Skip to main content

Role of Biogenic Inorganic Nanomaterials as Drug Delivery Systems

  • Chapter
  • First Online:
Biological Applications of Nanoparticles

Abstract

Nanotechnology has emerged as a twenty-first-century discipline that has piqued the interest of the community of the scientific circle worldwide due to its ground-breaking inventions and prosecution in various fields. Nanomaterials have exemplary catalytic and biochemical qualities, among others, that distinguish them as materials. Characteristics such as the small size and high surface-area-to-volume ratio, strong reactive nature, the usability of nanoparticles (NPs) etc. improve their effectiveness for various applications, including biological applications. The ultimate goal of research interest in nanotechnology is to create therapeutically applicable NPs with improved drug kinetics and dynamics in a biological system that can contain the ideal dosage of a targeted drug. To increase safety and efficacy, NPs stimulate transport across membranes, enhance the stability and solubility of encapsulated drugs and lengthen circulation periods. Cancer immunotherapies have not yet produced encouraging outcomes, despite tremendous success. By increasing the efficiency of immunotherapy, NPs represent a novel and sensible approach to cancer treatment. Biogenic nanoparticles exhibit excellent immunogenicity and modifiability and coherently regulate the immune system to kill or inhibit cancer cell proliferation, thus presenting an efficient immunotherapeutic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati-Maleki L (2020) Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol 235(3):1962–1972

    Article  CAS  PubMed  Google Scholar 

  • Aioub M, Panikkanvalappil SR, El-Sayed MA (2017) Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 11(1):579–586

    Article  CAS  PubMed  Google Scholar 

  • Ali SS, Morsy R, El-Zawawy NA, Fareed MF, Bedaiwy MY (2017) Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int J Nanomedicine 12:6059–6073. https://doi.org/10.2147/IJN.S141201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153(3):198–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagga P, Ansari TM, Siddiqui HH, Syed A, Bahkali AH, Rahman MA, Khan MS (2016) Bromelain capped gold nanoparticles as the novel drug delivery carriers to aggrandize effect of the antibiotic levofloxacin. XCLI J 15:772–780

    Google Scholar 

  • Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F (2017) Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett 190:64–83

    Article  CAS  PubMed  Google Scholar 

  • Baker A, Iram S, Syed A, Elgorban AM, Bahkali AH, Ahmad K, Sajid Khan M, Kim J (2021) Fruit derived potentially bioactive bioengineered silver nanoparticles. Int J Nanomedicine 16:7711–7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behravan M, Hossein Panahi A, Naghizadeh A, Ziaee M, Mahdavi R, Mirzapour A (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154

    Article  CAS  PubMed  Google Scholar 

  • Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R (2018) Exploring factors for the design of nanoparticles as drug delivery vectors. Chemphyschem 19(21):2810–2828

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Kang Q, Zhao X (2020) Biogenic nanoparticles as immunomodulator for tumor treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12:e1646

    Article  PubMed  Google Scholar 

  • Cooper DL, Conder CM, Harirforoosh S (2014) Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin Drug Deliv 11(10):1661–1680

    Article  CAS  PubMed  Google Scholar 

  • Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ et al (2012) Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine 7:2673–2685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Seedi HR, El-Shabasy RM, Khalifa SA, Saeed A, Shah A, Shah R et al (2019) Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv 9(42):24539–24559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang C, Kievit FM, Veiseh O, Stephen ZR, Wang T, Lee D et al (2012) Fabrication of magnetic nanoparticles with controllable drug loading and release through a simple assembly approach. J Control Release 162(1):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilger-Casagrande M, de Lima R (2021) Biogenic synthesis of nanoparticles and their biological applications. In: Advances in nano-fertilizers and nano-pesticides in agriculture. Woodhead Publishing, Sawston, pp 361–384

    Chapter  Google Scholar 

  • Hammami I, Alabdallah NM (2021) Gold nanoparticles: synthesis properties and applications. J King Saud Univ Sci 33(7):101560

    Article  Google Scholar 

  • Hietzschold S, Walter A, Davis C, Taylor AA, Sepunaru A (2019) Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng 7:8070–8076

    Article  CAS  Google Scholar 

  • Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A (2019) Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 9(1):1–16

    Article  CAS  Google Scholar 

  • Khan S, Haseeb M, Baig MH, Bagga PS, Siddiqui HH, Kamal MA, Khan MS (2015) Improved efficiency and stability of secnidazole - an ideal delivery system. Saudi J Biol Sci 22(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Fromm KM, Rizvi TF, Giese B, Ahamad F, Turner RJ et al (2020) Metal nanoparticle–microbe interactions: synthesis and antimicrobial effects. Part Part Syst Charact 37(5):1900419

    Article  CAS  Google Scholar 

  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopeckova K, Eckschlager T, Sirc J, Hobzova R, Plch J, Hrabeta J, Michalek J (2019) Nanodrugs used in cancer therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 163(2):122–131

    Article  PubMed  Google Scholar 

  • Kou L, Bhutia YD, Yao Q, He Z, Sun J, Ganapathy V (2018) Transporter-guided delivery of nanoparticles to improve drug permeation across cellular barriers and drug exposure to selective cell types. Front Pharmacol 9:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yeo Y (2015) Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 125:75–84

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, Wang YJ (2014) Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35(16):4706–4715

    Article  CAS  PubMed  Google Scholar 

  • Medici S, Peana M, Coradduzza D, Zoroddu MA (2021) Gold nanoparticles and cancer: detection, diagnosis and therapy. In: Seminars in cancer biology, vol 76. Academic Press, London, pp 27–37

    Google Scholar 

  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20(2):101–124

    Article  CAS  PubMed  Google Scholar 

  • Mondal AH, Yadav D, Mitra S, Mukhopadhyay K (2020) Biosynthesis of silver nanoparticles using culture supernatant of Shewanella sp. ARY1 and their antibacterial activity. Int J Nanomedicine 15:8295–8310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondejar-Lopez M, Lopez-Jimenez AJ, Abad-Jorda M, Rubio-Moraga A, Ahrazem O, Gomez-Gomez L, Niza E (2021) Biogenic silver nanoparticles from Iris tuberosa as potential preservative in cosmetic products. Molecules (Basel, Switzerland) 26(15):4696

    Article  CAS  PubMed  Google Scholar 

  • Mousavi B, Tafvizi F, Zaker Bostanabad S (2018) Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anticancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif Cells Nanomed Biotechnol 46(suppl):499–510

    Article  CAS  PubMed  Google Scholar 

  • Naskar A, Cho H, Lee S, Kim KS (2021) Biomimetic nanoparticles coated with bacterial outer membrane vesicles as a new-generation platform for biomedical applications. Pharmaceutics 13(11):1887. https://doi.org/10.3390/pharmaceutics13111887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z (2019) An introduction to nanotechnology. In: Interface science and technology, vol 28. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Nikezic A, Bondzic AM, Vasic VM (2020) Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 151:105412

    Article  CAS  PubMed  Google Scholar 

  • Nitica S, Moldovan AI, Toma V, Moldovan CS, Berindan-Neagoe I, Stiufiuc G et al (2018) PEGylated gold nanoparticles with interesting plasmonic properties synthesized using an original, rapid, and easy-to-implement procedure. J Nanomater 1–7

    Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(suppl 1):51–63

    PubMed  PubMed Central  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP et al (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1):1–33

    Article  Google Scholar 

  • Paul W, Sharma CP (2019) Inorganic nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials, Elsevier, Amsterdam. ISBN 978-0-08-102680-9

    Google Scholar 

  • Probst J, Dembski S, Milde M, Rupp S (2012) Luminescent nanoparticles and their use for in vitro and in vivo diagnostics. Expert Rev Mol Diagn 12(1):49–64

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle AP, TrzciÅ„ska-Wencel J, Wypij M, Bonde S, Yadav A, Kratosova G, GoliÅ„ska P (2021) Biogenic silver nanoparticles: what we know and what do we need to know? Nanomaterials (Basel, Switzerland) 11(11):2901

    Article  CAS  PubMed  Google Scholar 

  • Ratan ZA, Haidere MF, Nurunnabi M, Shahriar SM, Ahammad A, Shim YY, Reaney M, Cho JY (2020) Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 12(4):855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi S, Saleh AM (2018) Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 26(1):64–70

    Article  PubMed  Google Scholar 

  • Rozhin A, Batasheva S, Kruychkova M, Cherednichenko Y, Rozhina E, Fakhrullin R (2021) Biogenic silver nanoparticles: synthesis and application as antibacterial and antifungal agents. Micromachines 12(12):1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Sen GT, Ozkemahli G, Shahbazi R, Erkekoglu P, Ulubayram K, Kocer-Gumusel B (2020) The effects of polymer coating of gold nanoparticles on oxidative stress and DNA damage. Int J Toxicol 39(4):328–340

    Article  CAS  PubMed  Google Scholar 

  • Seo JM, Kim EB, Hyun MS, Kim BB, Park TJ (2015) Self-assembly of biogenic gold nanoparticles and their use to enhance drug delivery into cells. Colloids Surf B Biointerfaces 135:27–34

    Article  CAS  PubMed  Google Scholar 

  • Shkodenko L, Kassirov I, Koshel E (2020) Metal oxide nanoparticles against bacterial biofilms: perspectives and limitations. Microorganisms 8(10):1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh MS, Lamprecht A (2016) P-glycoprotein inhibition of drug resistant cell lines by nanoparticles. Drug Dev Ind Pharm 42(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, Fu F (2021) Nanocarrier-based drug delivery system for cancer therapeutics: a review of the last decade. Curr Med Chem 28(19):3753–3772

    Article  CAS  PubMed  Google Scholar 

  • Son GH, Lee BJ, Cho CW (2017) Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 47:287–296

    Article  CAS  Google Scholar 

  • Song MF, Li YS, Kasai H, Kawai K (2012) Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50(3):211–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanusha AV, Dinda AK, Koul V (2018) Evaluation of nano hydrogel composite based on gelatin/HA/CS suffused with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. Mater Sci Eng C 89:378–386

    Article  CAS  Google Scholar 

  • Tinajero-Diaz E, Salado-Leza D, Gonzalez C, Martinez Velazquez M, Lopez Z, Bravo-Madrigal J et al (2021) Green metallic nanoparticles for cancer therapy: evaluation models and cancer applications. Pharmaceutics 13(10):1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Gaus K, Tilley DR, Gooding JJ (2019) The impact of nanoparticle shape on cellular internalization and transport: what do the different analysis methods tell us? Mater Horiz 6(8):1538–1547

    Article  CAS  Google Scholar 

  • Wypij M, Jedrzejewski T, Trzcinska-Wencel J, Ostrowski M, Rai M, Golinska P (2021) Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol 12:632505

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Li R, Ma M, Wang X, Wang Y, Zou H (2012) Multidrug resistance protein P-glycoprotein does not recognize nanoparticle C 60: experiment and modeling. Soft Matter 8(10):2915–2923

    Article  CAS  Google Scholar 

  • Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y et al (2020) Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci 7:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon HY, Jeon S, You DG, Park JH, Kwon IC, Koo H, Kim K (2017) Inorganic nanoparticles for image-guided therapy. Bioconjug Chem 28(1):124–134

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, Li P (2020) Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett 15(1):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan T, Gao L, Zhan W, Daniele D (2022) Effect of particle size and surface charge on nanoparticles diffusion in the brain white matter. Pharm Res 39:767–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Li B, Du J, Wang Y (2017) Regulation the morphology of cationized gold nanoparticles for effective gene delivery. Colloids Surf B Biointerfaces 157:18–25

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Cheng Y, Ren W, Sun L, Liu C, Wang D, Guo L, Xu H, Zhao Y (2018) Coordination-responsive longitudinal relaxation tuning as a versatile MRI sensing protocol for malignancy targets. Adv Sci 5(9):1800021

    Article  Google Scholar 

  • Zhao J, Stenzel MH (2018) Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 9(3):259–272

    Article  CAS  Google Scholar 

  • Zuberek M, Grzelak A (2018) Nanoparticles-caused oxidative imbalance. Adv Exp Med Biol 1048:85–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chairman, Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, for kind support.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ateeq, H., Zia, A., Husain, Q., Khan, M.S. (2023). Role of Biogenic Inorganic Nanomaterials as Drug Delivery Systems. In: Sarkar, B., Sonawane, A. (eds) Biological Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-99-3629-8_3

Download citation

Publish with us

Policies and ethics