Skip to main content

Eco-Friendly Conducting Polymer-Based Functionalized Nanocomposites Dedicated for Electrochemical Devices

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 309 Accesses

Abstract

Nanocomposite materials comprised of conjugated polymer and nanoparticles have been created to achieve the enhanced properties of conducting polymers. In this regard, many types of inorganic and organic nanoparticles have been reinforced in conjugated polymers to generate high-performance nanocomposite materials. Recently, polymer-based nanocomposite materials have also been focused on eco-friendly electrochemical devices, and conversion technologies such as supercapacitors, rechargeable batteries, and fuel cells due to their high conductivity, ease of synthesis, flexibility, low cost, environmental friendliness, and unique redox properties. Pure Conducting polymer has poor supercapacitor electrode stability and cannot match the growing need for a more stable molecular structure, better power/energy density, and more N-active sites. Conducting polymer typically acts as a conductive layer and network in various conducting polymer-based composite structures. Due to the synergistic effect, the resulting conducting polymer-based composites with various unique structures have demonstrated superior electrochemical performance in supercapacitors, rechargeable batteries, and fuel cells. Furthermore, conducting polymers offer a wide range of interesting applications in analytical chemistry, including electrochemistry. Polyacetylene, polypyrrole, polyaniline, poly(para-phenylene), polythiophene, poly (p-phenylene vinylene), poly (3,4-ethylene dioxythiophene), polyacetylene, poly (p-phenylene sulfide), and polyfuran are examples of common conducting polymers. In this chapter, the synthesis of conducting polymers is briefed along with characterization techniques. The eco-friendly nanocomposite conducting polymers dedicated to electrochemical devices is also covered. In the end, this chapter compiles the eco-friendly application of Electrochemical devices based on nanocomposite polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rincon ME, Gutierrez-Granados S (2018) Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Am Chem Soc

    Google Scholar 

  2. Wu W (2019) Stretchable electronics: functional materials, fabrication strategies and applications. Sci Technol Adv Mater 187–224

    Google Scholar 

  3. Park SJ, Park CS, Yoon H, Chemo-electrical gas sensors based on conducting polymer hybrids. Polymers (Basel)

    Google Scholar 

  4. Jiaxing Huang RBK, Virji S, Weiller BH, Nanostructured polyaniline sensors. Chem A Eur J 10(6):1314–1319. https://doi.org/10.1002/chem.200305211

  5. Yuxi Zhang H, Kim JJ, Electrospun polyaniline fibers as highly sensitive room temperature chemiresistive sensors for ammonia and nitrogen dioxide gases. Adv Funct Mater 24(25). https://doi.org/10.1002/adfm.201400185

  6. Kwon OS, Park E, Kweon OY, Park SJ, Jang J, Novel flexible chemical gas sensor based on poly(3,4-ethylenedioxythiophene) nanotube membrane. Elsevier 82(4):1338–1343. https://doi.org/10.1016/j.talanta.2010.06.058

  7. Logo WO, Guiqin Yang YYO, Zhang M, Dong D, Pan X, Zhou Y, ORCID logo d Su-Ting Han, ORCID logo Zongxiang Xu, TiO2 based sensor with butterfly wing configurations for fast acetone detection at room temperature. J Mater Chem C 36. https://doi.org/10.1039/C9TC03110C

  8. Liu Y, Liu J (2013) Core-shell noble-metal@metalorganic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed Engl 52:3741–3837

    Article  Google Scholar 

  9. Zhou Y, Azumi R (2016) Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Sci Technol Adv Mater 17:493–516

    Google Scholar 

  10. Giampiccolo A, Tobaldi DM, Leonardi SG (2018) Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl Catal B-Environ 243:183–194

    Google Scholar 

  11. R, AJEAG, MacDiarmid JC (1987) Chaing. Synth Met 18:285

    Google Scholar 

  12. MacDiarmid G, Epstien AJ (1989) Chem Soc 88:317

    Google Scholar 

  13. Natta G, Mazzanti G, Corradini P (1958) Naz Lincei Cl Sci Fis Mat Nat Rend 2:25

    Google Scholar 

  14. Luttinger B, 27:1591

    Google Scholar 

  15. AJ, Champetier G, Comptes Rendus 189:1089

    Google Scholar 

  16. Shirakawa MH, Ito T, Ikeda S, Chem 179:1565

    Google Scholar 

  17. Akaishi KM, Ishikawa K, Shirakawa H, Ikeda S, Phys Ed 18:745

    Google Scholar 

  18. Fincher R, Ozaki M, Tanaka M, Peebles D, Lauchlan L, Heeger AJ, Phys Rev B 20:1589

    Google Scholar 

  19. Karasz E, Chien JCW, Galkiewicz R, Wnek GE, Heeger AJ, Nature 282:286

    Google Scholar 

  20. Suezaki AM, Shirikawa H, Kyotani H, Syn Met D1:28

    Google Scholar 

  21. Tsukamoto AT, Kawasaki K (1990) Apl Phys 29

    Google Scholar 

  22. Nigrey A, MacDiarmid G, Heeger AJ, Proceedings of the International Conference on Low-Dimensional Conductors, Boulder, Colorado. Mol Cryst Liq Cryst 77

    Google Scholar 

  23. Weinberger R, Gau SC, Kiss Z (1981) Appl Phys Lett 38:555; Weinberger BR, Akhtar M, Synth Met 4:187

    Google Scholar 

  24. Chen N, Heeger AJ, Kiss Z, MacDiarmid AG, Gau SC, Appl Phys Lett 36:96

    Google Scholar 

  25. Chance RR, Shacklette LW, Miller GG, Ivory DM (1980) J Chem Soc Chem Commun 348:348

    Google Scholar 

  26. Tabor J, Magre EP, Boon J (1971) Eur Polym 7:1127

    Google Scholar 

  27. Uemura A, Isoda S, Tsuji M, Ohara M, Kawaguchi A, Katayama K (1986) 64:66

    Google Scholar 

  28. Jurga J (1993) Polymer (Guildf) 34:4203

    Google Scholar 

  29. Napolitano R, Pirozzi B (1999) Macromolecules 32:7682

    Google Scholar 

  30. Shacklette W, Elsenbaumer RL, Chance RR, Eckhardt H, Frommer JE (1981) J Chem Phys 75:1919

    Google Scholar 

  31. Adeloju, Show SJ, Wallace GG (1993) 281:611–620, 621–627

    Google Scholar 

  32. Mirmohseni A, Price WE, Wallace GG, Zhao H (1993) Intell Mater Syst Struct 4:43

    Google Scholar 

  33. Gardini A (1973) Hetrocyclic Chem 15:67

    Google Scholar 

  34. Street GB, Clarke TC, Krounbi M, Kanazawa K, Lee V, Pfluger P, Scott JC, Weiser G (1982) Mol Cryst Liq Cryst 83:253

    Google Scholar 

  35. Kanazawa K, Diaz AF, Gill WD, Grant PM, Street GB, Gardini GP (1980) No Titl. Synth Met 1:329

    Google Scholar 

  36. Diaz, Kanazawa KK, Gardini GP (1979) Chem Soc Chem Commun 635

    Google Scholar 

  37. Simon A, Ricco AJ, Wrighton MS (1982) Am Chem Soc 104:2031

    Google Scholar 

  38. Mohhammadi A, Lundstrom I (1987) Synth Met 21:169

    Google Scholar 

  39. Warren, Anderson DP (1987) Electrochem Soc 1 134(1):101

    Google Scholar 

  40. Armes S (1987) Met 20:365

    Google Scholar 

  41. Armes, Vincent B (1987) Chem Soc Chem Commun 287

    Google Scholar 

  42. Eisazadeh H (1992) Mater Forum 16:341

    Google Scholar 

  43. Bocchi, Gardini GP (1986) No Ti. Chem Soc Chem commun 148

    Google Scholar 

  44. Bradner, Shapiro JS (1988) Synth Met 26:69

    Google Scholar 

  45. Munstedt H, Naarmann H (1985) Mol Cryst Liq Cryst 118:129

    Google Scholar 

  46. Shimidzu T, Ohtani A, Iyoda T, Honda K (1987) J Electroanal Chem 224; Chem 224:123

    Google Scholar 

  47. Neoh G, Kang ET, Khor SH, Tan KL (1990) Polym Degrad Stab 27:107

    Google Scholar 

  48. Fritsche J (1840) Chem 20:453; 20:453

    Google Scholar 

  49. Letheby JH, Chem Sot 15:161

    Google Scholar 

  50. Rosenstiehl A (1875) ibid 81:1257

    Google Scholar 

  51. Idem (1990) ibid. 42:2931

    Google Scholar 

  52. Huang S, Humphrey BD, MacDiarmid AG (1986) Chem Soc Faraday Trans 1,1 82, 2385 (1986); 1(182):2385

    Google Scholar 

  53. Zuo F, Angelopoulos M, MacDirmid AG (1987) Phys Rev B 36:3475

    Google Scholar 

  54. Barth M, Lapkowski M (1999) Electrochim. Acta 44(12):2117

    Google Scholar 

  55. Syed A (1988) Bull Electrochem 4:737

    Google Scholar 

  56. Li H (1989) Dong. Synth Met 29:E329

    Google Scholar 

  57. Huang S, MacDiarmid AG, Epstein AJ (1987) Chem Sot Chem Commun 1784

    Google Scholar 

  58. I&m (1986) ibid 200:127

    Google Scholar 

  59. Travers P, Chroboczek J, Devreux F, Genoud F, Nechtschein M, Syed AA, Genies EM, Tsintavis C (1985) Mol Cryst Liq Cryst 121:195

    Google Scholar 

  60. Syed A, Dinesan MK, unpublished results

    Google Scholar 

  61. Choi CH, Kertesz M (1997) Macromolecules 30:620

    Google Scholar 

  62. Wnek GE, Chine JCS, Karasz FE, Lillya CP (1979) Polymer 20:1441

    Google Scholar 

  63. Skotheim TA, Hand book of conducting polymers, vol 1. Marcell Dekker, New York, p. 254

    Google Scholar 

  64. Baughman RH, Chance RR (1978) Ann N Y Acad Sci 313:705

    Google Scholar 

  65. Bloor D (1985) Chance polydiacetylenes: synthesis, structure, and electronic properties

    Google Scholar 

  66. Sasaki DY, Carpick RW, Burns AR (2000) J Colloid Interface Sci 229:490

    Google Scholar 

  67. Mowery MD, Evans CE (1997) Tetrahedron Lett 38:11

    Google Scholar 

  68. Hoofman RJOM, Siebbeles LDA, de Haas MP, Hummel A, Bloor D (1998) J Chem Phys 109:1885

    Google Scholar 

  69. Wohrle D (1974) Tetrahedron Lett 1969 (1971), Makrmol Chem 175:1751

    Google Scholar 

  70. Rice MJ, Mele EJ (1982) Phys Rev Lett 49:1455

    Google Scholar 

  71. Carazzolo G, Valle G (1966) Makromol Chem 90:66

    Google Scholar 

  72. Han CC, Hong SP, Yang KF, Bai MY, Lu CH, Huang CS (2001) Macromolecules 34:587

    Google Scholar 

  73. Waltman RJ, Bargon J, Diaz AF (1983) J Phys Chem 87:1459

    Google Scholar 

  74. Diaz AF, Castillo J, Kanazawa KK, Logan JA, Salmon M, Fajardo O (1982) J Elecrroanal Chem Interfacial Electrochem 133:233

    Google Scholar 

  75. Naka K, Umeyama T, Yoshiki C (2003) Macromolecules 33:7467

    Google Scholar 

  76. Chen S, Wen TC, Gopalan A (2003) Synth Met 132:133

    Google Scholar 

  77. Bozoviv I (1985) Phys Rev B 32:8136

    Google Scholar 

  78. Michael F, Anman KO, Scherf U (1999) Macromolecules 32:3159

    Google Scholar 

  79. Scherf U, Milier K (1992) Polymer 33:2443

    Google Scholar 

  80. Wegner G (1981) Polymers with metal-like conductivity—a review of their synthesis, structure and properties. Angew Chem Int Ed 20:361–381

    Google Scholar 

  81. Shim YB, Park SM (1989) Electrochemistry of conductive polymers. VII. Autocatalytic rate constant for polyaniline growth. Synth Metals 29:E169–E174

    Google Scholar 

  82. Diaz AF, Castillo JI, Logan JA, Lee WY (1981) Electrochemistry of conducting polypyrrole films. J Electroanal Chem 129:115

    Google Scholar 

  83. Yang H, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339:423–449

    Google Scholar 

  84. Stilwell DE, Park SM (1988) Electrochemistry of conductive polymers. IV Electrochemical studies on polyaniline degradation—product identification and coulometric studies. J Electrochem Soc 135:2497–2502

    Google Scholar 

  85. Stilwell DE, Park SM (1989) Electrochemistry of conductive polymers. V. In situ spectroelectrochemical studies of polyaniline films. J Electrochem Soc 136(2):427–433

    Google Scholar 

  86. Park DS, Shim YB, Park SM (1993) Degradation kinetics of polypyrrole films. J Electrochem Soc 140:2749–2752

    Google Scholar 

  87. Lee HL, Sofer Z, Mazánek V, Luxa J, Chua CK, Pumera M (2016) Graphitic carbon nitride: effects of various precursors on the structural, morphological and electrochemical sensing properties. Appl Mater Today. https://doi.org/10.1016/j.apmt.20

  88. Ghislandi M, Tkalya E, Alekseev A, Koning C, de With G (2015) Electrical conductive behavior of polymer composites prepared with aqueous graphene dispersions. Appl Mater Today 1:88–94

    Article  Google Scholar 

  89. Bockris OM, Khan SUM (1993) Surface electrochemistry. Plenum Press, New York

    Google Scholar 

  90. Zhu Y, Son JI, Shim YB (2010) Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors. Biosens Bioelectron 26:1002–1008

    Article  Google Scholar 

  91. Li C, Jiang B, Chen H, Imura M, Sang L, Malgras V, Bando Y, Ahamad T, Alshehri SM, Tominaka S, Yamauchi Y (2016) Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Res 9:1752–1762

    Article  Google Scholar 

  92. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  Google Scholar 

  93. Wang J (2007) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  Google Scholar 

  94. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14

    Article  Google Scholar 

  95. Zhao Q, Gan ZH, Zhuang QK (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  Google Scholar 

  96. Li D, del Rio Castillo AE, Jussila H, Ye G, Ren Z, Bai J, Chen X, Lipsanen H, Sun Z, Bonaccorso F (2016) Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Appl Mater Today 4:17–23

    Google Scholar 

  97. Skotheim TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  98. Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    Article  Google Scholar 

  99. Norde W (1986) Adsorption of proteins from solution at thsolid-liquidid interface. Adv Colloid Interface Sci 25:267–340

    Article  Google Scholar 

  100. Evtugyn G (2014) Biochemical components used in biosensor assemblies, biosensors: essentials, vol 84. Springer, Berlin, pp 21–97 (Chapter 2)

    Google Scholar 

  101. Bartlett PN, Cooper JM (1993) A review of the immobilization of enzymes in electropolymerized films. J Electroanal Chem 362:1–12

    Article  Google Scholar 

  102. Valdés-Ramírez G, Windmiller JR, Claussen JC Martinez AG Kuralay F, Zhou M, Zhou N, Polsky R, Miller PR, Narayan R, Wang J, Multiplexed and switchable release of distinct fluids from microneedle platforms via conducting polymer nanoactuat

    Google Scholar 

  103. Cantwell WJ, Morton J (1991) Composites 22:347

    Article  Google Scholar 

  104. Wightman RM, Wipf DO (1989). In: Bard AJ (ed) Electroanalytical chemistry. Marcel Dekker, New York, USA, p 267

    Google Scholar 

  105. Wang J (2006) Analytical electrochemistry. Wiley, VCH, Hoboken, NJ, USA

    Google Scholar 

  106. Zhang XJ, Ju HX, Wang J (2008) Electrochemical sensors, biosensors and their biomedical applications. Elsevier, New York

    Google Scholar 

  107. H. Yao, S.H. Jenkins, A.J. Pesce, H.B. Halsall, W.R. Heineman, Clin. Chem. (Washington, DC) 39 (1993) 1432.

    Google Scholar 

  108. Kissinger PT, Heineman WR (1996) Laboratory techniques in electroanalytical chemistry. Marcel Dekker Inc., New York, NY, USA

    Google Scholar 

  109. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  Google Scholar 

  110. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108:329–351

    Article  Google Scholar 

  111. Wijayawardhana CA, Halsall HB, Heineman WR. In: Brajter-Toth A, Chambers JQ (eds) Electroanalytical methods of biological materials. Marcel Dekker, New York, pp 329–365

    Google Scholar 

  112. Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4:2445–2451

    Article  Google Scholar 

  113. Shim YB, Stillwell DE, Park SM (1991) Electrochemistry of conductive polymers X: the polyaniline-based potentiometric sensor for dissolved oxygen. Electroanalysis 3:31–36

    Article  Google Scholar 

  114. Yu Z, Li H, Zhang X, Liu N, Tan W, Zhang X, Zhang L (2016) Facile synthesis of NiCo2O4@Polyaniline core–shell nanocomposite for sensitive determination of glucose. Biosens Bioelectron 75:161–165

    Article  Google Scholar 

  115. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subramanyam S, Piletska EV, Piletsky SA, Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element

    Google Scholar 

  116. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7(4):3540–3546

    Article  Google Scholar 

  117. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2015) A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection. Nano Lett 15:1146–1151

    Article  Google Scholar 

  118. Fusco G, Gallo F, Tortolini C, Bollella P, Ietto F, Mico AD, D’Annibale A, Antiochia R, Favero G, Mazzei F, AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosens

    Google Scholar 

  119. Yang T, Meng L, Chen H, Luo S, Li W, Jiao K (2016) Synthesis of thin-layered molybdenum disulfide based polyaniline nanointerfaces for enhanced direct electrochemical DNA detection. ACS Appl Mater Interfaces 3:1500700

    Article  Google Scholar 

  120. Hui N, Sun X, Niu S, Luo X (2017) PEGylated polyaniline nanofibers: antifouling and conducting biomaterial for electrochemical DNA sensing. ACS Appl Mater Interfaces 9:2914–2923

    Article  Google Scholar 

  121. Gao Z, Rafea S, Lim LH (2007) Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline. Adv Mater 19:602–606

    Article  Google Scholar 

  122. Yang T, Meng L, Zhao J, Wang X, Jiao K (2014) Graphene-based polyaniline arrays for deoxyribonucleic acid electrochemical sensor: effect of nanostructure on sensitivity. ACS Appl Mater Interfaces 6:19050–19056

    Article  Google Scholar 

  123. Angaleeswari B, Dura RM, Jeevithaaa AT, Vaishnavia V, Eeveraa T, Berchmansb S, Yegnaraman V (2008) Sens Actuators B 129:558

    Article  Google Scholar 

  124. Sangamithirai D, Narayanan V, Muthuraaman B, Stephen A (2015) Mater Sci Eng, C 55:579

    Article  Google Scholar 

  125. Sangamithirai D, Munusamy S, Narayanan V, Stephen A (2017) Mater Sci Eng, C 80:425

    Article  Google Scholar 

  126. Rahman MM, Khan A, Asiri AM (2015) RSC Adv 5:71370

    Article  Google Scholar 

  127. Shimpi NG, Hansora DP, Yadav R, Mishra S (2015) RSC Adv 5:99253

    Article  Google Scholar 

  128. Sangamithirai D, Munusamy S, Narayanan V, Stephen A (2016) Surf Interfaces 4:27

    Article  Google Scholar 

  129. Khan A, Aslam A, Khan P, Asiri AM (2014) Composites: Part B 58:451

    Google Scholar 

  130. Aslam A, Khan P, Khan A, Asiri AM, Rahman MM (2015) J Sol-Gel Sci Technol 77

    Google Scholar 

  131. Valentini L, Bavastrellob V, Sturab E, Armentanoa I, Nicolinib C, MKennya J (2004) Chem Phys Lett 383:617

    Google Scholar 

  132. Patil D, Patil P, Seo Y, Kyu Y (2010) Sens Actuators, B Chem 148:41

    Article  Google Scholar 

  133. Khan AA, Shaheen S, Habiba U (2012) J Adv Res 3:269

    Article  Google Scholar 

  134. Letheby H (1862) On the production of a blue substance by the electrolysis of sulphate of aniline. J Chem Soc 15:161–163

