Skip to main content

Nanozymes for In Vitro Analysis

  • Chapter
  • First Online:
Biomedical Nanozymes

Abstract

As a type of promising substitutes for natural enzymes, nanozymes have been widely used in in vitro analysis because of their unique advantages, including high stability, low cost, easy storage, multifunctionalities, among others. Bioanalysis based on the catalysis of nanozymes has attracted extensive research interest. This chapter begins with the principles of diverse detection techniques, including colorimetry, electrochemistry, chemiluminescence, electrochemiluminescence, fluorescence, and surface-enhanced Raman scattering. Representative advances in nanozyme-based bioanalysis in recent years are then introduced. Additionally, future challenges and perspectives are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Beilen JB, Li Z. Enzyme technology: an overview. Curr Opin Biotechnol. 2002;13(4):338–44.

    Article  Google Scholar 

  2. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83.

    Article  CAS  Google Scholar 

  3. Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem. 2008;80(6):2250–4.

    Article  CAS  Google Scholar 

  4. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–76.

    Article  CAS  Google Scholar 

  5. Wang Q, Wei H, Zhang Z, Wang E, Dong S. Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem. 2018;105:218–24.

    Article  CAS  Google Scholar 

  6. Li S, Zhang Y, Wang Q, Lin A, Wei H. Nanozyme-enabled analytical chemistry. Anal Chem. 2022;94(1):312–23.

    Article  CAS  Google Scholar 

  7. Ye N, Huang S, Yang H, Wu T, Tong L, Zhu F, Chen G, Ouyang G. Hydrogen-bonded biohybrid framework-derived highly specific nanozymes for biomarker sensing. Anal Chem. 2021;93(41):13981–9.

    Article  CAS  Google Scholar 

  8. Zhu X, Mao X, Wang Z, Feng C, Chen G, Li G. Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Res. 2017;10(3):959–70.

    Article  CAS  Google Scholar 

  9. Frew JE, Hill HAO. Electrochemical biosensors. Anal Chem. 1987;59(15):933A–44A.

    Article  CAS  Google Scholar 

  10. Wang X, Dong S, Wei H. Recent advances on nanozyme-based electrochemical biosensors. Electroanalysis. 2022;34:1–13.

    CAS  Google Scholar 

  11. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39(5):1747–63.

    Article  CAS  Google Scholar 

  12. Fang H, Pan Y, Shan W, Guo M, Nie Z, Huang Y, Yao S. Enhanced nonenzymatic sensing of hydrogen peroxide released from living cells based on Fe3O4/self-reduced graphene nanocomposites. Anal Methods. 2014;6(15):6073–81.

    Article  CAS  Google Scholar 

  13. Campuzano S, Pedrero M, Yáñez-Sedeño P, Pingarrón JM. Nanozymes in electrochemical affinity biosensing. Microchim Acta. 2020;187(8):423.

    Article  CAS  Google Scholar 

  14. Feng J, Wang H, Ma Z. Ultrasensitive amperometric immunosensor for the prostate specific antigen by exploiting a Fenton reaction induced by a metal-organic framework nanocomposite of type Au/Fe-MOF with peroxidase mimicking activity. Microchim Acta. 2020;187(1):95.

    Article  CAS  Google Scholar 

  15. Gill SK, Brice LK. Chemiluminescence. J Chem Educ. 1984;61(8):713.

    Article  CAS  Google Scholar 

  16. Slabaugh WH. A chemiluminescence reaction. J Chem Educ. 1970;47(7):522.

    Article  Google Scholar 

  17. Sun Y, Gao P, Han R, Luo C, Wei Q. A target-triggered signal chemiluminescence sensor for prostate specific antigen detection based on hollow porous silica encapsulated luminol by aptamers. Sens Actuators B Chem. 2021;333:129543.

    Article  CAS  Google Scholar 

  18. Lei J, Liu W, Jin Y, Li B. Oxygen vacancy-dependent chemiluminescence: a facile approach for quantifying oxygen defects in ZnO. Anal Chem. 2022;94(24):8642–50.

    Article  CAS  Google Scholar 

  19. Hananya N, Shabat D. Recent advances and challenges in luminescent imaging: bright outlook for chemiluminescence of dioxetanes in water. ACS Cent Sci. 2019;5(6):949–59.

    Article  CAS  Google Scholar 

  20. Lei J, Sun X, Jin Y, Xu C, Li B. Atomic dispersion of Zn2+ on N-doped carbon materials: from non-activity to high activity for catalyzing luminol-H2O2 chemiluminescence. Anal Chem. 2022;94(50):17559–66.

    Article  CAS  Google Scholar 

  21. Li Y, Ouyang S, Xu H, Wang X, Bi Y, Zhang Y, Ye J. Constructing solid–gas-interfacial Fenton reaction over alkalinized-C3N4 photocatalyst to achieve apparent quantum yield of 49% at 420 nm. J Am Chem Soc. 2016;138(40):13289–97.

    Article  CAS  Google Scholar 

  22. Tang Y, Chen Y, Liu Y, Xia Y, Zhao F, Zeng B. Detection of gastric cancer-associated d-amino acids and carcinoembryonic antigen by colorimetric and immuno ECL sensing platform based on the catalysis of N/S-doped carbon dots @N-rich porous carbon nanoenzyme. Anal Chem. 2022;94(51):17787–94.

    Article  CAS  Google Scholar 

  23. Wolfbeis OS, Schäferling M, Dürkop A. Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim Acta. 2003;143(4):221–7.

    Article  CAS  Google Scholar 

  24. Ferrer AS, Santema JS, Hilhorst R, Visser AJWG. Fluorescence detection of enzymatically formed hydrogen peroxide in aqueous solution and in reversed micelles. Anal Biochem. 1990;187(1):129–32.

    Article  Google Scholar 

  25. Lien C-W, Huang C-C, Chang H-T. Peroxidase-mimic bismuth-gold nanoparticles for determining the activity of thrombin and drug screening. Chem Commun. 2012;48(64):7952–4.

    Article  CAS  Google Scholar 

  26. Yuan J, Guo W, Yin J, Wang E. Glutathione-capped CdTe quantum dots for the sensitive detection of glucose. Talanta. 2009;77(5):1858–63.

    Article  CAS  Google Scholar 

  27. Jin L, Shang L, Guo S, Fang Y, Wen D, Wang L, Yin J, Dong S. Biomolecule-stabilized au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens Bioelectron. 2011;26(5):1965–9.

    Article  CAS  Google Scholar 

  28. He F, Tang Y, Yu M, Wang S, Li Y, Zhu D. Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv Funct Mater. 2006;16(1):91–4.

    Article  CAS  Google Scholar 

  29. Charbouillot T, Brigante M, Mailhot G, Maddigapu PR, Minero C, Vione D. Performance and selectivity of the terephthalic acid probe for ·OH as a function of temperature, pH and composition of atmospherically relevant aqueous media. J Photochem Photobiol A Chem. 2011;222(1):70–6.

    Article  CAS  Google Scholar 

  30. Hu A-L, Liu Y-H, Deng H-H, Hong G-L, Liu A-L, Lin X-H, Xia X-H, Chen W. Fluorescent hydrogen peroxide sensor based on cupric oxide nanoparticles and its application for glucose and l-lactate detection. Biosens Bioelectron. 2014;61:374–8.

    Article  CAS  Google Scholar 

  31. Wan Y, Zhao J, Deng X, Chen J, Xi F, Wang X. Colorimetric and fluorescent dual-modality sensing platform based on fluorescent nanozyme. Front Chem. 2021;9:774486.

    Article  CAS  Google Scholar 

  32. Li M, Zeng Y, Qu X, Jalalah M, Alsareii SA, Li C, Harraz FA, Li G. Biocatalytic CsPbX3 perovskite nanocrystals: a self-reporting nanoprobe for metabolism analysis. Small. 2021;17(46):2103255.

    Article  CAS  Google Scholar 

  33. Xu M-L, Gao Y, Han XX, Zhao B. Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review. J Agric Food Chem. 2017;65(32):6719–26.

    Article  CAS  Google Scholar 

  34. Mu M, Wen S, Hu S, Zhao B, Song W. Putting surface-enhanced Raman spectroscopy to work for nanozyme research: methods, materials and applications. TrAC Trends Anal Chem. 2022;152:116603.

    Article  CAS  Google Scholar 

  35. Liu Y, Ma H, Han XX, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater Horizons. 2021;8(2):370–82.

    Article  CAS  Google Scholar 

  36. Ding S-Y, You E-M, Tian Z-Q, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev. 2017;46(13):4042–76.

    Article  CAS  Google Scholar 

  37. Miao P, Wang B, Yin J, Chen X, Tang Y. Electrochemical tracking hydrogen peroxide secretion in live cells based on autocatalytic oxidation reaction of silver nanoparticles. Electrochem Commun. 2015;53:37–40.

    Article  CAS  Google Scholar 

  38. Chen G, Huang S, Shen Y, Kou X, Ma X, Huang S, Tong Q, Ma K, Chen W, Wang P, et al. Protein-directed, hydrogen-bonded biohybrid framework. Chem. 2021;7(10):2722–42.

    Article  CAS  Google Scholar 

  39. Li Y, Li M, Lu J, Ma B, Wang Z, Cheong L-Z, Luo K, Zha X, Chen K, Persson POÅ, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1–x)C2 and its artificial enzyme behavior. ACS Nano. 2019;13(8):9198–205.

    Article  CAS  Google Scholar 

  40. Ding S, Lyu Z, Fang L, Li T, Zhu W, Li S, Li X, Li J-C, Du D, Lin Y. Single-atomic site catalyst with heme enzymes-like active sites for electrochemical sensing of hydrogen peroxide. Small. 2021;17(25):2100664.

    Article  CAS  Google Scholar 

  41. Gao F, Huang J, Ruan Y, Li H, Gong P, Wang F, Tang Q, Jiang Y. Unraveling the structure transition and peroxidase mimic activity of copper sites over atomically dispersed copper-doped carbonized polymer dots. Angew Chem Int Ed. 2023;62(7):e202214042.

    Article  CAS  Google Scholar 

  42. Yu K, Li M, Chai H, Liu Q, Hai X, Tian M, Qu L, Xu T, Zhang G, Zhang X. MOF-818 nanozyme-based colorimetric and electrochemical dual-mode smartphone sensing platform for in situ detection of H2O2 and H2S released from living cells. Chem Eng J. 2023;451:138321.

    Article  CAS  Google Scholar 

  43. Li T, Wang Y, Liu W, Fei H, Guo C, Wei H. Nanoconfinement-guided construction of nanozymes for determining H2O2 produced by sonication. Angew Chem Int Ed. 2023;62(12):e202212438.

    Article  CAS  Google Scholar 

  44. Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer’s disease. Eur J Pharmacol. 2004;490(1):97–113.

    Article  CAS  Google Scholar 

  45. Lan M, Weng M, Lin Z, Wang J, Zhao F, Qiu B. Metabolomic analysis of antimicrobial mechanism of polysaccharides from Sparassis crispa based on HPLC-Q-TOF/MS. Carbohydr Res. 2021;503:108299.

    Article  CAS  Google Scholar 

  46. Shah K, DeSilva S, Abbruscato T. The role of glucose transporters in brain disease: diabetes and Alzheimer’s disease. Int J Mol Sci. 2012;13(10):12629–55.

    Article  CAS  Google Scholar 

  47. Sun Y, Li P, Zhu Y, Zhu X, Zhang Y, Liu M, Liu Y. In situ growth of TiO2 nanowires on Ti3C2 mxenes nanosheets as highly sensitive luminol electrochemiluminescent nanoplatform for glucose detection in fruits, sweat and serum samples. Biosens Bioelectron. 2021;194:113600.

    Article  CAS  Google Scholar 

  48. Ballerstadt RGA, McNichols R. Fluorescence resonance energy transfer-based near-infrared fluorescence sensor for glucose monitoring. Diabetes Technol Ther. 2004;6(2):191–200.

    Article  CAS  Google Scholar 

  49. Lee SJ, Youn B-S, Park JW, Niazi JH, Kim YS, Gu MB. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal Chem. 2008;80(8):2867–73.

    Article  CAS  Google Scholar 

  50. Elsherif M, Hassan MU, Yetisen AK, Butt H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano. 2018;12(6):5452–62.

    Article  CAS  Google Scholar 

  51. Jeon H-J, Kim S, Park S, Jeong I-K, Kang J, Kim YR, Lee DY, Chung E. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett. 2021;21(20):8933–40.

    Article  CAS  Google Scholar 

  52. Hu S, Jiang Y, Wu Y, Guo X, Ying Y, Wen Y, Yang H. Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and porphyrin-based metal–organic framework. ACS Appl Mater Interfaces. 2020;12(49):55324–30.

    Article  CAS  Google Scholar 

  53. Tong L, Wu L, Zai Y, Zhang Y, Su E, Gu N. Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosens Bioelectron. 2023;219:114787.

    Article  CAS  Google Scholar 

  54. André C, Castanheira I, Cruz JM, Paseiro P, Sanches-Silva A. Analytical strategies to evaluate antioxidants in food: a review. Trends Food Sci Technol. 2010;21(5):229–46.

    Article  Google Scholar 

  55. Wang Z, Huang Y, Xu K, Zhong Y, He C, Jiang L, Sun J, Rao Z, Zhu J, Huang J, et al. Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing. Nat Commun. 2023;14(1):69.

    Article  CAS  Google Scholar 

  56. Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in glutathione content in liver diseases: an update. Antioxidants. 2021;10(3):364.

    Article  CAS  Google Scholar 

  57. Teskey G, Abrahem R, Cao R, Gyurjian K, Islamoglu H, Lucero M, Martinez A, Paredes E, Salaiz O, Robinson B, et al. Chapter 5—Glutathione as a marker for human disease. In: Makowski GS, editor. Advances in clinical chemistry, vol. 87. Amsterdam: Elsevier; 2018. p. 141–59.

    Google Scholar 

  58. Song J, Kang SM, Lee WT, Park KA, Lee KM, Lee JE. Glutathione protects brain endothelial cells from hydrogen peroxide-induced oxidative stress by increasing Nrf2 expression. Exp Neurobiol. 2014;23(1):93–103.

    Article  CAS  Google Scholar 

  59. Bjorklund G, Peana M, Maes M, Dadar M, Severin B. The glutathione system in Parkinson’s disease and its progression. Neurosci Biobehav Rev. 2021;120:470–8.

    Article  Google Scholar 

  60. Meng F, Miao P, Wang B, Tang Y, Yin J. Identification of glutathione by voltammetric analysis with rolling circle amplification. Anal Chim Acta. 2016;943:58–63.

    Article  CAS  Google Scholar 

  61. Li H, Wen Y, Zhu X, Wang J, Zhang L, Sun B. Novel heterostructure of a MXene@NiFe-LDH nanohybrid with superior peroxidase-like activity for sensitive colorimetric detection of glutathione. ACS Sustain Chem Eng. 2020;8(1):520–6.

    Article  CAS  Google Scholar 

  62. Zhu X, Li T, Hai X, Bi S. A nanozyme-based colorimetric sensor array as electronic tongue for thiols discrimination and disease identification. Biosens Bioelectron. 2022;213:114438.

    Article  CAS  Google Scholar 

  63. Hamada Y, Yamamura M, Hioki K, Yamamoto M, Nagura H, Watanabe K. Immunohistochemical study of carcinoembryonic antigen in patients with colorectal cancer-correlation with plasma carcinoembryonic antigen levels. Cancer. 1985;55(1):136–41.

    Article  CAS  Google Scholar 

  64. Xi Z, Wei K, Wang Q, Kim MJ, Sun S, Fung V, Xia X. Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. J Am Chem Soc. 2021;143(7):2660–4.

    Article  CAS  Google Scholar 

  65. Xu W, Song W, Kang Y, Jiao L, Wu Y, Chen Y, Cai X, Zheng L, Gu W, Zhu C. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal Chem. 2021;93(37):12758–66.

    Article  CAS  Google Scholar 

  66. Yu Z, Cai G, Liu X, Tang D. Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl Mater Interfaces. 2020;12(36):40133–40.

    Article  CAS  Google Scholar 

  67. Baade PD, Youlden DR, Krnjacki LJ. International epidemiology of prostate cancer: geographical distribution and secular trends. Mol Nutr Food Res. 2009;53(2):171–84.

    Article  CAS  Google Scholar 

  68. Huang T, Hu X, Wang M, Wu Y, Hu L, Xia Z. Ionic liquid-assisted chemiluminescent immunoassay of prostate specific antigen using nanoceria as an alkaline phosphatase-like nanozyme label. Chem Commun. 2021;57(24):3054–7.

    Article  CAS  Google Scholar 

  69. Stoecklin SB, Rolland P, Silue Y, Mailles A, Campese C, Simondon A, Mechain M, Meurice L, Nguyen M, Bassi C, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Eur Secur. 2020;25(6):2000094.

    Google Scholar 

  70. Pang B, Xu J, Liu Y, Peng H, Feng W, Cao Y, Wu J, Xiao H, Pabbaraju K, Tipples G, et al. Isothermal amplification and ambient visualization in a single tube for the detection of SARS-CoV-2 using loop-mediated amplification and CRISPR technology. Anal Chem. 2020;92(24):16204–12.

    Article  CAS  Google Scholar 

  71. Zhu X, Wang X, Han L, Chen T, Wang L, Li H, Li S, He L, Fu X, Chen S, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosens Bioelectron. 2020;166:112437.

    Article  CAS  Google Scholar 

  72. He M, Xu X, Wang H, Wu Q, Zhang L, Zhou D, Tong Y, Su X, Liu H. Nanozyme-based colorimetric SARS-CoV-2 nucleic acid detection by naked eye. Small. 2023;19(20):2208167.

    Article  CAS  Google Scholar 

  73. Ruan X, Liu D, Niu X, Wang Y, Simpson CD, Cheng N, Du D, Lin Y. 2D graphene oxide/Fe-MOF nanozyme nest with superior peroxidase-like activity and its application for detection of woodsmoke exposure biomarker. Anal Chem. 2019;91(21):13847–54.

    Article  CAS  Google Scholar 

  74. Liu X-C, Qi L, Ma N, Yang G, Liu N, Chen G, Liu H, Li F-S. Determination of 3-OHB[a]P and (+)-anti-BPDE in rats blood and brain tissue of B[a]P exposure by HPLC with fluorescence detection. Chromatographia. 2015;78(9):663–73.

    Article  CAS  Google Scholar 

  75. Singh R, Gaskell M, Le Pla RC, Kaur B, Azim-Araghi A, Roach J, Koukouves G, Souliotis VL, Kyrtopoulos SA, Farmer PB. Detection and quantitation of benzo[a]pyrene-derived DNA adducts in mouse liver by liquid chromatography–tandem mass spectrometry: comparison with 32p-postlabeling. Chem Res Toxicol. 2006;19(6):868–78.

    Article  CAS  Google Scholar 

  76. Jiao L, Xu W, Zhang Y, Wu Y, Gu W, Ge X, Chen B, Zhu C, Guo S. Boron-doped Fe–N–C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today. 2020;35:100971.

    Article  CAS  Google Scholar 

  77. Li H, Huang Y, Yu Y, Li G, Karamanos Y. Self-catalyzed assembly of peptide scaffolded nanozyme as a dynamic biosensing system. ACS Appl Mater Interfaces. 2016;8(4):2833–9.

    Article  CAS  Google Scholar 

  78. Huang Y, Li H, Fan Q, Wang L, Wang Y, Li G. Multifunctional nanocatalyst-based ultrasensitive detection of human tissue transglutaminase 2. Biosens Bioelectron. 2016;83:85–90.

    Article  CAS  Google Scholar 

  79. Wan J, Zhao Z, Shang H, Peng B, Chen W, Pei J, Zheng L, Dong J, Cao R, Sarangi R, et al. In situ phosphatizing of triphenylphosphine encapsulated within metal–organic frameworks to design atomic Co1–P1N3 interfacial structure for promoting catalytic performance. J Am Chem Soc. 2020;142(18):8431–9.

    Article  CAS  Google Scholar 

  80. Zhang J, Zhao Y, Chen C, Huang Y-C, Dong C-L, Chen C-J, Liu R-S, Wang C, Yan K, Li Y, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J Am Chem Soc. 2019;141(51):20118–26.

    Article  CAS  Google Scholar 

  81. Bushira FA, Kitte SA, Wang Y, Li H, Wang P, Jin Y. Plasmon-boosted Cu-doped TiO2 oxygen vacancy-rich luminol electrochemiluminescence for highly sensitive detection of alkaline phosphatase. Anal Chem. 2021;93(45):15183–91.

    Article  CAS  Google Scholar 

  82. Zeng Y, Wang M, Sun Z, Sha L, Yang J, Li G. Colorimetric immunosensor constructed using 2D metal-organic framework nanosheets as enzyme mimics for the detection of protein biomarkers. J Mater Chem B. 2022;10(3):450–5.

    Article  CAS  Google Scholar 

  83. Cheng X, Zheng S, Wang W, Han H, Yang X, Shen W, Wang C, Wang S. Synthesis of two-dimensional graphene oxide-fluorescent nanoprobe for ultrasensitive and multiplex immunochromatographic detection of respiratory bacteria. Chem Eng J. 2021;426:131836.

    Article  CAS  Google Scholar 

  84. Francesko A, Fernandes MM, Ivanova K, Amorim S, Reis RL, Pashkuleva I, Mendoza E, Pfeifer A, Heinze T, Tzanov T. Bacteria-responsive multilayer coatings comprising polycationic nanospheres for bacteria biofilm prevention on urinary catheters. Acta Biomater. 2016;33:203–12.

    Article  CAS  Google Scholar 

  85. Galbadage T, Liu D, Alemany LB, Pal R, Tour JM, Gunasekera RS, Cirillo JD. Molecular nanomachines disrupt bacterial cell wall, increasing sensitivity of extensively drug-resistant klebsiella pneumoniae to meropenem. ACS Nano. 2019;13(12):14377–87.

    Article  CAS  Google Scholar 

  86. Herrmann IK, Bertazzo S, O'Callaghan DJP, Schlegel AA, Kallepitis C, Antcliffe DB, Gordon AC, Stevens MM. Differentiating sepsis from non-infectious systemic inflammation based on microvesicle-bacteria aggregation. Nanoscale. 2015;7(32):13511–20.

    Article  CAS  Google Scholar 

  87. Yan P, Ding Z, Li X, Dong Y, Fu T, Wu Y. Colorimetric sensor array based on Wulff-type boronate functionalized AgNPs at various pH for bacteria identification. Anal Chem. 2019;91(19):12134–7.

    Article  CAS  Google Scholar 

  88. Wang H, Zhao B, Dong W, Zhong Y, Zhang X, Gong Y, Zhan R, Xing M, Zhang J, Luo G, et al. A dual-targeted platform based on graphene for synergistic chemo-photothermal therapy against multidrug-resistant Gram-negative bacteria and their biofilms. Chem Eng J. 2020;393:124595.

    Article  CAS  Google Scholar 

  89. Hassibi A, Manickam A, Singh R, Bolouki S, Sinha R, Jirage KB, McDermott MW, Hassibi B, Vikalo H, Mazarei G, et al. Multiplexed identification, quantification and genotyping of infectious agents using a semiconductor biochip. Nat Biotechnol. 2018;36(8):738–45.

    Article  CAS  Google Scholar 

  90. Liu Y, Lin A, Liu J, Chen X, Zhu X, Gong Y, Yuan G, Chen L, Liu J. Enzyme-responsive mesoporous ruthenium for combined chemo-photothermal therapy of drug-resistant bacteria. ACS Appl Mater Interfaces. 2019;11(30):26590–606.

    Article  CAS  Google Scholar 

  91. Chen X, Wang X, Fang Y, Zhang L, Zhao M, Liu Y. Long-lasting chemiluminescence-based POCT for portable and visual pathogenic detection and in situ inactivation. Anal Chem. 2022;94(23):8382–91.

    Article  CAS  Google Scholar 

  92. Zhao M, Lin X, Zhou X, Zhang Y, Wu H, Liu Y. Single probe-based chemical-tongue sensor array for multiple bacterial identification and photothermal sterilization in real time. ACS Appl Mater Interfaces. 2022;14(6):7706–16.

    Article  CAS  Google Scholar 

  93. Ning B, Huang Z, Youngquist BM, Scott JW, Niu A, Bojanowski CM, Zwezdaryk KJ, Saba NS, Fan J, Yin X-M, et al. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat Nanotechnol. 2021;16(9):1039–44.

    Article  CAS  Google Scholar 

  94. Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, Sappakhaw K, Leelahakorn N, Ruenkam T, Wongsatit T, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 2020;4(12):1140–9.

    Article  CAS  Google Scholar 

  95. Wu L, Wang X, Wu X, Xu S, Liu M, Cao X, Tang T, Huang X, Huang H. MnO2 nanozyme-mediated CRISPR-Cas12a system for the detection of SARS-CoV-2. ACS Appl Mater Interfaces. 2022;14(45):50534–42.

    Article  CAS  Google Scholar 

  96. Khoris IM, Kenta T, Ganganboina AB, Park EY. Pt-embodiment ZIF-67-derived nanocage as enhanced immunoassay for infectious virus detection. Biosens Bioelectron. 2022;215:114602.

    Article  CAS  Google Scholar 

  97. Yu T, Dai P-P, Xu J-J, Chen H-Y. Highly sensitive colorimetric cancer cell detection based on dual signal amplification. ACS Appl Mater Interfaces. 2016;8(7):4434–41.

    Article  CAS  Google Scholar 

  98. Lee J, Lee YJ, Ahn YJ, Choi S, Lee G-J. A simple and facile paper-based colorimetric assay for detection of free hydrogen sulfide in prostate cancer cells. Sens Actuators B Chem. 2018;256:828–34.

    Article  CAS  Google Scholar 

  99. Cao Y, Dai Y, Chen H, Tang Y, Chen X, Wang Y, Zhao J, Zhu X. Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells. Biosens Bioelectron. 2019;130:132–8.

    Article  CAS  Google Scholar 

  100. Miao P, Tang Y. Gold nanoparticles-based multipedal DNA walker for ratiometric detection of circulating tumor cell. Anal Chem. 2019;91(23):15187–92.

    Article  CAS  Google Scholar 

  101. Tang Y-H, Lin H-C, Lai C-L, Chen P-Y, Lai C-H. Mannosyl electrochemical impedance cytosensor for label-free MDA-MB-231 cancer cell detection. Biosens Bioelectron. 2018;116:100–7.

    Article  CAS  Google Scholar 

  102. Vajhadin F, Ahadian S, Travas-Sejdic J, Lee J, Mazloum-Ardakani M, Salvador J, Aninwene GE II, Bandaru P, Sun W, Khademhossieni A. Electrochemical cytosensors for detection of breast cancer cells. Biosens Bioelectron. 2020;151:111984.

    Article  CAS  Google Scholar 

  103. Guo H, Song X, Lei W, He C, You W, Lin Q, Zhou S, Chen X, Chen Z. Direct detection of circulating tumor cells in whole blood using time-resolved luminescent lanthanide nanoprobes. Angew Chem Int Ed. 2019;58(35):12195–9.

    Article  CAS  Google Scholar 

  104. Zhang R, Le B, Xu W, Guo K, Sun X, Su H, Huang L, Huang J, Shen T, Liao T, et al. Magnetic “squashing” of circulating tumor cells on plasmonic substrates for ultrasensitive NIR fluorescence detection. Small Methods. 2019;3(2):1800474.

    Article  Google Scholar 

  105. Mohammadi SS, Vaezi Z, Shojaedin-Givi B, Naderi-Manesh H. Chemiluminescent liposomes as a theranostic carrier for detection of tumor cells under oxidative stress. Anal Chim Acta. 2019;1059:113–23.

    Article  Google Scholar 

  106. Akhavan-Tafti H, Binger DG, Blackwood JJ, Chen Y, Creager RS, de Silva R, Eickholt RA, Gaibor JE, Handley RS, Kapsner KP, et al. A homogeneous chemiluminescent immunoassay method. J Am Chem Soc. 2013;135(11):4191–4.

    Article  CAS  Google Scholar 

  107. Li J, Zhu Z, Zhu B, Ma Y, Lin B, Liu R, Song Y, Lin H, Tu S, Yang C. Surface-enhanced Raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging. Anal Chem. 2016;88(15):7828–36.

    Article  CAS  Google Scholar 

  108. Xiao L, Wang H, Schultz ZD. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal Chem. 2016;88(12):6547–53.

    Article  CAS  Google Scholar 

  109. Kato S, Burke PJ, Koch TH, Bierbaum VM. Formaldehyde in human cancer cells: detection by preconcentration-chemical ionization mass spectrometry. Anal Chem. 2001;73(13):2992–7.

    Article  CAS  Google Scholar 

  110. Tavakoli H, Zhou W, Ma L, Perez S, Ibarra A, Xu F, Zhan S, Li X. Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy. TrAC Trends Analyt Chem. 2019;117:13–26.

    Article  CAS  Google Scholar 

  111. Liu S, Lu S, Sun S, Hai J, Meng G, Wang B. NIR II light-response Au nanoframes: amplification of a pressure- and temperature-sensing strategy for portable detection and photothermal therapy of cancer cells. Anal Chem. 2021;93(42):14307–16.

    Article  CAS  Google Scholar 

  112. Wang M, Pan Y, Wu S, Sun Z, Wang L, Yang J, Yin Y, Li G. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks. Biosens Bioelectron. 2020;169:112638.

    Article  CAS  Google Scholar 

  113. Huang L, Zhu Q, Zhu J, Luo L, Pu S, Zhang W, Zhu W, Sun J, Wang J. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg Chem. 2019;58(2):1638–46.

    Article  CAS  Google Scholar 

  114. Zhu Y, Wu J, Han L, Wang X, Li W, Guo H, Wei H. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal Chem. 2020;92(11):7444–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genxi Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Muhammad, F., Miao, P., Wei, H., Li, G. (2023). Nanozymes for In Vitro Analysis. In: Wei, H., Li, G., Li, J. (eds) Biomedical Nanozymes. Springer, Singapore. https://doi.org/10.1007/978-981-99-3338-9_3

Download citation

Publish with us

Policies and ethics