Skip to main content

Nanomaterials and Their Properties: Thermal Analysis, Physical, Mechanical and Chemical Properties

  • Chapter
  • First Online:
Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment

Abstract

The use of nanomaterials has been actively researched for application in multiple fields during the past few years, due to possessing a unique structure, mechanical and physicochemical attributes. While the synthesis of nanomaterials is very important, the study of these unique attributes is equally significant. To this end, thermal analysis has been utilized for both quantitative and qualitative evaluation and characterization of those properties, in an effort to better understand their structure and behaviours. This chapter describes a series of thermal analysis approaches, including application examples of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), differential thermal analysis (DTA), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). The outcome of this study reveals and verifies the capacity of thermal analysis techniques to assess the physicochemical attributes of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash Pandey BD (2012) Synthesis of zinc-based nanomaterials: a biological perspective. IET Nanobiotechnology 6(4):144–148. https://doi.org/10.1049/iet-nbt.2011.0051.

  • Agrawal SL, Rai N, Chand N (Jan 2013) Dynamic mechanical, DSC, and electrical investigations on nano Al 2 O 3 filled PVA:NH 4 SCN:DMSO polymer composite dried gel electrolytes. Int J Polym Mater Polym Biomater 62(2):61–67. https://doi.org/10.1080/00914037.2011.617341

  • Alkan C, Sarı A, Karaipekli A (Jan 2011) Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage. Energy Convers Manage 52(1):687–692. https://doi.org/10.1016/j.enconman.2010.07.047

  • AlKahtani RN (2018) The implications and applications of nanotechnology in dentistry: a review. Saudi Dent J 30(2):107–116. https://doi.org/10.1016/j.sdentj.2018.01.002

  • Ambrosi A, Chee SY, Khezri B, Webster RD, Sofer Z, Pumera M (2012) Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem Int Ed 51(2):500–503. https://doi.org/10.1002/anie.201106917

  • Antoniammal P, Arivuoli D (2012) Size and shape dependence on melting temperature of gallium nitride nanoparticles. J Nanomater 2012:1–11. https://doi.org/10.1155/2012/415797

  • Arabha S, Rajabpour A (2020) Effect of planar torsional deformation on the thermal conductivity of 2D nanomaterials: a molecular dynamics study. Mater Today Commun 22:100706. https://doi.org/10.1016/j.mtcomm.2019.100706

  • Asha AB, Narain R (2020) Nanomaterials properties. In: polymer Science and Nanotechnology, Elsevier, pp 343–359. https://doi.org/10.1016/B978-0-12-816806-6.00015-7

  • Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13(1):214. https://doi.org/10.1186/s11671-018-2624-0

  • Avramescu M-L, Chénier M, Palaniyandi S, Rasmussen PE (2020) Dissolution behavior of metal oxide nanomaterials in cell culture medium versus distilled water. J Nanopart Res 22(8):222. https://doi.org/10.1007/s11051-020-04949-w

  • Baig N, Kammakakam I, Falath W (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2(6):1821–1871. https://doi.org/10.1039/D0MA00807A

  • Balos S, Pilic B, Markovic D, Pavlicevic J, Luzanin O (2014) Poly(methyl-methacrylate) nanocomposites with low silica addition. J Prosthet Dent 111(4):327–334. https://doi.org/10.1016/j.prosdent.2013.06.021

  • Banik BL, Brown JL (2015) Interaction of responsive/switchable surfaces with cells. In: Switchable and responsive surfaces and materials for biomedical applications, Elsevier, pp 189–201. doi: https://doi.org/10.1016/B978-0-85709-713-2.00008-0

  • Barrera CS, Cornish K (2019) Characterization of agricultural and food processing residues for potential rubber filler applications. J. Compos. Sci. 3(4):102. https://doi.org/10.3390/jcs3040102

  • Barisik M, Atalay S, Beskok A, Qian S (2014) Size dependent surface charge properties of silica nanoparticles. J Phys Chem C 118(4):1836–1842. https://doi.org/10.1021/jp410536n

  • Batchelor-McAuley C, Compton RG (2020) Characterising and evidencing the effects of porosity in nano-electrochemistry. Curr Opin Electrochem 22:35–43. https://doi.org/10.1016/j.coelec.2020.03.012

  • Bierkandt FS, Leibrock L, Wagener S, Laux P, Luch A (2018) The impact of nanomaterial characteristics on inhalation toxicity. Toxicol Res 7(3):321–346. https://doi.org/10.1039/c7tx00242d

  • Borca-Tasciuc T, Vafaei S, Borca-Tasciuc D-A, Wei BQ, Vajtai R, Ajayan PM (Sep 2005) Anisotropic thermal diffusivity of aligned multiwall carbon nanotube arrays. J Appl Phys 98(5):054309. https://doi.org/10.1063/1.2034079

  • Bushell M et al (2020) Characterization of commercial metal oxide nanomaterials: crystalline phase, particle size and specific surface area. Nanomater 10(9):1812. https://doi.org/10.3390/nano10091812

  • Campbell H (2020)“A non-inferiority test for R-squared with random regressors. arXiv:2002.8476 null. Accessed 31Jul 2020. [Online]. http://arxiv.org/abs/2002.08476

  • Charitidis CA, Georgiou P, Koklioti MA, Trompeta A-F, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manufacturing Rev 1:11. https://doi.org/10.1051/mfreview/2014009

  • Chauhan S, Upadhyay LSB (2018) An efficient protocol to use iron oxide nanoparticles in microfluidic paper device for arsenic detection. MethodsX 5:1528–1533. https://doi.org/10.1016/j.mex.2018.10.017

  • Cheng L et al (2021) The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects. Sci Rep 11(1):4283. https://doi.org/10.1038/s41598-021-83941-3

  • Cho S-P et al (2016) One step synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications. J. Mater. Chem. C 4(7):1511–1516. https://doi.org/10.1039/C5TC04166J

  • Chowdhury A, Bould J, Zhang Y, James C, Milne SJ (2010) Nano-powders of Na0.5K0.5NbO3 made by a sol–gel method. J Nanopart Res 12(1):209–215. https://doi.org/10.1007/s11051-009-9595-0

  • Coetzee D, Venkataraman M, Militky J, Petru M (2020) Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 12(4):742. https://doi.org/10.3390/polym12040742

  • Corcione C, Frigione M (Dec 2012) Characterization of nanocomposites by thermal analysis. Mater 5(12):2960–2980. https://doi.org/10.3390/ma5122960

  • Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69(16):165410. https://doi.org/10.1103/PhysRevB.69.165410

  • Dadbin S, Kheirkhah Y (2014) Gamma irradiation of melt processed biomedical PDLLA/HAP nanocomposites. Radiat Phys Chem 97:270–274. https://doi.org/10.1016/j.radphyschem.2013.12.001

  • Day RJ, Lovell PA, Wazzan AA (2001) Toughened carbon/epoxy composites made by using core/shell particles. Compos Sci Technol 61(1):41–56. https://doi.org/10.1016/S0266-3538(00)00169-X

  • De Temmerman P-J, Van Doren E, Verleysen E, Van der Stede Y, Francisco MA, Mast J (2012) Quantitative characterization of agglomerates and aggregates of pyrogenic and precipitated amorphous silica nanomaterials by transmission electron microscopy. J Nanobiotechnol 10(1):24. https://doi.org/10.1186/1477-3155-10-24

  • Ding H, Huang K, Li S, Xu L, Xia J, Li M (Nov.2017) Synthesis of a novel phosphorus and nitrogen-containing bio-based polyol and its application in flame retardant polyurethane foam. J Anal Appl Pyrol 128:102–113. https://doi.org/10.1016/j.jaap.2017.10.020

  • Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale 7(23):10294–10329. https://doi.org/10.1039/C5NR01354B

  • Dong Y-P, Cui H, Xu Y (2007) Comparative studies on electrogenerated chemiluminescence of luminol on gold nanoparticle modified electrodes. Langmuir 23(2):523–529. https://doi.org/10.1021/la0617107

  • Dudhipala N, Veerabrahma K (Feb 2016) Candesartan cilexetil loaded solid lipid nanoparticles for oral delivery: characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Deliv 23(2):395–404. https://doi.org/10.3109/10717544.2014.914986

  • Elkodous MAbd et al. (2019) Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications. Colloids SurfS B: Biointerfaces 180:411–428. https://doi.org/10.1016/j.colsurfb.2019.05.008

  • Esapour, M, Hamzehnezhad A, Rabienataj Darzi AA, Jourabian M (2018) Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. Energy Convers Manag 171:398–410. https://doi.org/10.1016/j.enconman.2018.05.086

  • European Chemicals Agency (2017) How to prepare registration dossiers that cover nanoforms: best practices. Accessed 31 Jul 2020. [Online]. http://dx.publications.europa.eu/

  • Fadeel B, Pietroiusti A, Shvedova AA (eds) (2012) Adverse effects of engineered nanomaterials: exposure, toxicology, and impact on human health (1st edn). London ; Waltham, MA: Elsevier/Academic Press.

    Google Scholar 

  • Fetisov, AV Kozhina GA, Estemirova, SKh, Mitrofanov VYa (2015) On the room-temperature aging effects in YBa 2 Cu 3 O 6+δ. Phys C: Supercond Its Appl 515:54–61. https://doi.org/10.1016/j.physc.2015.05.008.

  • Fitaroni LB, de Lima JA, Cruz SA, Waldman WR (Jan.2015) Thermal stability of polypropylene–montmorillonite clay nanocomposites: limitation of the thermogravimetric analysis. Polym Degrad Stab 111:102–108. https://doi.org/10.1016/j.polymdegradstab.2014.10.016

  • Flowers P, Theopold K, Langley R, Robinson WR, OpenStax College, Chemistry

    Google Scholar 

  • Foroutan M, Zahedi H, Esmaeilian F (2017) Temperature effects on spreading of water nano-droplet on poly(methyl methacrylate): a molecular dynamics simulation study. J Polym Sci Part b: Polym Phys 55(20):1532–1541. https://doi.org/10.1002/polb.24409

  • Foster DM, Pavloudis Th, Kioseoglou J Palmer RE Atomic-resolution imaging of surface and core melting in individual size-selected Au nanoclusters on carbon. Nat Commun 10(1):2583. https://doi.org/10.1038/s41467-019-10713-z

  • Fotiadou S et al (Apr 2013) Structure and dynamics of hyperbranched polymer/layered silicate nanocomposites. Macromol 46(7):2842–2855. https://doi.org/10.1021/ma302405q

  • Fubini B, Fenoglio I, Tomatis M, Turci F (2011) Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine 6(5):899–920. https://doi.org/10.2217/nnm.11.80

  • Gao M, Ling B, Yang S, Zhao M (Mar 2005) Flame retardance of wood treated with guanidine compounds characterized by thermal degradation behavior. J Anal Appl Pyrol 73(1):151–156. https://doi.org/10.1016/j.jaap.2005.01.006

  • Gao L et al (Sep 2016) Effects of the amine/epoxy stoichiometry on the curing behavior and glass transition temperature of MWCNTs-NH 2 /epoxy nanocomposites. Thermochim Acta 639:98–107. https://doi.org/10.1016/j.tca.2016.07.017

  • Gao X, Lowry GV (Jan 2018) Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact 9:14–30. https://doi.org/10.1016/j.impact.2017.09.002

  • Ghezzi B et al (2021) Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion. Mater Sci Eng, C 121:111772. https://doi.org/10.1016/j.msec.2020.111772

  • Gerberich WW et al (2003) Superhard silicon nanospheres. J Mech Phys Solids 51(6):979–992. https://doi.org/10.1016/S0022-5096(03)00018-8

  • Gkika DA et al (2020) Patents of nanomaterials related with cancer treatment applications. J Nanopart Res 22(10):335. https://doi.org/10.1007/s11051-020-05052-w

  • Gkika DA, Vordos N, Magafas L, Mitropoulos AC, Kyzas GZ (Mar 2021) Risk return profile of nanomaterials. J Mol Struct 1228:129740. https://doi.org/10.1016/j.molstruc.2020.129740

  • Guisbiers G, Mejía-Rosales S, Leonard Deepak F (2012) “Nanomaterial properties: size and shape dependencies.” J Nanomater: 1–2. doi: https://doi.org/10.1155/2012/180976.

  • Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys d: Appl Phys 47(1):013001. https://doi.org/10.1088/0022-3727/47/1/013001

  • Habibi-Yangjeh A, Pourbasheer E, Danandeh-Jenagharad M (Apr 2008) Prediction of melting point for drug-like compounds using principal component-genetic algorithm-artificial neural network. Bull Korean Chem Soc 29(4):833–841. https://doi.org/10.5012/BKCS.2008.29.4.833

  • Hashemifard SA, Ismail AF, Matsuura T (2011) Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chem Eng J 170(1):316–325. https://doi.org/10.1016/j.cej.2011.03.063

  • Hatakeyama T, Quinn FX (1999) Thermal analysis: fundamentals and applications to polymer science, 2nd edn. Wiley, Chichester; New York

    Google Scholar 

  • Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM (2020) High-aspect-ratio nanostructured surfaces as biological metamaterials. Adv Mater 32(9):1903862. https://doi.org/10.1002/adma.201903862

  • Hu D, Cui Z, Fan J, Fan X, Zhang G (2020) Thermal kinetic and mechanical behaviors of pressure-assisted Cu nanoparticles sintering: a molecular dynamics study. Results in Physics 19:103486. https://doi.org/10.1016/j.rinp.2020.103486

  • Issaadi N, Aït-Mokhtar A, Belarbi R, Hamami A (2018) Effect of variability of porous media properties on drying kinetics: application to cement-based materials. In: Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics, Elsevier, pp 243–289. doi: https://doi.org/10.1016/B978-1-78548-278-6.50008-6

  • Jain S, Sharma MP (Jan 2011) Thermal stability of biodiesel and its blends: a review. Renew Sustain Energy Rev 15(1):438–448. https://doi.org/10.1016/j.rser.2010.08.022

  • Jastrzębska AM, Olszyna AR (2015) The ecotoxicity of graphene family materials: current status, knowledge gaps and future needs. J Nanoparticle Res 17(1) Art(1). https://doi.org/10.1007/s11051-014-2817-0.

  • Jing GY et al (2006) Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys Rev B 73(23):235409. https://doi.org/10.1103/PhysRevB.73.235409

  • K SS, I MP R GR (2019) “Mahua oil-based polyurethane/chitosan/nano ZnO composite films for biodegradable food packaging applications.” Int J Biol Macromol 124:163–174. https://doi.org/10.1016/j.ijbiomac.2018.11.195

  • Khan MF et al (Jun.2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6(1):27689. https://doi.org/10.1038/srep27689

  • Khodadadi JM, Hosseinizadeh SF (2007) Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transfer 34(5):534–543. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.005

  • Khoramishad H, Ashofteh RS, Pourang H, Berto F (2018) Experimental investigation of the influence of temperature on the reinforcing effect of graphene oxide nano-platelet on nanocomposite adhesively bonded joints. Theoret Appl Fract Mech 94:95–100. https://doi.org/10.1016/j.tafmec.2018.01.010

  • Koçak A, Karasu B (Jan.2018) General evaluations of nanoparticles. El-Cezeri Fen Ve Mühendislik Dergisi 5(1):191–236. https://doi.org/10.31202/ecjse.361663

  • Krishnaswamy K, Orsat V, Thangavel K (2012) Synthesis and characterization of nano-encapsulated catechin by molecular inclusion with beta-cyclodextrin. J Food Eng 111(2):255–264. https://doi.org/10.1016/j.jfoodeng.2012.02.024

  • Kumar NN, Rama Sreekanth PS, Kanagaraj S (2013) Effect of γ-irradiation on thermal properties of MWCNTs reinforced HDPE. In: Giri PK, Goswami DK, Perumal A (ed) Advanced nanomaterials and nanotechnology, vol 143Berlin, Heidelberg: Springer Berlin Heidelberg. pp 409–420. https://doi.org/10.1007/978-3-642-34216-5_40.

  • Kuo Z-K et al (2018) Hydrophilic films: How hydrophilicity affects blood compatibility and cellular compatibility. Adv Polym Technol 37(6):1635–1642. https://doi.org/10.1002/adv.21820

  • Kyzas GZ, Travlou NA, Deliyanni EA (2014) The role of chitosan as nanofiller of graphite oxide for the removal of toxic mercury ions. Colloids Surf, B 113:467–476. https://doi.org/10.1016/j.colsurfb.2013.07.055

  • Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Sauer UG (2017) Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. J Nanopart Res 19(5):171. https://doi.org/10.1007/s11051-017-3850-6

  • Law K-Y (Feb.2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics Right. J Phys Chem Lett 5(4):686–688. https://doi.org/10.1021/jz402762h

  • Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100(1):132–137. https://doi.org/10.1016/j.matchemphys.2005.12.021

  • Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Dordrecht: Springer : In cooperation with NATO Public Diplomacy Division.

    Google Scholar 

  • Lippmann M (1990) Effects of fiber characteristics on lung deposition, retention, and disease. Environ Health Perspect 88:311–317. https://doi.org/10.1289/ehp.9088311

  • Lee S-W et al (2014) Effect of temperature on the growth of silver nanoparticles using plasmon-mediated method under the irradiation of green LEDs. Materials 7(12):7781–7798. https://doi.org/10.3390/ma7127781

  • Leitner J, Sedmidubský D, Lojka M, Jankovský O (2020) The effect of nanosizing on the oxidation of partially oxidized copper nanoparticles. Materials 13(12):2878. https://doi.org/10.3390/ma13122878

  • Lv G, Wu S (Sep.2012) Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J Anal Appl Pyrol 97:11–18. https://doi.org/10.1016/j.jaap.2012.04.010

  • Liu K, Cao X, Bai Q, Wen H, Gu Z (2009) Relationships between physical properties of brown rice and degree of milling and loss of selenium. J Food Eng 94(1):69–74. https://doi.org/10.1016/j.jfoodeng.2009.03.001

  • Liu H, Chaudhary D, Yusa S, Tadé MO (Feb 2011) Glycerol/starch/Na+-montmorillonite nanocomposites: a XRD, FTIR, DSC and 1H NMR study. Carbohyd Polym 83(4):1591–1597. https://doi.org/10.1016/j.carbpol.2010.10.018

  • Liu, X, Harper Tang, Steevens J, Xu R (2013) NEIMiner: nanomaterial environmental impact data miner. IJN: 15. https://doi.org/10.2147/IJN.S40974

  • Liang YL, Pearson RA (2009) Toughening mechanisms in epoxy–silica nanocomposites (ESNs). Polymer 50(20):4895–4905. https://doi.org/10.1016/j.polymer.2009.08.014

  • Lu J, Chan HL, Chen AY, Kou HN (2011) Mechanics of high strength and high ductility materials. Procedia Engg 10:2202–2207. https://doi.org/10.1016/j.proeng.2011.04.364

  • Mach P, Geczy A, Polanský R, Bušek D (Mar 2019) Glass transition temperature of nanoparticle-enhanced and environmentally stressed conductive adhesive materials for electronics assembly. J Mater Sci: Mater Electron 30(5):4895–4907. https://doi.org/10.1007/s10854-019-00784-5

  • Madhukar K et al (2014) Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly(methyl methacrylate) blend system. J Therm Anal Calorim 115(1):345–354. https://doi.org/10.1007/s10973-013-3320-z

  • Mansfield E (2015) Recent advances in thermal analysis of nanoparticles. In: Modeling, characterization, and production of nanomaterials, Elsevier, pp 167–178. doi: https://doi.org/10.1016/B978-1-78242-228-0.00006-5

  • Magro M, De Liguoro M, Franzago E, Baratella D, Vianello F (2018) The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: a study on Daphnia magna adults and embryos. Sci Rep 8(1):13017. https://doi.org/10.1038/s41598-018-31483-6

  • Martínez-Esaín J et al (2019) Using evolved gas analysis – mass spectrometry to characterize adsorption on a nanoparticle surface. Nanoscale Adv. 1(7):2740–2747. https://doi.org/10.1039/C9NA00098D

  • Marques AC et al (2015) Office paper platform for bioelectrochromic detection of electrochemically active bacteria using tungsten trioxide nanoprobes. Sci Rep 5(1):9910. https://doi.org/10.1038/srep09910

  • Menczel, JD Prime, RB (eds) (2009) Thermal analysis of polymers. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470423837

  • Millot C, Fillot L-A, Lame O, Sotta P, Seguela R (Oct.2015) Assessment of polyamide-6 crystallinity by DSC: temperature dependence of the melting enthalpy. J Therm Anal Calorim 122(1):307–314. https://doi.org/10.1007/s10973-015-4670-5

  • Minelli C et al (2018) Measuring the size and density of nanoparticles by centrifugal sedimentation and flotation. Anal Methods 10(15):1725–1732. https://doi.org/10.1039/C8AY00237A

  • Mishra PC, Mukherjee S, Nayak SK, Panda A (2014) A brief review on viscosity of nanofluids. Int Nano Lett 4(4):109–120. https://doi.org/10.1007/s40089-014-0126-3

  • Mohandes F, Salavati-Niasari M (2013) Application of a new coordination compound for the preparation of AgI nanoparticles. Mater Res Bull 48(10):3773–3782. https://doi.org/10.1016/j.materresbull.2013.05.094

  • Mohandes F, Salavati-Niasari M (Jan.2013) Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason Sonochem 20(1):354–365. https://doi.org/10.1016/j.ultsonch.2012.05.002

  • Morais DDS, Barbosa R, Medeiros KM, Araújo EM, de Mélo TJA (2014) Preparation of poly(lactic acid)/bentonite clay bio-nanocomposite. MSF 775–776:233–237. https://doi.org/10.4028/www.scientific.net/MSF.775-776.233

  • Mourdikoudis S, Pallares RM, Thanh NTK (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934. https://doi.org/10.1039/C8NR02278J

  • Muhannad Mahdi Abd (2013) “Mechanical properties of micro and nano TiO2/epoxy composites. https://doi.org/10.13140/RG.2.2.30316.31360

  • Muthee DK, Dejene BF (2021) Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles. Heliyon 7(6):e07269. https://doi.org/10.1016/j.heliyon.2021.e07269

  • Nanda KK, Sahu SN, Behera SN (2002) Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A 66(1):013208. https://doi.org/10.1103/PhysRevA.66.013208

  • Navya PN, Daima HK (2016) Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3(1) Art(1). https://doi.org/10.1186/s40580-016-0064-z

  • Nazirkar G, Bhanushali S, Singh S, Pattanaik B, Raj N (2014) Effect of anatase titanium dioxide nanoparticles on the flexural strength of heat cured poly methyl methacrylate resins: an in-vitro study. J Indian Prosthodont Soc 14(S1):144–149. https://doi.org/10.1007/s13191-014-0385-8

  • Nguyen TA, Nguyen TH, Nguyen TV, Thai H, Shi X (2016) Effect of nanoparticles on the thermal and mechanical properties of epoxy coatings.” j nanosci nanotechnol 16(9):9874–9881. https://doi.org/10.1166/jnn.2016.12162.

  • Nourani M, Hamdami N, Keramat J, Moheb A, Shahedi M (Apr 2016) Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renewable Energy 88:474–482. https://doi.org/10.1016/j.renene.2015.11.043

  • Ovid’ko IA, Valiev RZ, Zhu YT (2018) Review on superior strength and enhanced ductility of metallic nanomaterials. Prog Mater Sci 94:462–540. https://doi.org/10.1016/j.pmatsci.2018.02.002.

  • Olad A, Hayasi M (Oct.2011) A comparative study of polystyrene/layered silicate nanocomposites, synthesized by emulsion and bulk polymerization methods. Polym-Plast Technol Eng 50(14):1487–1495. https://doi.org/10.1080/03602559.2011.593083

  • Paik P, Kar KK, Deva D, Sharma A (2007) Measurement of mechanical properties of polymer nanospheres by atomic force microscopy: effects of particle size. Micro Nano Lett. 2(3):72. https://doi.org/10.1049/mnl:20070030

  • Panaitescu DM, Frone AN, Nicolae C (Dec 2013) Micro- and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polymer J 49(12):3857–3866. https://doi.org/10.1016/j.eurpolymj.2013.09.031

  • Park J-J, Lee C-H, Lee J-Y, Kim H-D (Jun.2011) Preparation of epoxy/micro- and nano- composites by electric field dispersion process and its mechanical and electrical properties. IEEE Trans. Dielect. Electr. Insul. 18(3):667–674. https://doi.org/10.1109/TDEI.2011.5931051

  • Patidar D, Agrawal S, Saxena NS (Dec 2011) Glass transition activation energy of CdS/PMMA nano-composite and its dependence on composition of CdS nano-particles. J Therm Anal Calorim 106(3):921–925. https://doi.org/10.1007/s10973-010-1150-9

  • Patra JK, Baek K-H (2014) Green Nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:1–12. https://doi.org/10.1155/2014/417305

  • Patra S, Ajayan PM, Narayanan TN (2020) Dynamic mechanical analysis in materials science: the Novice’s Tale. Oxf Open Mater Sci 1(1):itaa001. https://doi.org/10.1093/oxfmat/itaa001.

  • Physical fundamentals of nanomaterials. Elsevier 2018. https://doi.org/10.1016/C2012-0-02139-4

  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51. https://doi.org/10.1080/17435390701314902

  • Qi WH (Nov.2005) Size effect on melting temperature of nanosolids. Physica B 368(1–4):46–50. https://doi.org/10.1016/j.physb.2005.06.035

  • Radwan A et al (2013) Mechanistic understanding of food effects: water diffusivity in gastrointestinal tract is an important parameter for the prediction of disintegration of solid oral dosage forms. Mol Pharmaceutics 10(6):2283–2290. https://doi.org/10.1021/mp3006209

  • Ramos M et al (2013) Hardness and elastic modulus on six-fold symmetry gold nanoparticles. Materials 6(1):198–205. https://doi.org/10.3390/ma6010198

  • Rasmussen K et al (2018) Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD testing programme. Regul Toxicol Pharmacol 92:8–28. https://doi.org/10.1016/j.yrtph.2017.10.019

  • Ren XD et al (2018) Thermal stability of surface nano-crystallization layer in AZ91D magnesium alloy induced by laser shock peening. Surf Coat Technol 334:182–188. https://doi.org/10.1016/j.surfcoat.2017.09.037

  • Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater 124:133–138. https://doi.org/10.1016/j.conbuildmat.2016.07.059

  • Sahraee S, Milani JM, Ghanbarzadeh B, Hamishehkar H (Mar 2017) Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT Food Sci Technol 76:33–39. https://doi.org/10.1016/j.lwt.2016.10.028

  • Salavati-Niasari M, Mir N, Davar F (Apr.2010) A novel precursor for synthesis of metallic copper nanocrystals by thermal decomposition approach. Appl Surf Sci 256(12):4003–4008. https://doi.org/10.1016/j.apsusc.2010.01.067

  • Sar DK, Nanda KK (2010) Melting and superheating of nanowires—A nanotube approach. Nanotechnol 21(20):205701. https://doi.org/10.1088/0957-4484/21/20/205701

  • Schmidt M, Kusche R, von Issendorff B, Haberland H (1998) Irregular variations in the melting point of size-selected atomic clusters. Nat 393(6682):238–240. https://doi.org/10.1038/30415

  • Seifi H, Gholami T, Seifi S, Ghoreishi SM, Salavati-Niasari M (Aug.2020) A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials. J Anal Appl Pyrol 149:104840. https://doi.org/10.1016/j.jaap.2020.104840

  • Shabanian M, Faghihi K, Raeisi A, Varvanifarahani M, Khonakdar HA, Wagenknecht U (Jul.2014) New poly(ether-imide)/MWCNT nanocomposite: flammability, thermal and electrical properties. J Therm Anal Calorim 117(1):293–299. https://doi.org/10.1007/s10973-014-3682-x

  • Shah MP (2020) Microbial bioremediation & biodegradation. Springer

    Google Scholar 

  • Shah MP (2021a) Removal of refractory pollutants from wastewater treatment plants. CRC Press

    Google Scholar 

  • Shah Maulin P (2021b) Removal of emerging contaminants through microbial processes. Springer

    Google Scholar 

  • Sharma S, Jaiswal S, Duffy B, Jaiswal A (Mar 2019) Nanostructured materials for food applications: spectroscopy, microscopy and physical properties. Bioengineering 6(1):26. https://doi.org/10.3390/bioengineering6010026

  • Shukla S et al (Apr.2015) The impact of aspect ratio on the biodistribution and tumor homing of rigid soft-matter nanorods. Adv Healthcare Mater 4(6):874–882. https://doi.org/10.1002/adhm.201400641

  • Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo 2 O 4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637. https://doi.org/10.1002/adfm.201303138

  • Si M, Feng J, Hao J, Xu L, Du J (Feb.2014) Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate). Polym Degrad Stab 100:70–78. https://doi.org/10.1016/j.polymdegradstab.2013.12.023

  • Singh M, Hlabana KK, Singhal S, Devlal K (Jul.2016) Grain-size effects on the thermal conductivity of nanosolids. Journal of Taibah University for Science 10(3):375–380. https://doi.org/10.1016/j.jtusci.2015.04.006

  • Shivam V, Shadangi Y, Basu J, Mukhopadhyay NK (2019) Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy. J Mater Res 34(5):787–795. https://doi.org/10.1557/jmr.2019.5

  • Sienkiewicz A, Czub P (2020) Flame retardancy of biobased composites—Research development. Materials 13(22):5253. https://doi.org/10.3390/ma13225253

  • Soares S, Sousa J, Pais A, Vitorino C (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360. https://doi.org/10.3389/fchem.2018.00360

  • Sohal IS, Cho YK, O’Fallon KS, Gaines P, Demokritou P, Bello D (2018) Dissolution behavior and biodurability of ingested engineered nanomaterials in the gastrointestinal environment. ACS Nano 12(8):8115–8128. https://doi.org/10.1021/acsnano.8b02978

  • Soltanzadeh N, Morsali A (Jan.2010) Sonochemical synthesis of a new nano-structures bismuth(III) supramolecular compound: New precursor for the preparation of bismuth(III) oxide nano-rods and bismuth(III) iodide nano-wires. Ultrason Sonochem 17(1):139–144. https://doi.org/10.1016/j.ultsonch.2009.05.003

  • Song G, Ma S, Tang G, Yin Z, Wang X (May2010) Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy 35(5):2179–2183. https://doi.org/10.1016/j.energy.2010.02.002

  • Sokolov SV, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton RG (2015) Reversible or not? distinguishing agglomeration and aggregation at the nanoscale. Anal Chem 87(19):10033–10039. https://doi.org/10.1021/acs.analchem.5b02639

  • Subasinghe A, Das R, Bhattacharyya D (2016) Study of thermal, flammability and mechanical properties of intumescent flame retardant PP/kenaf nanocomposites. Int J Smart Nano Mater 7(3):202–220. https://doi.org/10.1080/19475411.2016.1239315

  • Sumesh KR, Kanthavel K, Ajithram A, Nandhini P (Sep 2019) Bioalumina nano powder extraction and its applications for sisal, coir and banana hybrid fiber composites: mechanical and thermal properties. J Polym Environ 27(9):2068–2077. https://doi.org/10.1007/s10924-019-01496-x

  • Sutter EA, Tong X, Jungjohann K, Sutter PW (2013) Oxidation of nanoscale Au-In alloy particles as a possible route toward stable Au-based catalysts. Proc Natl Acad Sci 110(26):10519–10524. https://doi.org/10.1073/pnas.1305388110

  • Sun J, Wang R (2013) Carbon nanotube transparent electrode. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech. doi: https://doi.org/10.5772/51783

  • Suzuki K et al (2018) Nano-crystallization of amorphous alloys by ultra-rapid annealing: an effective approach to magnetic softening. J Alloy Compd 735:613–618. https://doi.org/10.1016/j.jallcom.2017.11.110

  • Tang Y, Su D, Huang X, Alva G, Liu L, Fang G (Oct 2016) Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Appl Energy 180:116–129. https://doi.org/10.1016/j.apenergy.2016.07.106

  • Tan S, Sherman RL, Ford WT (2004) Nanoscale compression of polymer microspheres by atomic force microscopy. Langmuir 20(17):7015–7020. https://doi.org/10.1021/la049597c

  • Tanaka Y, Matsubara R, Furukawa K, Satonaka S, Kasaoka S (2019) The influence of viscosity-enhancing agents on oral absorption of drugs. Pharmazie 11:661–664. https://doi.org/10.1691/ph.2019.9097

  • Tanzi, MC (2017) “Characterization of thermal properties and crystallinity of polymer biomaterials. In: Characterization of Polymeric Biomaterials, Elsevier, pp 123–146. https://doi.org/10.1016/B978-0-08-100737-2.00006-6.

  • Tewary VK (ed) (2015) Modeling, characterization, and production of nanomaterials. Elsevier, Amsterdam

    Google Scholar 

  • Ting TH, Yap YF, Nguyen N-T, Wong TN, Kiong Chai JC Yobas L (2006) Active control for droplet-based microfluidics. Adelaide, Australia, Dec. 2006, p 64160E. https://doi.org/10.1117/12.696496

  • Travlou NA, Kyzas GZ, Lazaridis NK, Deliyanni EA (2013) Graphite oxide/chitosan composite for reactive dye removal. Chem Eng J 217:256–265. https://doi.org/10.1016/j.cej.2012.12.008

  • Vahidi G, Bajwa DS, Shojaeiarani J, Stark N, Darabi A (2021) Advancements in traditional and nanosized flame retardants for polymers—A review. J Appl Polym Sci 138(12):50050. https://doi.org/10.1002/app.50050

  • Vanaja M, Gnanajobitha G, Paulkumar K, Rajeshkumar S, Malarkodi C, Annadurai G (2013) Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J Nanostruct Chem 3(1):17. https://doi.org/10.1186/2193-8865-3-17

  • Van Doren EA, De Temmerman P-JR, Francisco M, Mast J (2011) Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J Nanobiotechnol 9(1):17. https://doi.org/10.1186/1477-3155-9-17

  • van Leeuwen HP, Buffle J, Duval JFL, Town RM (2013) Understanding the extraordinary ionic reactivity of aqueous nanoparticles. Langmuir 29(33):10297–10302. https://doi.org/10.1021/la401955x

  • Wang H-Y, Lu S-S (2013) Study on thermal properties of phase change material by an optical DSC system. Appl Therm Eng 60(1–2):132–136. https://doi.org/10.1016/j.applthermaleng.2013.06.055

  • Wang C, Cai L, Shi SQ, Wang G, Cheng H, Zhang S (2019) Thermal and flammable properties of bamboo pulp fiber/high-density polyethylene composites: influence of preparation technology, nano calcium carbonate and fiber content. Renewable Energy 134:436–445. https://doi.org/10.1016/j.renene.2018.09.051

  • Wang N, Si Y, Yu J, Fong H, Ding B (Apr 2017) Nano-fiber/net structured PVA membrane: effects of formic acid as solvent and crosslinking agent on solution properties and membrane morphological structures. Mater Des 120:135–143. https://doi.org/10.1016/j.matdes.2017.02.007

  • Wu G, Liu D, Chen J, Liu G, Kong Z (Feb 2019) Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2. Prog Org Coat 127:80–87. https://doi.org/10.1016/j.porgcoat.2018.06.016

  • Wang X, Rathore R, Songtipya P, Jimenez-Gasco MdelM, Manias E, Wilkie CA (2011) EVA-layered double hydroxide (nano)composites: Mechanism of fire retardancy. Polym Degrad Stab 96(3):301–313. https://doi.org/10.1016/j.polymdegradstab.2010.03.014

  • Wohlleben W (ed) (2015) Safety of nanomaterials along their lifecycle: release, exposure, and human hazards. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Wu R, Nguyen T, Marquart G, Miesen T, Mau T, Mackiewicz M (2014) A facile route to tailoring peptide-stabilized gold nanoparticles using glutathione as a synthon. Molecules 19(5):6754–6775. https://doi.org/10.3390/molecules19056754

  • Wu W, Wan Z, Zhu M, Zhang D (2016) A facile route to aqueous phase synthesis of mesoporous alumina with controllable structural properties. Microporous Mesoporous Mater 223:203–212. https://doi.org/10.1016/j.micromeso.2015.11.004

  • Wu Q, Miao W, Zhang Y, Gao H, Hui D (2020) Mechanical properties of nanomaterials: a review. Nanotechnol Rev 9(1):259–273. https://doi.org/10.1515/ntrev-2020-0021

  • Xanthopoulou et al (2019) Effects of precursor concentration in solvent and nanomaterials room temperature aging on the growth morphology and surface characteristics of Ni–NiO nanocatalysts produced by dendrites combustion during SCS. Appl Sci 9(22):4925. https://doi.org/10.3390/app9224925

  • Xie W, Pan W-P (2001) No title found. J Therm Anal Calorim 65(3):669–685. https://doi.org/10.1023/A:1011946707342

  • Yarema M et al (2017) Mapping the atomistic structure of graded core/shell colloidal nanocrystals. Sci Rep 7(1):11718. https://doi.org/10.1038/s41598-017-11996-2

  • Yin F, Wang ZW, Palmer RE (2012) Ageing of mass-selected Cu/Au and Au/Cu core/shell clusters probed with atomic resolution. J Exp Nanosci 7(6):703–710. https://doi.org/10.1080/17458080.2012.710856

  • Ying J, Wan C, Jiang C, Li Y (2001) Preparation and characterization of high-density spherical LiNi0.8Co0.2O2 cathode material for lithium secondary batteries. J Power Sources 99(1–2):78–84. https://doi.org/10.1016/S0378-7753(01)00477-3

  • Yu M (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Sci 287(5453):637–640. https://doi.org/10.1126/science.287.5453.637

  • Zha L, Fang Z (Jul.2010) Polystyrene/CaCO 3 composites with different CaCO 3 radius and different nano-CaCO 3 content-structure and properties. Polym Compos 31(7):1258–1264. https://doi.org/10.1002/pc.20915

  • Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10):9451–9469. https://doi.org/10.1021/acsnano.5b05040

  • Zhang J, Panwar A, Bello D, Isaacs JA, Jozokos T, Mead J (2018) The effects of recycling on the structure and properties of carbon nanotube-filled polycarbonate. Polym Eng Sci 58(8):1278–1284. https://doi.org/10.1002/pen.24692

  • Zhao W et al (2017) Nanoscale manipulation of membrane curvature for probing endocytosis in live cells. Nature Nanotech 12(8):750–756. https://doi.org/10.1038/nnano.2017.98

  • Zhang H, Tang L-C, Zhang Z, Friedrich K, Sprenger S (2008) Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49(17):3816–3825. https://doi.org/10.1016/j.polymer.2008.06.040

  • Zhu YT, Wu XL (2018) Ductility and plasticity of nanostructured metals: differences and issues. Mater Today Nano 2:15–20. https://doi.org/10.1016/j.mtnano.2018.09.004

Download references

Acknowledgements

The financial support received for this study from the Greek Ministry of Development and Investments (General Secretariat for Research and Technology) through the research project “Intergovernmental International Scientific and Technological Innovation-Cooperation. Joint declaration of Science and Technology Cooperation between China and Greece” with the topic “Development of monitoring and removal strategies of emerging micro-pollutants in wastewaters” (Grant no: T7ΔKI-00220) and it is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina A. Gkika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gkika, D.A., Vordos, N., Mitropoulos, A.C., Lambropoulou, D.A., Kyzas, G.Z. (2023). Nanomaterials and Their Properties: Thermal Analysis, Physical, Mechanical and Chemical Properties. In: Shah, M.P. (eds) Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment. Springer, Singapore. https://doi.org/10.1007/978-981-99-2598-8_14

Download citation

Publish with us

Policies and ethics