
Chapter 2 
Rock Mechanics in Hydraulic Fracturing 
Operations 

Rock, fracture and fluid mechanics are crucial elements in understanding and engi-
neering design of hydraulic fracture treatments. The combination of rock, frac-
ture and fluid mechanics creates the study of fracture propagation, interaction and 
sensitivity caused by different treatment variables. The formation to be fractured 
and the resulting hydraulic fracture morphology is of paramount significance for 
hydrocarbon migration and extraction. 

2.1 Stress 

Mechanical stress is usually quantified as second-order tensor invariants. This tensor 
(N/m2 or Pa) represents the force acting on a unit area of a surface or a unit volume 
of the material, which can be expressed by 

σ = lim
ΔA→0

(
ΔF
ΔA

)
(2.1) 

where σ is the stress vector, F is the force (traction) vector and A is the contact area 
of F. 

The stress has both magnitude and direction. Since the area A of the contact 
surface is assumed close to zero, the stress reflects a point property. Note that there 
are some practical limitations in reducing the contact area of the force to zero. For 
easy calculation, the stress magnitude in experiments and fields is directly deter-
mined by dividing |F| by A. Stresses normal to the contact surface can be tensile 
or compression, while those parallel to the surface are called shear. In the Cartesian 
coordinate system, there are 9 stress components (σ xx, σ yy, σ zz, σ xy, σ yx, σ xz, σ zy, 
σ yz and σ zx) in terms of the stress in different directions, of which only 6 (σ xx, σ yy, 
σ zz, σ xy, σ yz and σ zx) are independent for τxy = τyx, τxz = τzx, τyz = τzy. If there
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is no shear stress applied on the surface, the normal stresses become the principal 
stress, and the stress vector can be written as 

σ = 

⎡ 

⎢⎣ 
σxx τxy τxz 

τyx σyy τyz 

τzx τzy σzz 

⎤ 

⎥⎦ = 

⎡ 

⎢⎣ 
σ1 

σ2 

σ3 

⎤ 

⎥⎦ (2.2) 

The three stress components are perpendicular to each other. In geologic applica-
tions, one of the principal stresses is often assumed in the vertical direction, and the 
other two are horizontally specified by default. 

2.2 Stain 

Strain represents the relative deformation between material points. If the original 
distance between the two points is l, after a period of action by force F, the distance 
becomes l + Δl. The engineering stain is defined by 

ε = Δl 

l 
(2.3) 

The strains caused by tensile force correspond to extension whereas those under 
compressive force correspond to contraction. A shear strain is associated with 
surfaces sliding over each other. In the Cartesian coordinate system, each direc-
tion should have a corresponding strain component consistent with the stress. So, the 
strain can be expressed by 

ε = 

⎡ 

⎣ 
εxx γxy γxz 

γyx εyy γyz 

γzx γzy εzz 

⎤ 

⎦ (2.4) 

Similar to stress, six independent components (εxx, εyy, εzz, εxy, εyz and εzx) 
should also be specified to give the state of strain at a given point. 

2.3 Linear Elastic Material and Its Failure 

For a linear elastic material, the stress varies linear with the strain, which can be 
described by Hoek’s law under uniaxial stress, i.e., 

σxx = Exxεxx (2.5)
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where Exx is the elastic modulus in the x-axis direction. In fact, the deformations in 
the normal direction (e.g., εxx, εyy and εzz) can affect each other. For instance, the 
relation between εxx and εyy in the x–y plane can be given by 

εyy = −v 
σxx 

E 
(2.6) 

where v is the Poisson’s ratio (0 < v < 0.5).  
In the Cartesian coordinate system, the complete relationship between stress and 

strain is reflected by the so-called elastic constitutive equation 

εxx = 
1 

E

(
σxx − v

(
σyy + σzz

))

εyy = 
1 

E

(
σyy − v(σxx + σzz)

)

εzz = 
1 

E

(
σzz − v

(
σxx + σyy

))

γxy = 
1 

G 
τxy, γyz = 

1 

G 
τyz, γxz = 

1 

G 
τxz (2.7) 

where G is the shear modulus, a function of elastic modulus and Poisson’s ratio, i.e., 

G = E 

2(1 + 2v) 
(2.8) 

When stresses exceed rock strength, the rock fractures and fails. A fracture crite-
rion specifies the critical conditions for which failure occurs in a material. According 
to different failure mode and scales, the fracture criterion can be constructed 
by phenomenological theories (Mohr–Coulomb or Hoek–Brown) and mechanistic 
theories (Griffith, fracture mechanics models) [1]. 

For shear failure, Mohr–Coulomb criterion is often used, given by 

τ = μσ +C (2.9) 

where μ is the friction coefficient, C is the cohesion strength. This criterion is 
applicable for closely compacted rock without appreciable open cracks. 

Hoek–Brown criterion is an empirical law obtained from a variety range of triaxial 
tests on intact rock samples. It is fitted with three parameters (A, B and C) and its 
expression is 

τ = A(σN + B)C (2.10) 

In 1921, Griffith proposed a criterion for tensile failure in brittle materials initiating 
at the tips of defects (flat elliptical cracks). It is suitable for quasi-static single tensile 
crack growth based on specific surface energy. For rock failure with a certain tensile 
strength T 0 later extended by [2], it can be written as.
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(σ1 − σ3)
2 − 8T0(σ1 + σ3) = 0 

σ3 = − T0 
if 

σ1 > −3σ3 

σ1 < −3σ3 
(2.11) 

Among the above rock failure criteria, Mohr–Coulomb and Griffith are more 
frequently used in hydraulic fracturing operations as the critical conditions for the 
initiation of hydraulic fracture. Plain strain is a reasonable approximation in a simpli-
fied description of hydraulic fracturing. On this basis, a KGD hydraulic fracture is 
introduced in the horizontal plane, and a PKN hydraulic fracture model is proposed 
in the vertical plane (normal to the fracture propagation. For a short fracture (a few 
meters of length) with considerable height (tens of meters) and small width (millime-
ters), one can assume the state of plain strain in every horizontal plane (KGD fracture). 
For a long fracture with the length of hundreds of meters, a limited height of tens 
of meters and small width in millimeters, one can assume the plane strain in every 
vertical plane orthogonal to the length direction (PKN fracture). In this book, only 
KGD model is used for theoretical analysis (see Chaps. 7 and 8). 

2.4 Pressurized Crack 

Linear elasticity deals with static equilibrium issues. If the fracture propagates stably 
or at a constant velocity, a “snapshot” of this fractured state can be considered quasi-
static, and such a state of equilibrium will be introduced in the following part. 

In an infinite plane, there is a hollow two-dimensional “crack” without any appre-
ciable opening and is completely pressurized by internal fluid. The stress state around 
the fracture should be analyzed if its propagation state needs to be determined. For 
simplicity, the plane is assumed in the x–y axial plane, and the fracture is propa-
gating in a direction aligned with the x-axis with its center as the origin (Fig. 2.1). 
The boundary condition of this problem is 

σyy(x, 0) = −P(x), 0 ≤ x ≤ l 
u y(x, 0) = 0, x ≥ l 
τxy(x, 0) = 0, x ≥ 0 

(2.12)

Muskhelishvili [3] has accomplished the pioneering work of the above mathe-
matical model by solving integral equations or applying the integral transformation. 
This method starts with a function g(ξ ) constructed by 

g(ξ ) = 
ξ∫

0 

P(x)dx  

(ξ 2 − x2)1/2 
, 0 <ξ < l (2.13)
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Fig. 2.1 Fracture pressurized by internal fluid

where g(ξ ) is modified fluid pressure summing up the fluid effect along the fracture 
length of l. With known g(ξ ), the fracture aperture can be calculated by twice of the 
normal displacement of any point on the upper side of the crack [4], given by 

uy(x, 0) = −  
4 

π E ,

l∫
x 

ξg(ξ )dξ 
(x2 − ξ 2)1/2 

, x ≤ ξ ≤ l (2.14) 

where E , is the plain strain elastic modulus and can be expressed by E 
1−v2 . 

To solve this problem, g(ξ ) needs to be differentiable and the fluid pressure should 
be a function of the location inside the crack. For specific fluid pressure distribution 
along the crack, the above integrals can be solved in closed form (see Chap. 7). 
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