    Article  Google Scholar 

  135. Wang J, Jiang M, Mukherjee B (1999) Flow detection of nucleic acids at a conducting polymer-modified electrode. Anal Chem 71:4095–4099

    Article  Google Scholar 

  136. Lu X, Li Y, Zhang X, Du J, Zhou X, Xue Z, Liu X (2012) A simple and an efficient strategy to synthesize multi-component nanocomposites for biosensor applications. Anal Chim Acta 711:40–45

    Article  Google Scholar 

  137. Cui HF, Bai YF, Wu WW, He X, Luong JHT (2016) Modification with mesoporous platinum and poly(pyrrole-3-carboxylic acid)-based copolymer on boron-doped diamond for nonenzymatic sensing of hydrogen peroxide. J Electroanal Chem 766:52–59

    Article  Google Scholar 

  138. German N, Ramanavicius A, Ramanaviviene A (2017) Amperometric glucose biosensor based on electrochemically deposited gold nanoparticles covered by polypyrrole. Electroanalysis 29:1267–1277

    Article  Google Scholar 

  139. Spain E, Keyes TE, Forster RJ (2013) Polypyrrole–gold nanoparticle composites for highly sensitive, DNA detection. Electrochim Acta 109:102–109

    Article  Google Scholar 

  140. Gao YS, Xu JK, Lu LM, Wu LP, Zhang KX, Nie T, Zhu XF, Wu Y, Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine. Biosens Bioelectron 62

    Google Scholar 

  141. Mao H, Liang J, Zhang H, Pei Q, Liu D, Wu S, Zhang Y, Song XM (2015) Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens Bioelectron 70

    Google Scholar 

  142. Tiwari I, Gupta M, Pandey CM, Mishra V (2015) Gold nanoparticle decorated graphene sheet polypyrrole based nanocomposite: its synthesis, characterization and genosensing application. Dalton Trans 44:15557–15566

    Article  Google Scholar 

  143. Yon-Hin BFY, Smolander M, Crompton T, Lowe CR, Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors. Anal Chem 65

    Google Scholar 

  144. Jiang H, Zhang A, Sun Y, Rua X, Ge D, Shi W (2012) Poly(1-(2-carboxyethyl)pyrrole)/polypyrrole composite nanowires for glucose biosensor. Electrochim Acta 70:278–285

    Article  Google Scholar 

  145. Shrestha BK, Ahmad R, Mousa HM, Kim IG, Kim JI, Neupane MP, Park CH, Kim CS, High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid fil

    Google Scholar 

  146. Devi R, Thakur M, Pundir CS (2011) Construction and application of an amperometric xanthine biosensor based on zinc oxide nanoparticles–polypyrrole composite film. Biosens Bioelectron 26:3420–3426

    Article  Google Scholar 

  147. Zhu Y, Chandra P, Song KM, Ban C, Shim YB (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36:29–34

    Article  Google Scholar 

  148. Wang L, Xu H, Song Y, Luo J, Wei W, Xu S, Cai X (2015) Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS Appl Mater Interfaces 7

    Google Scholar 

  149. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssouf H (2015) E-DNA sensor of Mycobacterium tuberculosis based on the electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem 87:9257–9264

    Google Scholar 

  150. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssouf H (2016) Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Anal Chim Acta 920:37–46

    Google Scholar 

  151. Jolly P, Miodek A, Yang DK, Chen LC, Lloyd MD, Estrela P (2016) Electro-engineered polymeric films for the development of sensitive aptasensors for prostate cancer marker detection. ACS Sens 1:1308–1314

    Article  Google Scholar 

  152. Hong W, Lee S, Cho Y (2016) Dual-responsive immunosensor that combines colorimetric recognition and electrochemical response for ultrasensitive detection of cancer biomarkers. Biosens Bioelectron 86:920–992

    Article  Google Scholar 

  153. Abdelwahab AA, Lee H, Shim Y (2009) Anal Chim Acta 650:247

    Article  Google Scholar 

  154. Chandra P, Son NX, Noh H, Goyal RN, Shim Y (2013) Biosens Bioelectron 39:139

    Article  Google Scholar 

  155. Ahmad T, Akhtar MH, Gurudatt NG, Kim J, Soo C, Shim Y (2015) Biosens Bioelectron 68:421

    Article  Google Scholar 

  156. Gao Y, Xu J, Lu L, Wu L, Zhang K, Nie T (2014) Biosens Bioelectron 62:261

    Article  Google Scholar 

  157. Mao H, Liang J, Zhang H, Pei Q, Liu D, Wu S (2015) Biosens Bioelectron 70:289

    Article  Google Scholar 

  158. Hussain KK, Gurudatt NG, Mir TA, Shim Y (2016) Biosens Bioelectron 83:312

    Article  Google Scholar 

  159. Lee T, Shim Y (2001) Anal Chem 73:5629

    Article  Google Scholar 

  160. Nie G, Zhang Y, Guo Q, Zhang S (2009) Sens Actuators B 139:592

    Article  Google Scholar 

  161. Latonen RM, Osterhoim A, Kvarnstro C, Ivaska A (2012)

    Google Scholar 

  162. Liu C, Sergeichev I, Akhatov I, Lafdi K (2018) Compos Sci Technol 159:111

    Article  Google Scholar 

  163. Mehto A, Mehto VR, Chauhan J, Singh I, Pandey R (2017) J Nanomed

    Google Scholar 

  164. Ameen S, Akhtar MS, Shik H (2012) Sens Actuators, B Chem 173:177

    Article  Google Scholar 

  165. Koul S, Chandra R, Dhawan SK (2001) Sens Actuators 75:151

    Article  Google Scholar 

  166. Xue H, Shen Z (2002) Talanta 57:289

    Article  Google Scholar 

  167. Fusco G, Simone AD, Arosio P, Vendruscolo M, Veglia G, Dobsonb CM (2016) Biosens Bioelectron 6:27125

    Google Scholar 

  168. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) ACS Nano 7:3540

    Article  Google Scholar 

  169. Li L, Wang Y, Pan L, Shi Y, Cheng W, Shi Y, Yu G (2014) Nano Lett 15:1146

    Article  Google Scholar 

  170. Li F, Yang L, Zhao C, Du Z (2011) Anal Methods 3:1601

    Article  Google Scholar 

  171. Leea MHW, O’Hareb D, Guoc HZ, Yangc CH, Linc HY (2016) J Mater Chem B 4:3782

    Article  Google Scholar 

  172. Sangamithirai D, Narayanan V, Stephen A, Sangamithirai D, Narayanan V, Stephen A (2017) Electrochemical. MMSE J 9:1

    Google Scholar 

  173. Patil D, Patil P, Seo Y, Kyu Y (2010) Sens Actuators B: Chem 148(41):75; Khan AA, Shaheen S, Habiba U (2012) J Adv Res 3:269

    Google Scholar 

  174. Lete C, Gadgil B, Kvarnstrom C (2015) The electrochemistry of copolymer films based on azulene and 3 thiophene acetic acid. J Electroanal Chem 742:30–36

    Article  Google Scholar 

  175. Latonen RM, Osterholm A, Kvarnstrom C, Ivaska A (2012) Electrochemical and spectrochemical study of polyazulene/BBL-PEO donor-acceptor composite layers. J Phys Chem C 116:23793–23802

    Article  Google Scholar 

  176. He N, Gyurcsanyi RE, Lindfors T (2016) Electropolymerized hydrophobic polyazulene as solid state-contacts in potassium-selective electrodes. Analyst 141:2990–2997

    Article  Google Scholar 

  177. Lupu S, Lete C, Marin M, Totir N, Balaure PC (2009) Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine. Electrochim Acta 54:1932–1938

    Article  Google Scholar 

  178. Han S, Li B, Song Z, Pan S, Zhang Z, Yao H, Zhu S, Xu G (2017) A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst 142:2

    Article  Google Scholar 

  179. Diamant Y, Furmanovich E, Landau A, Lellouche JP, Zaban A (2003) Electrochemical polymerization and characterization of a functional dicarbazole conducting polymer. Electrochim Acta 48:507–512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, T., Verma, A. (2024). Eco-Friendly Conducting Polymer-Based Functionalized Nanocomposites Dedicated for Electrochemical Devices. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics