Skip to main content

Chemical Modifications for the Development of Conducting Polymer-Based Supercapacitors

  • Chapter
  • First Online:
Functionalized Nanomaterials Based Supercapacitor

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 292 Accesses

Abstract

Conjugated double bonds generated during chemical or electrochemical oxidation of the monomer are the building blocks of conducting polymers [1]. Dopant or counterions’ insertion in the polymer backbone occurs as a result of oxidation at both the monomer and polymer levels; for example, chloride is inserted when iron chloride is used as an oxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee S, Kar KK (2016) Superior water retention, ionic conductivity and thermal stability of sulfonated poly ether ether ketone/polypyrrole/aluminum phosphate nanocomposite based polymer electrolyte membrane. 4(1):299–310

    Google Scholar 

  2. Du Pasquier A et al (2002) A nonaqueous asymmetric hybrid li4ti5 o 12/poly (fluorophenylthiophene) energy storage device. 149(3):A302

    Google Scholar 

  3. Nohma T et al (1995) Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries. 54(2):522–524

    Google Scholar 

  4. Park Y, Jung J, Chang M (2019)Research progress on conducting polymer-based biomedical applications. 9(6):1070

    Google Scholar 

  5. Chiang CK et al (1977)Electrical conductivity in doped polyacetylene. 39(17):1098

    Google Scholar 

  6. Kar KK (2020) Handbook of nanocomposite supercapacitor materials II, vol 302. Springer

    Google Scholar 

  7. Talbi H, Just PE, Dao LH (2003) Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors. 33(6)

    Google Scholar 

  8. Lu W et al (2002)Use of ionic liquids for π-conjugated polymer electrochemical devices. 297(5583):983–987

    Google Scholar 

  9. Abel SB et al (20230Functionalization of Conductive Polymers through Covalent Postmodification. 15(1):205

    Google Scholar 

  10. Zhou Y et al (2010) Polyaniline/multi-walled carbon nanotube composites with core–shell structures as supercapacitor electrode materials. 55(12):3904–3908

    Google Scholar 

  11. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. 139(2):72–79

    Google Scholar 

  12. Gnanakan SR, Murugananthem N, Subramania A (2011) Organic acid doped polythiophene nanoparticles as electrode material for redox supercapacitors. 22(6):788–793

    Google Scholar 

  13. Zhang CJNE (2016) Supercapacitors: performance doping. 1(2):1

    Google Scholar 

  14. Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. 110(10):6260–6279

    Google Scholar 

  15. Boeva ZA, Sergeyev VG (2014) Polyaniline: synthesis, properties, and application. 56(1):144–153

    Google Scholar 

  16. Khokhar D et al (2021)Functionalization of conducting polymers and their applications in optoelectronics. 60(5):465-487

    Google Scholar 

  17. Diaz AF, Hall B (1993) Mechanical properties of electrochemically prepared polypyrrole films. 27(4):342–347

    Google Scholar 

  18. Cao Y et al (1992)Solution‐cast films of polyaniline: Optical‐quality transparent electrodes. 60(22):2711–2713

    Google Scholar 

  19. Navale S et al (2014) Camphor sulfonic acid (CSA) doped polypyrrole (PPy) films: measurement of microstructural and optoelectronic properties. 50:363–369

    Google Scholar 

  20. Tang Y et al (2010) Electrochemical synthesis of polyaniline in surface-attached poly (acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. 168:231–237

    Google Scholar 

  21. Kumar P et al (2011) Electrochemical copolymerization of thiophene derivatives; a precursor to photovoltaic devices. 56(24):8184–8191

    Google Scholar 

  22. Cui J et al (2021)General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors. 62:145–152

    Google Scholar 

  23. Chu X et al (2019)Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. 301:136–144

    Google Scholar 

  24. Kumar Y et al (2019) Background, fundamental understanding and progress in electrochemical capacitors. 23:667–692

    Google Scholar 

  25. Wu X, Lian M (2017) Highly flexible solid-state supercapacitor based on graphene/polypyrrole hydrogel. 362:184–191

    Google Scholar 

  26. Shahabuddin S et al (2018) The metal oxide nanoparticles doped polyaniline based nanocomposite as stable electrode material for supercapacitors. In: 2018 international conference and utility exhibition on green energy for sustainable development (ICUE). IEEE.

    Google Scholar 

  27. Bi S et al (2018)Two-dimensional polymer-based nanosheets for electrochemical energy storage and conversion. 27(1):99–116

    Google Scholar 

  28. Abdah MA et al (2020)Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. 186:108199

    Google Scholar 

  29. Yang P, Mai W (2014)Flexible solid-state electrochemical supercapacitors. 8:274–290

    Google Scholar 

  30. Li Z et al (2015) A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers. 3(31):16162–16167

    Google Scholar 

  31. Wang Z et al (2015)Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. 9(7):7563–7571

    Google Scholar 

  32. Agobi AU et al (2019)A review on conducting polymers-based composites for energy storage application. 1(1):19–34

    Google Scholar 

  33. Fong KD et al (2017)Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. 1(9):1857–1874

    Google Scholar 

  34. Shrestha KR et al (2019) A spinel MnCo2O4/NG 2D/2D hybrid nanoarchitectures as advanced electrode material for high performance hybrid supercapacitors. 771:810–820

    Google Scholar 

  35. Cherusseri J et al (2019) Novel mesoporous electrode materials for symmetric, asymmetric and hybrid supercapacitors. 30(20):202001

    Google Scholar 

  36. De B et al (2020) Transition metal oxide-/carbon-/electronically conducting polymer-based ternary composites as electrode materials for supercapacitors. Handbook of nanocomposite supercapacitor materials II: performance. Springer, pp 387–434

    Chapter  Google Scholar 

  37. Meng C et al (2010)Highly flexible and all-solid-state paperlike polymer supercapacitors. 10(10):4025-4031

    Google Scholar 

  38. Kou L et al (2014)Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. 5(1):3754

    Google Scholar 

  39. Song Z et al (2014)Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles. 135:212–224

    Google Scholar 

  40. Kouchachvili L, Yaïci W, Entchev E (2018) Hybrid battery/supercapacitor energy storage system for the electric vehicles. 374:237–248

    Google Scholar 

  41. Cao D et al (2019)Study on low-speed steering resistance torque of vehicles considering friction between tire and pavement. 9(5):1015

    Google Scholar 

  42. Thounthong P, Raël S, Davat B (2006) Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. 158(1):806–8140

    Google Scholar 

  43. Zou C et al (2018) A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors. 390:286–296

    Google Scholar 

  44. Sharma RK, Mishra S (2017) Dynamic power management and control of a PV PEM fuel-cell-based standalone ac/dc microgrid using hybrid energy storage. 54(1):526–538

    Google Scholar 

  45. Inthamoussou FA, Pegueroles-Queralt J, Bianchi FD (2013) Control of a supercapacitor energy storage system for microgrid applications. 28(3):690–697

    Google Scholar 

  46. Tummuru NR, Mishra MK, Srinivas S (2015) Dynamic energy management of renewable grid integrated hybrid energy storage system. 62(12):7728–7737

    Google Scholar 

  47. Wang L et al (2011)Recognizing multi-user activities using wearable sensors in a smart home. 7(3):287–298

    Google Scholar 

  48. Toh WY et al (2014)Autonomous wearable sensor nodes with flexible energy harvesting. 14(7):2299–2306

    Google Scholar 

  49. Li L et al (2017)Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. 41:261–268

    Google Scholar 

  50. Deng F et al (2016)Wearable thermoelectric power generators combined with flexible supercapacitor for low-power human diagnosis devices. 64(2):1477–1485

    Google Scholar 

  51. Iezzi B et al (2017) Printed, metallic thermoelectric generators integrated with pipe insulation for powering wireless sensors. 208:758–765

    Google Scholar 

  52. Wee G et al (2010)Effect of the Ionic Conductivity on the Performance of Polyelectrolyte‐Based Supercapacitors. 20(24):4344-4350

    Google Scholar 

  53. Pandey A et al (2011) Integration of supercapacitors into wirelessly charged biomedical sensors. In: 2011 6th IEEE conference on industrial electronics and applications. IEEE

    Google Scholar 

  54. Qin Y et al (2014)Polymer integration for packaging of implantable sensors. 202:758-778

    Google Scholar 

  55. Gao F et al (2021)All-polymer ultrathin flexible supercapacitors for electronic skin. 405:126915

    Google Scholar 

  56. Wang T et al (2020) Fluorescent chemosensors based on conjugated polymers with N-heterocyclic moieties: two decades of progress. 11(18):3095-3114

    Google Scholar 

  57. Ramdzan NSM et al (2020)Development of biopolymer and conducting polymer-based optical sensors for heavy metal ion detection. 25(11):2548

    Google Scholar 

  58. López FDLM et al (2021) A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb (II) in water samples. 16:100497

    Google Scholar 

  59. Mertes G et al (2018) Measuring weight and location of individual bites using a sensor augmented smart plate. In: 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE

    Google Scholar 

  60. Nagornova I et al (2019) Tenso-resistive printed sensors for various deformation measurements. In: 2019 xxix international scientific symposium metrology and metrology assurance (MMA). IEEE

    Google Scholar 

  61. Fahad M, Beenish H (2019) Efficient V2G model on smart grid power systems using genetic algorithm. In: 2019 1st global power, energy and communication conference (GPECOM). IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanuj Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, T., Jyoti, Murshid, M., Vandana, Ashima, Saini, M. (2024). Chemical Modifications for the Development of Conducting Polymer-Based Supercapacitors. In: Hussain, C.M., Ahamed, M.B. (eds) Functionalized Nanomaterials Based Supercapacitor. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3021-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-3021-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-3020-3

  • Online ISBN: 978-981-99-3021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics