(1):209–17.

    PubMed  PubMed Central  Google Scholar 

  250. Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77(14):1603–10.

    PubMed  Google Scholar 

  251. Conde-Royo D, Juárez-Salcedo LM, Dalia S. Management of adverse effects of new monoclonal antibody treatments in acute lymphoblastic leukemia. Drugs Context. 2020;9:1–15.

    Google Scholar 

  252. Kantarjian HM, Deangelo DJ, Stelljes M, Liedtke M, Stock W, Gökbuget N, et al. Inotuzumab ozogamicin versus standard of care in relapsed or refractory acute lymphoblastic leukemia: Final report and long-term survival follow-up from the randomized, phase 3 INO-VATE study. Cancer. 2019;125(14):2474–87.

    PubMed  Google Scholar 

  253. Deangelo DJ, Advani AS, Marks DI, Stelljes M, Liedtke M, Stock W, et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: outcomes by disease burden. Blood Cancer J. 2020;10(8):81.

    PubMed  PubMed Central  Google Scholar 

  254. Kantarjian HM, DeAngelo DJ, Advani AS, Stelljes M, Kebriaei P, Cassaday RD, et al. Hepatic adverse event profile of inotuzumab ozogamicin in adult patients with relapsed or refractory acute lymphoblastic leukaemia: results from the open-label, randomised, phase 3 INO-VATE study. Lancet Haematol. 2017;4(8):e387–e98.

    PubMed  Google Scholar 

  255. Fujishima N, Uchida T, Onishi Y, Jung CW, Goh YT, Ando K, et al. Inotuzumab ozogamicin versus standard of care in Asian patients with relapsed/refractory acute lymphoblastic leukemia. Int J Hematol. 2019;110(6):709–22.

    PubMed  Google Scholar 

  256. Proskorovsky I, Su Y, Fahrbach K, Vandendries E, Pagé V, Onyekwere U, et al. Indirect treatment comparison of inotuzumab ozogamicin versus blinatumomab for relapsed or refractory acute lymphoblastic leukemia. Adv Ther. 2019;36(8):2147–60.

    PubMed  PubMed Central  Google Scholar 

  257. Kantarjian H, Ravandi F, Short NJ, Huang X, Jain N, Sasaki K, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19(2):240–8.

    PubMed  Google Scholar 

  258. Jabbour E, Ravandi F, Kebriaei P, Huang X, Short NJ, Thomas D, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini–hyper-CVD for patients with relapsed or refractory Philadelphia chromosome–negative acute lymphoblastic leukemia. JAMA Oncol. 2018;4(2):230.

    PubMed  Google Scholar 

  259. Jabbour EJ, Sasaki K, Ravandi F, Short NJ, Garcia-Manero G, Daver N, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic. Cancer. 2019;125(15):2579–86.

    PubMed  Google Scholar 

  260. Brivio E, Locatelli F, Lopez-Yurda M, Malone A, Díaz-De-Heredia C, Bielorai B, et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood. 2021;137(12):1582–90.

    PubMed  PubMed Central  Google Scholar 

  261. Wayne AS, Shah NN, Bhojwani D, Silverman LB, Whitlock JA, Stetler-Stevenson M, et al. Phase 1 study of the anti-CD22 immunotoxin moxetumomab pasudotox for childhood acute lymphoblastic leukemia. Blood. 2017;130(14):1620–7.

    PubMed  PubMed Central  Google Scholar 

  262. Short NJ, Kantarjian H, Jabbour E, Cortes JE, Thomas DA, Rytting ME, et al. A phase I study of moxetumomab pasudotox in adults with relapsed or refractory B-cell acute lymphoblastic leukaemia. Br J Haematol. 2018;182(3):442–4.

    PubMed  Google Scholar 

  263. Shah NN, Bhojwani D, August K, Baruchel A, Bertrand Y, Boklan J, et al. Results from an international phase 2 study of the anti-CD22 immunotoxin moxetumomab pasudotox in relapsed or refractory childhood B-lineage acute lymphoblastic leukemia. Pediatr Blood Cancer. 2020;67(5):e28112.

    PubMed  PubMed Central  Google Scholar 

  264. Hong EE, Erickson H, Lutz RJ, Whiteman KR, Jones G, Kovtun Y, et al. Design of coltuximab ravtansine, a CD19-targeting antibody–drug conjugate (ADC) for the treatment of B-cell malignancies: structure–activity relationships and preclinical evaluation. Mol Pharm. 2015;12(6):1703–16.

    PubMed  Google Scholar 

  265. Kantarjian HM, Lioure B, Kim SK, Atallah E, Leguay T, Kelly K, et al. A Phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45.

    PubMed  Google Scholar 

  266. Hicks SW, Tarantelli C, Wilhem A, Gaudio E, Li M, Arribas AJ, et al. The novel CD19-targeting antibody-drug conjugate huB4-DGN462 shows improved anti-tumor activity compared to SAR3419 in CD19-positive lymphoma and leukemia models. Haematologica. 2019;104(8):1633–9.

    PubMed  PubMed Central  Google Scholar 

  267. Jones L, McCalmont H, Evans K, Mayoh C, Kurmasheva RT, Billups CA, et al. Preclinical activity of the antibody-drug conjugate denintuzumab mafodotin (SGN-CD19A) against pediatric acute lymphoblastic leukemia xenografts. Pediatr Blood Cancer. 2019;66(8):e27765.

    PubMed  PubMed Central  Google Scholar 

  268. Fathi AT, Borate U, DeAngelo DJ, O’Brien MM, Trippett T, Shah BD, et al. A phase 1 study of denintuzumab mafodotin (SGN-CD19A) in adults with relapsed or refractory B-lineage acute leukemia (B-ALL) and highly aggressive lymphoma. Blood. 2015;126(23):1328.

    Google Scholar 

  269. Jain N, Stock W, Zeidan A, Atallah E, McCloskey J, Heffner L, et al. Loncastuximab tesirine, an anti-CD19 antibody-drug conjugate, in relapsed/refractory B-cell acute lymphoblastic leukemia. Blood Adv. 2020;4(3):449–57.

    PubMed  PubMed Central  Google Scholar 

  270. Zammarchi F, Corbett S, Adams L, Tyrer PC, Kiakos K, Janghra N, et al. ADCT-402, a PBD dimer–containing antibody drug conjugate targeting CD19-expressing malignancies. Blood. 2018;131(10):1094–105.

    PubMed  Google Scholar 

  271. Hartley JA, Flynn MJ, Bingham JP, Corbett S, Reinert H, Tiberghien A, et al. Pre-clinical pharmacology and mechanism of action of SG3199, the pyrrolobenzodiazepine (PBD) dimer warhead component of antibody-drug conjugate (ADC) payload tesirine. Sci Rep. 2018;8(1):10479.

    PubMed  PubMed Central  Google Scholar 

  272. Flynn MJ, Hartley JA. The emerging role of anti-CD25 directed therapies as both immune modulators and targeted agents in cancer. Br J Haematol. 2017;179(1):20–35.

    PubMed  Google Scholar 

  273. Goldberg AD, Atallah E, Rizzieri D, Walter RB, Chung K-Y, Spira A, et al. Camidanlumab tesirine, an antibody-drug conjugate, in relapsed/refractory CD25-positive acute myeloid leukemia or acute lymphoblastic leukemia: a phase I study. Leuk Res. 2020;95:106385.

    PubMed  Google Scholar 

  274. Flynn MJ, Zammarchi F, Tyrer PC, Akarca AU, Janghra N, Britten CE, et al. ADCT-301, a pyrrolobenzodiazepine (PBD) dimer–containing antibody–drug conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol Cancer Ther. 2016;15(11):2709–21.

    PubMed  Google Scholar 

  275. Pulte ED, Vallejo J, Przepiorka D, Nie L, Farrell AT, Goldberg KB, et al. FDA supplemental approval: blinatumomab for treatment of relapsed and refractory precursor B-cell acute lymphoblastic leukemia. Oncologist. 2018;23(11):1366–71.

    PubMed  PubMed Central  Google Scholar 

  276. Franquiz MJ, Short NJ. Blinatumomab for the treatment of adult b-cell acute lymphoblastic leukemia: toward a new era of targeted immunotherapy. Biologics. 2020;14:23–34.

    PubMed  PubMed Central  Google Scholar 

  277. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera J-M, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376(9):836–47.

    PubMed  PubMed Central  Google Scholar 

  278. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gökbuget N, Topp MS, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol. 2017;35(16):1795–802.

    PubMed  Google Scholar 

  279. Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31.

    PubMed  PubMed Central  Google Scholar 

  280. Badar T, Szabo A, Advani A, Wadleigh M, Arslan S, Khan MA, et al. Real-world outcomes of adult B-cell acute lymphocytic leukemia patients treated with blinatumomab. Blood Adv. 2020;4(10):2308–16.

    PubMed  PubMed Central  Google Scholar 

  281. Gökbuget N, Zugmaier G, Klinger M, Kufer P, Stelljes M, Viardot A, et al. Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica. 2017;102(4):e132–e5.

    PubMed  PubMed Central  Google Scholar 

  282. Locatelli F, Zugmaier G, Mergen N, Bader P, Jeha S, Schlegel P-G, et al. Blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia: results of the RIALTO trial, an expanded access study. Blood Cancer J. 2020;10(7):28.

    Google Scholar 

  283. Webster J, Luskin MR, Prince GT, DeZern AE, DeAngelo DJ, Levis MJ, et al. Blinatumomab in combination with immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell acute lymphoblastic leukemia (ALL): preliminary results of a phase I study. Blood. 2018;132(Supplement 1):557.

    Google Scholar 

  284. Aldoss I, Bargou RC, Nagorsen D, Friberg GR, Baeuerle PA, Forman SJ. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: bispecific T-cell engagers and chimeric antigen receptors. Leukemia. 2017;31(4):777–87.

    PubMed  Google Scholar 

  285. Hughes-Parry HE, Cross RS, Jenkins MR. The evolving protein engineering in the design of chimeric antigen receptor T cells. Int J Mol Sci. 2019;21(1):204.

    PubMed  PubMed Central  Google Scholar 

  286. Mohty M, Gautier J, Malard F, Aljurf M, Bazarbachi A, Chabannon C, et al. CD19 chimeric antigen receptor-T cells in B-cell leukemia and lymphoma: current status and perspectives. Leukemia. 2019;33(12):2767–78.

    PubMed  Google Scholar 

  287. Park JH, Rivière I, Gonen M, Wang X, Sénéchal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378(5):449–59.

    PubMed  PubMed Central  Google Scholar 

  288. Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, et al. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood. 2017;129(25):3322–31.

    PubMed  PubMed Central  Google Scholar 

  289. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48.

    PubMed  PubMed Central  Google Scholar 

  290. Laetsch TW, Myers GD, Baruchel A, Dietz AC, Pulsipher MA, Bittencourt H, et al. Patient-reported quality of life after tisagenlecleucel infusion in children and young adults with relapsed or refractory B-cell acute lymphoblastic leukaemia: a global, single-arm, phase 2 trial. Lancet Oncol. 2019;20(12):1710–8.

    PubMed  PubMed Central  Google Scholar 

  291. Maciocia PM, Pule MA. Anti-CD1a CAR T cells to selectively target T-ALL. Blood. 2019;133(21):2246–7.

    PubMed  Google Scholar 

  292. Fleischer LC, Spencer HT, Raikar SS. Targeting T cell malignancies using CAR-based immunotherapy: challenges and potential solutions. J Hematol Oncol. 2019;12(1):141.

    PubMed  PubMed Central  Google Scholar 

  293. Cassaday RD, Garcia K-LA, Fromm JR, Percival M-EM, Turtle CJ, Nghiem PT, et al. Phase 2 study of pembrolizumab for measurable residual disease in adults with acute lymphoblastic leukemia. Blood Adv. 2020;4(14):3239–45.

    PubMed  PubMed Central  Google Scholar 

  294. Schwartz M, Damon LE, Jeyakumar D, Costello CL, Tzachanis D, Schiller GJ, et al. Blinatumomab in combination with pembrolizumab is safe for adults with relapsed or refractory B-lineage acute lymphoblastic leukemia: University of California Hematologic Malignancies Consortium Study 1504. Blood. 2019;134(Supplement_1):3880.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Gill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gill, H., Chu, C., Yung, Y. (2023). In the Pipeline—Emerging Therapy for ALL. In: Gill, H., Kwong, YL. (eds) Pathogenesis and Treatment of Leukemia. Springer, Singapore. https://doi.org/10.1007/978-981-99-3810-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3810-0_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3809-4

  • Online ISBN: 978-981-99-3810-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics