Skip to main content

Small-Molecule Inhibitors of Protein–Protein Interactions as Therapeutics

  • Chapter
  • First Online:
Protein-Protein Interactions

Abstract

Protein–protein interactions (PPIs) have been sought as putative therapeutic targets for the advancement of various new treatments. This chapter deals with the various studies that have successfully discovered small-molecule inhibitors (SMIs) associated with particular disease-causing PPI. The employed methodologies in these studies as well as the conclusive results have been thoroughly discussed. Further, other aspects of the discovery like optimization of the process, strategizing drug binding, selection of targets have also been delineated. This chapter thus provides the reader with a comprehensive account of the current state-of-art in the discovery of small molecules inhibiting PPIs. It also throws light on the future potential of these small molecules as commercial drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed DA, Lee S, Hu L (2020) Discovery of disubstituted xylylene derivatives as small molecule direct inhibitors of Keap1-Nrf2 protein–protein interaction. Bioorg Med Chem 28(6):115343

    Article  CAS  PubMed  Google Scholar 

  • Aeluri M, Chamakuri S, Dasari B, Guduru SKR, Jimmidi R, Jogula S, Arya P (2014) Small molecule modulators of protein–protein interactions: selected case studies. Chem Rev 114(9):4640–4694

    Article  CAS  PubMed  Google Scholar 

  • Agatsuma T, Ogawa H, Akasaka K, Asai A, Yamashita Y, Mizukami T, Akinaga S, Saitoh Y (2002) Halohydrin and oxime derivatives of radicicol: synthesis and antitumor activities. Bioorg Med Chem 10(11):3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Aitken A, Howell S, Jones D, Madrazo J, Patel Y (1995) 14-3-3α and δ are the phosphorylated forms of Raf-activating 14-3-3 β and ζ: in vivo stoichiometric phosphorylation in brain AT A Ser-Pro-Glu-Lys motif (∗). J Biol Chem 270(11):5706–5709

    Article  CAS  PubMed  Google Scholar 

  • Akinleye A, Rasool Z (2019) Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 12(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  • Alasia M, Minoux H, Ruxer J-M (2012) Derivatives of pyrroloindole which are inhibitors of Hsp90, compositions containing same, and use thereof. Google Patents

    Google Scholar 

  • Alexander LD, Sellers RP, Davis MR, Ardi VC, Johnson VA, Vasko RC, McAlpine SR (2009) Evaluation of di-sansalvamide A derivatives: synthesis, structure–activity relationship, and mechanism of action. J Med Chem 52(24):7927–7930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MM, Roe SM, Vaughan CK, Meyer P, Panaretou B, Piper PW, Prodromou C, Pearl LH (2006) Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 440(7087):1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2–tumor protein 53 protein–protein interaction. J Med Chem 52(22):7044–7053

    Article  CAS  PubMed  Google Scholar 

  • Andrus MB, Meredith EL, Hicken EJ, Simmons BL, Glancey RR, Ma W (2003) Total synthesis of (+)-geldanamycin and (−)-o-quinogeldanamycin: asymmetric glycolate aldol reactions and biological evaluation. J Org Chem 68(21):8162–8169

    Article  CAS  PubMed  Google Scholar 

  • Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M (2017) Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N Engl J Med 377(20):1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284

    Article  CAS  PubMed  Google Scholar 

  • Avis JM, Clarke PR (1996) Ran, a GTPase involved in nuclear processes: its regulators and effectors. J Cell Sci 109(10):2423–2427

    Article  CAS  PubMed  Google Scholar 

  • Banerji U (2003) Preclinical and clinical activity of the molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in malignant melanoma. Proc Am Assoc Cancer Res 677:4

    Google Scholar 

  • Barluenga S, Lopez P, Moulin E, Winssinger N (2004) Modular asymmetric synthesis of pochonin C. Angew Chem Int Ed 43(26):3467–3470

    Article  CAS  Google Scholar 

  • Barluenga S, Moulin E, Lopez P, Winssinger N (2005) Solution-and solid-phase synthesis of radicicol (monorden) and pochonin C. Chemistry 11(17):4935–4952

    Article  CAS  PubMed  Google Scholar 

  • Barluenga S, Wang C, Fontaine JG, Aouadi K, Beebe K, Tsutsumi S, Neckers L, Winssinger N (2008) Divergent synthesis of a pochonin library targeting HSP90 and in vivo efficacy of an identified inhibitor. Angew Chem Int Ed 47(23):4432–4435

    Article  CAS  Google Scholar 

  • Barluenga S, Fontaine J-G, Wang C, Aouadi K, Chen R, Beebe K, Neckers L, Winssinger N (2009) Inhibition of HSP90 with pochoximes: SAR and structure-based insights. Chembiochem 10(17):2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40(15):2913–2916

    Article  CAS  Google Scholar 

  • Berg T (2003) Modulation of protein–protein interactions with small organic molecules. Angew Chem Int Ed 42(22):2462–2481

    Article  CAS  Google Scholar 

  • Bertrand HC, Schaap M, Baird L, Georgakopoulos ND, Fowkes A, Thiollier C, Kachi H, Dinkova-Kostova AT, Wells G (2015) Design, synthesis, and evaluation of triazole derivatives that induce Nrf2-dependent gene products and inhibit the Keap1–Nrf2 protein–protein interaction. J Med Chem 58(18):7186–7194

    Article  CAS  PubMed  Google Scholar 

  • Billard C (2012) Design of novel BH3 mimetics for the treatment of chronic lymphocytic leukemia. Leukemia 26(9):2032–2038

    Article  CAS  PubMed  Google Scholar 

  • Blagg B (2009) Novobiocin analogs. US20090187014

    Google Scholar 

  • Blagg B, Neckers L, Yu X (2006) Novobiocin analogs as anticancer agents. WO2006050501

    Google Scholar 

  • Blagg BS, Zhao H, Donnelly AC (2015) Novobiocin analogues having modified sugar moieties. Google Patents

    Google Scholar 

  • Blatch GL, Lässle M (1999) The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21(11):932–939

    Article  CAS  PubMed  Google Scholar 

  • Borden EC, Kluger H, Crowley J (2008) Apoptosis: a clinical perspective. Nat Rev Drug Discov 7(12):959–959

    Article  CAS  PubMed  Google Scholar 

  • Bosmans LA, Bosch L, Kusters PJ, Lutgens E, Seijkens TT (2021) The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease. J Cardiovasc Transl Res 14(1):13–22

    Article  PubMed  Google Scholar 

  • Boumpas DT, Furie R, Manzi S, Illei GG, Wallace DJ, Balow JE, Vaishnaw A, Group BLNT (2003) A short course of BG9588 (anti–CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 48(3):719–727

    Article  CAS  PubMed  Google Scholar 

  • Burlison J, Chimmanamada DU, Ying W, Zhang S, James D (2014) Hydrazonamide compounds that modulate HSP90 activity. Google Patents

    Google Scholar 

  • Bussenius J, Blazey CM, Aay N, Anand NK, Arcalas A, Baik T, Bowles OJ, Buhr CA, Costanzo S, Curtis JK (2012) Discovery of XL888: a novel tropane-derived small molecule inhibitor of HSP90. Bioorg Med Chem Lett 22(17):5396–5404

    Article  CAS  PubMed  Google Scholar 

  • Butler LM, Ferraldeschi R, Armstrong HK, Centenera MM, Workman P (2015) Maximizing the therapeutic potential of HSP90 inhibitors. Mol Cancer Res 13(11):1445–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Moten A, Peng D, Hsu C-C, Pan B-S, Manne R, Li H-Y, Lin H-K (2020) The Skp2 pathway: a critical target for cancer therapy. In: Seminars in cancer biology. Elsevier, pp 16–33

    Google Scholar 

  • Calvis C, Beier A, Feichtinger M, Höfurthner T, Moreno M, Messeguer R, Konrat R, Esteban S, Nevola L (2021) IDP-121, a first in class staple peptide targeting c-MYC. AACR

    Google Scholar 

  • Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov 17(3):197–223

    Article  CAS  PubMed  Google Scholar 

  • Casale E, Casuscelli F, Dalvit C, Polucci P, Zuccotto F (2013) [1, 2, 4] Triazolo [1, 5-c] pyrimidine derivatives as Hsp90 modulators. Google Patents

    Google Scholar 

  • Castell A, Yan Q, Fawkner K, Hydbring P, Zhang F, Verschut V, Franco M, Zakaria SM, Bazzar W, Goodwin J, Zinzalla G, Larsson LG (2018) A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep 8(1):10064

    Article  PubMed  PubMed Central  Google Scholar 

  • Catrow JL, Zhang Y, Zhang M, Ji H (2015) Discovery of selective small-molecule inhibitors for the beta-catenin/T-cell factor protein-protein interaction through the optimization of the acyl hydrazone moiety. J Med Chem 58(11):4678–4692

    Article  CAS  PubMed  Google Scholar 

  • Chan S-L, Lee MC, Tan KO, Yang L-K, Lee AS, Flotow H, Fu NY, Butler MS, Soejarto DD, Buss AD (2003) Identification of chelerythrine as an inhibitor of BclXL function. J Biol Chem 278(23):20453–20456

    Article  CAS  PubMed  Google Scholar 

  • Chan CH, Morrow JK, Li CF, Gao Y, Jin G, Moten A, Stagg LJ, Ladbury JE, Cai Z, Xu D, Logothetis CJ, Hung MC, Zhang S, Lin HK (2013) Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154(3):556–568

    Article  CAS  PubMed  Google Scholar 

  • Chandarlapaty S, Sawai A, Ye Q, Scott A, Silinski M, Huang K, Fadden P, Partdrige J, Hall S, Steed P (2008) SNX2112, a synthetic heat shock protein 90 inhibitor, has potent antitumor activity against HER kinase–dependent cancers. Clin Cancer Res 14(1):240–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, Ismail SA, Hedberg C, Hanzal-Bayer M, Venkitaraman AR (2012) The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol 14(2):148–158

    Article  CAS  Google Scholar 

  • Chang X, Zhao X, Wang J, Ding S, Xiao L, Zhao E, Zheng X (2019) Effect of Hsp90 Inhibitor KW-2478 on HepG2 Cells. Anti Cancer Agents Med Chem 19(18):2231–2242

    Article  CAS  Google Scholar 

  • Chaugule VK, Walden H (2016) Specificity and disease in the ubiquitin system. Biochem Soc Trans 44(1):212–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan J, Wang H, Yap JL, Sabato PE, Hu A, Prochownik EV, Fletcher S (2014) Discovery of methyl 4′-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1′-biphenyl]-3-carboxylate, an improved small-molecule inhibitor of c-Myc-max dimerization. ChemMedChem 9(10):2274–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13(7):4107–4114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005a) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86(6):627–637

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005b) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Song Y, Bojadzic D, Tamayo-Garcia A, Landin AM, Blomberg BB, Buchwald P (2017) Small-molecule inhibitors of the CD40-CD40L costimulatory protein-protein interaction. J Med Chem 60(21):8906–8922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Zhuang C, Lu J, Jiang Y, Sheng C (2018) Discovery of novel KRAS-PDEδ inhibitors by fragment-based drug design. J Med Chem 61(6):2604–2610

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Chen Y, Lian F, Chen L, Li Y, Cao D, Wang X, Chen L, Li J, Meng T (2019) Fragment-based drug discovery of triazole inhibitors to block PDEδ-RAS protein-protein interaction. Eur J Med Chem 163:597–609

    Article  CAS  PubMed  Google Scholar 

  • Chène P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3(2):102–109

    Article  PubMed  Google Scholar 

  • Cheng EH-Y, Levine B, Boise LH, Thompson CB, Hardwick JM (1996) Bax-independent inhibition of apoptosis by Bcl-x L. Nature 379(6565):554–556

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Guan S, Fan J, Bandyopadhyay B, Bright A, Yerushalmi D, Liang M, Chen M, Han Y, Woodley D (2008) Human keratinocytes export HSP90-alpha that drives both keratinocyte and dermal fibroblast migration through CD91/LRP-1 signaling during wound healing. J Invest Dermatol 128:S140

    Google Scholar 

  • Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24(8):306–311

    Article  CAS  PubMed  Google Scholar 

  • Cheung KM, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, Aherne GW, McDonald E, Workman P (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 15(14):3338–3343

    Article  CAS  PubMed  Google Scholar 

  • Chimmanamada D, Ying W (2009) Pyrrole compounds that modulate HSP90 activity. WO2009148599

    Google Scholar 

  • Chiosis G, Timaul MN, Lucas B, Munster PN, Zheng FF, Sepp-Lorenzino L, Rosen N (2001) A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem Biol 8(3):289–299

    Article  CAS  PubMed  Google Scholar 

  • Chiosis G, Lucas B, Shtil A, Huezo H, Rosen N (2002) Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg Med Chem 10(11):3555–3564

    Article  CAS  PubMed  Google Scholar 

  • Chittenden T, Flemington C, Houghton AB, Ebb RG, Gallo GJ, Elangovan B, Chinnadurai G, Lutz RJ (1995) A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein-binding functions. EMBO J 14(22):5589–5596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Choi K-Y (2017) Screening-based approaches to identify small molecules that inhibit protein–protein interactions. Expert Opin Drug Discovery 12(3):293–303

    Article  CAS  Google Scholar 

  • Chupak L, Zheng X (2014) Compounds useful as immunomodulators. WO2015034820A1

    Google Scholar 

  • Chupak L, Ding M, Martin S, Zheng X, Hewawasam P, Connolly T, Xu N, Yeung K, Zhu J, Langley D, Tenney D, Scola P (2005) Compounds useful as immunomodulators. WO2015160641A2

    Google Scholar 

  • Clackson T, Wells JA (1995) A hot spot of binding energy in a hormone-receptor interface. Science 267(5196):383–386

    Article  CAS  PubMed  Google Scholar 

  • Clevenger RC, Blagg BS (2004) Design, synthesis, and evaluation of a radicicol and geldanamycin chimera, radamide. Org Lett 6(24):4459–4462

    Article  CAS  PubMed  Google Scholar 

  • Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Collins I, Workman P (2006) New approaches to molecular cancer therapeutics. Nat Chem Biol 2(12):689–700

    Article  CAS  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96

    Article  CAS  PubMed  Google Scholar 

  • Corradi V, Mancini M, Manetti F, Petta S, Santucci MA, Botta M (2010) Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein-protein interactions able to drive sensitive and imatinib-resistant leukemia cells to apoptosis. Bioorg Med Chem Lett 20(20):6133–6137

    Article  CAS  PubMed  Google Scholar 

  • Corradi V, Mancini M, Santucci MA, Carlomagno T, Sanfelice D, Mori M, Vignaroli G, Falchi F, Manetti F, Radi M, Botta M (2011) Computational techniques are valuable tools for the discovery of protein–protein interaction inhibitors: the 14-3-3sigma case. Bioorg Med Chem Lett 21(22):6867–6871

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Adams JM (2005) Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer Cell 8(1):5–6

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 13(11):828–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox AD, Der CJ, Philips MR (2015) Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin Cancer Res 21(8):1819–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft M, Benedict CA, Ware CF (2013) Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12(2):147–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cromm PM, Spiegel J, Grossmann TN, Waldmann H (2015) Direct modulation of small GTPase activity and function. Angew Chem Int Ed Engl 54(46):13516–13537

    Article  CAS  PubMed  Google Scholar 

  • Cuconati A, White E (2002) Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. Genes Dev 16(19):2465–2478

    Article  CAS  PubMed  Google Scholar 

  • Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  • Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BS, Matts RL (2011) Gambogic acid, a natural product inhibitor of Hsp90. J Nat Prod 74(5):1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport AP, Scully CC, de Graaf C, Brown AJ, Maguire JJ (2020) Advances in therapeutic peptides targeting G protein-coupled receptors. Nat Rev Drug Discov 19(6):389–413

    Article  CAS  PubMed  Google Scholar 

  • Davies TG, Wixted WE, Coyle JE, Griffiths-Jones C, Hearn K, McMenamin R, Norton D, Rich SJ, Richardson C, Saxty G (2016) Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein–protein interaction with high cell potency identified by fragment-based discovery. J Med Chem 59(8):3991–4006

    Article  CAS  PubMed  Google Scholar 

  • de La Coste A, Romagnolo B, Billuart P, Renard C-A, Buendia M-A, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A (1998) Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci 95(15):8847–8851

    Article  PubMed  PubMed Central  Google Scholar 

  • De Mattos-Arruda L, Cortes J (2012) Breast cancer and HSP90 inhibitors: is there a role beyond the HER2-positive subtype? Breast 21(4):604–607

    Article  PubMed  Google Scholar 

  • Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J (2001) Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 3(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Delmotte P, Delmotte-Plaquee J (1953) A new antifungal substance of fungal origin. Nature 171(4347):344–344

    Article  CAS  PubMed  Google Scholar 

  • Dermani FK, Samadi P, Rahmani G, Kohlan AK, Najafi R (2019) PD-1/PD-L1 immune checkpoint: potential target for cancer therapy. J Cell Physiol 234(2):1313–1325

    Article  CAS  PubMed  Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15(7):356–363

    Article  CAS  PubMed  Google Scholar 

  • Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou J-C (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144(5):891–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descours A, Moehle K, Renard A, Robinson JA (2002) A new family of β-hairpin mimetics based on a trypsin inhibitor from sunflower seeds. Chembiochem 3(4):318–323

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Eufracio BI, Naveja JJ, Medina-Franco JL (2018) Protein–protein interaction modulators for epigenetic therapies. Adv Protein Chem Struct Biol 110:65–84

    Article  PubMed  Google Scholar 

  • Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller PP, Tomita Y, Parrish DA, Deschamps JR, Wang S (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127(29):10130–10131

    Article  CAS  PubMed  Google Scholar 

  • Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K (2006) Structure-based design of spirooxindoles as potent, specific small-molecule inhibitors of the MDM2–p53 interaction. J Med Chem 49(12):3432–3435

    Article  CAS  PubMed  Google Scholar 

  • Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, Chu XJ, Bartkovitz D, Podlaski F, Janson C, Tovar C, Filipovic ZM, Higgins B, Glenn K, Packman K, Vassilev LT, Graves B (2013) Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 56(14):5979–5983

    Article  CAS  PubMed  Google Scholar 

  • Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau H-T, Forero-Torres A, Boccia R, Lippman ME, Somer R, Smakal M (2018) Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat 167(3):671–686

    Article  CAS  PubMed  Google Scholar 

  • Donnelly A, Blagg BS (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem 15(26):2702–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SJ, Grüschow S, Williams DH, McNicholas C, Purewal R, Hajek M, Gerlitz M, Martin S, Wrigley SK, Moore M (2001) Isolation and structure elucidation of chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. J Am Chem Soc 123(4):554–560

    Article  CAS  PubMed  Google Scholar 

  • Duncan SJ, Cooper MA, Williams DH (2003) Binding of an inhibitor of the p53/MDM2 interaction to MDM2. Chem Commun 3:316–317

    Article  Google Scholar 

  • Eggenweiler H, Sirrenberg C, Buchstaller H (2009) 1-3-Dihydroisoindole derivatives. WO2009030316

    Google Scholar 

  • Eichner S, Eichner T, Floss HG, Fohrer J, Hofer E, Sasse F, Zeilinger C, Kirschning A (2012) Broad substrate specificity of the amide synthase in S. hygroscopicus—new 20-membered macrolactones derived from geldanamycin. J Am Chem Soc 134(3):1673–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgueta R, Benson MJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  • Emily H-YC, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol Cell 8(3):705–711

    Article  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou J-C (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20(3):929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G (2004) Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol 6(6):507–514

    Article  CAS  PubMed  Google Scholar 

  • Evelyn CR, Duan X, Biesiada J, Seibel WL, Meller J, Zheng Y (2014) Rational design of small molecule inhibitors targeting the Ras GEF, SOS1. Chem Biol 21(12):1618–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP, Birchmeier W (2016) A small-molecule antagonist of the beta-catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res 76(4):891–901. https://doi.org/10.1158/0008-5472.CAN-15-1519

    Article  CAS  PubMed  Google Scholar 

  • Fasan R, Dias RL, Moehle K, Zerbe O, Vrijbloed JW, Obrecht D, Robinson JA (2004) Using a β-hairpin to mimic an α-helix: cyclic peptidomimetic inhibitors of the p53–HDM2 protein–protein interaction. Angew Chem Int Ed 43(16):2109–2112

    Article  CAS  Google Scholar 

  • Fasolini M, Wu X, Flocco M, Trosset JY, Oppermann U, Knapp S (2003) Hot spots in Tcf4 for the interaction with beta-catenin. J Biol Chem 278(23):21092–21098. https://doi.org/10.1074/jbc.M301781200

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Pellati F, Costi MP (2013) Protein–protein interaction inhibitors: case studies on small molecules and natural compounds. In: Disruption of protein-protein interfaces. Springer, pp 31–60

    Chapter  Google Scholar 

  • Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Follis AV, Hammoudeh DI, Wang H, Prochownik EV, Metallo SJ (2008) Structural rationale for the coupled binding and unfolding of the c-Myc oncoprotein by small molecules. Chem Biol 15(11):1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Franzén B, Linder S, Alaiya AA, Eriksson E, Fujioka K, Bergman AC, Jörnvall H, Auer G (1997) Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis 18(3–4):582–587

    Article  PubMed  Google Scholar 

  • Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat Rev Cancer 8(6):438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry DC, Vassilev LT (2005) Targeting protein–protein interactions for cancer therapy. J Mol Med 83(12):955–963

    Article  CAS  PubMed  Google Scholar 

  • Fry DC, Emerson SD, Palme S, Vu BT, Liu C-M, Podlaski F (2004) NMR structure of a complex between MDM2 and a small molecule inhibitor. J Biomol NMR 30(2):163–173

    Article  CAS  PubMed  Google Scholar 

  • Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70(1):603–647

    Article  CAS  PubMed  Google Scholar 

  • Furet P, Chene P, De Pover A, Valat TS, Lisztwan JH, Kallen J, Masuya K (2012) The central valine concept provides an entry in a new class of non peptide inhibitors of the p53-MDM2 interaction. Bioorg Med Chem Lett 22(10):3498–3502

    Article  CAS  PubMed  Google Scholar 

  • Furusaki A, Matsumoto T, Nakagawa A, Omura S (1980) Herbimycin A: an ansamycin antibiotic; X-ray crystal structure. J Antibiot 33(7):781–782

    Article  CAS  Google Scholar 

  • Gail R, Frank R, Wittinghofer A (2005) Systematic peptide array-based delineation of the differential β-catenin interaction with Tcf4, E-cadherin, and adenomatous polyposis coli. J Biol Chem 280(8):7107–7117

    Article  CAS  PubMed  Google Scholar 

  • Gallegos Ruiz MI, Floor K, Roepman P, Rodriguez JA, Meijer GA, Mooi WJ, Jassem E, Niklinski J, Muley T, van Zandwijk N (2008) Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 3(3):e0001722

    Article  PubMed  Google Scholar 

  • Garner TP, Lopez A, Reyna DE, Spitz AZ, Gavathiotis E (2017) Progress in targeting the BCL-2 family of proteins. Curr Opin Chem Biol 39:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    Article  PubMed  Google Scholar 

  • Georgakopoulos ND, Talapatra SK, Gatliff J, Kozielski F, Wells G (2018) Modified peptide inhibitors of the Keap1–Nrf2 protein–protein interaction incorporating unnatural amino acids. Chembiochem 19(17):1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geppert T, Hoy B, Wessler S, Schneider G (2011) Context-based identification of protein-protein interfaces and “hot-spot” residues. Chem Biol 18(3):344–353

    Article  CAS  PubMed  Google Scholar 

  • Giannini G, Cabri W, Simoni D, Barucchello R, Carminati P, Pisano C (2010) New 5-phenyl-isoxazole-3-carboxamides with antitumoral activities. WO2010000748

    Google Scholar 

  • Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN (2014) Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction. Angew Chem Int Ed Engl 53(9):2489–2493. https://doi.org/10.1002/anie.201310082

    Article  CAS  PubMed  Google Scholar 

  • Goebl M, Yanagida M (1991) The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 16(5):173–177

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Monterrey I, Sala M, Musella S, Campiglia P (2012) Heat shock protein 90 inhibitors as therapeutic agents. Recent Pat Anticancer Drug Discov 7(3):313–336

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves FC, Klein K, Carson BB, Katz S, Ekas LA, Evans S, Nagourney R, Cardozo T, Brown AM, DasGupta R (2011) An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway. Proc Natl Acad Sci U S A 108(15):5954–5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goyal L, Chaudhary SP, Kwak EL, Abrams TA, Carpenter AN, Wolpin BM, Wadlow RC, Allen JN, Heist R, McCleary NJ (2020) A phase 2 clinical trial of the heat shock protein 90 (HSP 90) inhibitor ganetespib in patients with refractory advanced esophagogastric cancer. Investig New Drugs 38(5):1533–1539

    Article  CAS  Google Scholar 

  • Graham TA, Weaver C, Mao F, Kimelman D, Xu W (2000) Crystal structure of a β-catenin/Tcf complex. Cell 103(6):885–896

    Article  CAS  PubMed  Google Scholar 

  • Graham TA, Ferkey DM, Mao F, Kimelman D, Xu W (2001) Tcf4 can specifically recognize β-catenin using alternative conformations. Nat Struct Biol 8(12):1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Gray PJ, Stevenson MA, Calderwood SK (2007) Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 67(24):11942–11950

    Article  CAS  PubMed  Google Scholar 

  • Gray PJ, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8(7):491–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray JL, von Delft F, Brennan PE (2020) Targeting the small GTPase superfamily through their regulatory proteins. Angew Chem Int Ed Engl 59(16):6342–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Wisniewski JA, Ji H (2014) Hot spot-based design of small-molecule inhibitors for protein–protein interactions. Bioorg Med Chem Lett 24(11):2546–2554

    Article  CAS  PubMed  Google Scholar 

  • Hamill N, Moody J, Chabaud S, Hamel A (2015) Crystalline forms of fused amino pyridines as hsp90 inhibitors. Google Patents

    Google Scholar 

  • Hammoudeh DI, Follis AV, Prochownik EV, Metallo SJ (2009) Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J Am Chem Soc 131(21):7390–7401

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Liu D, Li L (2020) PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 10(3):727–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock R, Bertrand HC, Tsujita T, Naz S, El-Bakry A, Laoruchupong J, Hayes JD, Wells G (2012) Peptide inhibitors of the Keap1–Nrf2 protein–protein interaction. Free Radic Biol Med 52(2):444–451

    Article  CAS  PubMed  Google Scholar 

  • Hancock R, Schaap M, Pfister H, Wells G (2013) Peptide inhibitors of the Keap1–Nrf2 protein–protein interaction with improved binding and cellular activity. Org Biomol Chem 11(21):3553–3557

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Huang S (2015) E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci (Landmark Ed) 20:474–490

    Article  CAS  PubMed  Google Scholar 

  • Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M (2010) HSP90 and its inhibitors. Oncol Rep 23(6):1483–1492

    CAS  PubMed  Google Scholar 

  • Hartmann C (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 16(3):151–158

    Article  CAS  PubMed  Google Scholar 

  • Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM (2006) The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol 26(22):8385–8395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henchey LK, Kushal S, Dubey R, Chapman RN, Olenyuk BZ, Arora PS (2010a) Inhibition of hypoxia-inducible factor 1-transcription coactivator interaction by a hydrogen bond surrogate α-helix. J Am Chem Soc 132(3):941–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henchey LK, Porter JR, Ghosh I, Arora PS (2010b) High specificity in protein recognition by hydrogen bond surrogate α-helices: selective inhibition of the p53/MDM2 complex. Chembiochem 11(15):2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  PubMed  Google Scholar 

  • Hershko DD (2008) Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112(7):1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Hillig RC, Sautier B, Schroeder J, Moosmayer D, Hilpmann A, Stegmann CM, Werbeck ND, Briem H, Boemer U, Weiske J (2019) Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc Natl Acad Sci 116(7):2551–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348(6299):334–336

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Sekhar KR, Freeman ML, Liebler DC (2005) Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem 280(36):31768–31775

    Article  CAS  PubMed  Google Scholar 

  • Horibe T, Kohno M, Haramoto M, Ohara K, Kawakami K (2011) Designed hybrid TPR peptide targeting Hsp90 as a novel anticancer agent. J Transl Med 9(1):1–12

    Article  Google Scholar 

  • Hu L, Magesh S, Chen L, Wang L, Lewis TA, Chen Y, Khodier C, Inoyama D, Beamer LJ, Emge TJ (2013) Discovery of a small-molecule inhibitor and cellular probe of Keap1–Nrf2 protein–protein interaction. Bioorg Med Chem Lett 23(10):3039–3043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Fu A, Miao Z, Zhang X, Wang T, Kang A, Shan J, Zhu D, Li W (2018) Fluorescent ligand fishing combination with in-situ imaging and characterizing to screen Hsp 90 inhibitors from Curcuma longa L. based on InP/ZnS quantum dots embedded mesoporous nanoparticles. Talanta 178:258–267

    Article  CAS  PubMed  Google Scholar 

  • Huang DC, Strasser A (2000) BH3-only proteins—essential initiators of apoptotic cell death. Cell 103(6):839–842

    Article  CAS  PubMed  Google Scholar 

  • Huang KH, Eaves J, Veal J, Barta T, Geng L, Hinkley L, Hanson G (2006) Tetrahydroindolone and tetrahydroindazolone derivatives. Google Patents

    Google Scholar 

  • Huang Z, Zhang M, Burton SD, Katsakhyan LN, Ji H (2014) Targeting the Tcf4 G13ANDE17 binding site to selectively disrupt β-catenin/T-cell factor protein–protein interactions. ACS Chem Biol 9(1):193–201

    Article  CAS  PubMed  Google Scholar 

  • Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91(1):119–149

    Article  CAS  PubMed  Google Scholar 

  • Hwang SJ, Carlos G, Chou S, Wakade D, Carlino MS, Fernandez-Penas P (2016) Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res 26(4):413–416

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, Takahashi Y (1988) Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci 85(19):7084–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iralde-Lorente L, Tassone G, Clementi L, Franci L, Munier CC, Cau Y, Mori M, Chiariello M, Angelucci A, Perry MW (2020) Identification of phosphate-containing compounds as new inhibitors of 14-3-3/c-Abl protein–protein interaction. ACS Chem Biol 15(4):1026–1035

    Article  CAS  PubMed  Google Scholar 

  • Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3(3):213–217

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AA, Khuri FR, Fu H (2013) Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol Sci 34(7):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Moehle K, Dhanapal B, Obrecht D, Robinson JA (2000) Combinatorial biomimetic chemistry: parallel synthesis of a small library of β-hairpin mimetics based on loop III from human platelet-derived growth factor B. Helv Chim Acta 83(12):3097–3112

    Article  CAS  Google Scholar 

  • Jiang Z-Y, Lu M-C, Xu LL, Yang T-T, Xi M-Y, Xu X-L, Guo X-K, Zhang X-J, You Q-D, Sun H-P (2014) Discovery of potent Keap1–Nrf2 protein–protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem 57(6):2736–2745

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z-Y, Xu LL, Lu M-C, Chen Z-Y, Yuan Z-W, Xu X-L, Guo X-K, Zhang X-J, Sun H-P, You Q-D (2015) Structure–activity and structure–property relationship and exploratory in vivo evaluation of the nanomolar Keap1–Nrf2 protein–protein interaction inhibitor. J Med Chem 58(16):6410–6421

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhuang C, Chen L, Lu J, Dong G, Miao Z, Zhang W, Li J, Sheng C (2017) Structural biology-inspired discovery of novel KRAS–PDEδ inhibitors. J Med Chem 60(22):9400–9406

    Article  CAS  PubMed  Google Scholar 

  • Jiang C-S, Zhuang C-L, Zhu K, Zhang J, Muehlmann LA, Figueiro Longo JP, Azevedo RB, Zhang W, Meng N, Zhang H (2018) Identification of a novel small-molecule Keap1–Nrf2 PPI inhibitor with cytoprotective effects on LPS-induced cardiomyopathy. J Enzyme Inhib Med Chem 33(1):833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, Bronson RT, Umanoff H, Edelmann W, Kucherlapati R (1997) K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev 11(19):2468–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jubb H, Blundell TL, Ascher DB (2015) Flexibility and small pockets at protein–protein interfaces: new insights into druggability. Prog Biophys Mol Biol 119(1):2–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahan R, Worm DJ, de Castro GV, Ng S, Barnard A (2021) Modulators of protein–protein interactions as antimicrobial agents. RSC Chem Biol 2(2):387–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425(6956):407–410

    Article  CAS  PubMed  Google Scholar 

  • Kang H-M, Son K-H, Yang DC, Han D-C, Kim JH, Baek N-I, Kwon B-M (2004) Inhibitory activity of diarylheptanoids on farnesyl protein transferase. Nat Prod Res 18(4):295–299

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Bhardwaj A, Melancon BJ, Blagg BSJ (2019) The succinct synthesis of AT13387, a clinically relevant Hsp90 inhibitor. Synth Commun 49(11):1436–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6(2):114–114

    Article  CAS  PubMed  Google Scholar 

  • Kelekar A, Thompson CB (1998) Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell Biol 8(8):324–330

    Article  CAS  PubMed  Google Scholar 

  • Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger T (2019) Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci 116(32):15823–15829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AR, Ménétrey J (2013) Structural biology of Arf and Rab GTPases’ effector recruitment and specificity. Structure 21(8):1284–1297

    Article  CAS  PubMed  Google Scholar 

  • Kim LS, Kim JH (2011) Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer 14(3):167–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KM, Giedt CD, Basañez G, O’Neill JW, Hill JJ, Han Y-H, Tzung S-P, Zimmerberg J, Hockenbery DM, Zhang KY (2001) Biophysical characterization of recombinant human Bcl-2 and its interactions with an inhibitory ligand, antimycin A. Biochemistry 40(16):4911–4922

    Article  CAS  PubMed  Google Scholar 

  • Kim J-S, Crooks H, Foxworth A, Waldman T (2002) Proof-of-principle: oncogenic β-catenin is a valid molecular target for the development of pharmacological inhibitors 1 supported by NIH Grants K01 CA87828, R55 CA95736, and R01 CA095736 and the Lombardi Cancer Center Support Grant P30 CA51008. TW Is a V Foundation Scholar and the Recipient of a Career Development Award from the American Society of Clinical Oncology. 1. Mol Cancer Ther 1(14):1355–1359

    CAS  PubMed  Google Scholar 

  • Kim J, Kwon J, Kim M, Do J, Lee D, Han H (2016) Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J 48(7):829–834

    Article  CAS  Google Scholar 

  • Kinoshita M, Aburaki S, Umezawa S (1972) Absolute configurations of antimycin lagtones and antimycin A. J Antibiot 25(6):373–376

    Article  CAS  Google Scholar 

  • Kitada S, Leone M, Sareth S, Zhai D, Reed JC, Pellecchia M (2003) Discovery, characterization, and structure–activity relationships studies of proapoptotic polyphenols targeting B-cell lymphocyte/leukemia-2 proteins. J Med Chem 46(20):4259–4264

    Article  CAS  PubMed  Google Scholar 

  • Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L (2019) Helping the released guardian: drug combinations for supporting the anticancer activity of HDM2 (MDM2) antagonists. Cancers 11(7):1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokhan O, Shinkarev VP (2011) All-atom molecular dynamics simulations reveal significant differences in interaction between antimycin and conserved amino acid residues in bovine and bacterial bc1 complexes. Biophys J 100(3):720–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konieczny M, Musielak B, Kocik J, Skalniak L, Sala D, Czub M, Magiera-Mularz K, Rodriguez I, Myrcha M, Stec M, Siedlar M, Holak TA, Plewka J (2020) Di-bromo-based small-molecule inhibitors of the PD-1/PD-L1 immune checkpoint. J Med Chem 63(19):11271–11285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC (1993) Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53(19):4701–4714

    CAS  PubMed  Google Scholar 

  • Kress TR, Sabò A, Amati B (2015) MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 15(10):593–607

    Article  CAS  PubMed  Google Scholar 

  • Krishna P, Gloor G (2001) The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 6(3):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krukenberg KA, Street TO, Lavery LA, Agard DA (2011) Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys 44(2):229–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryeziu K, Bruun J, Guren TK, Sveen A, Lothe RA (2019) Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim Biophys Acta Rev Cancer 1871(2):240–247

    Article  CAS  PubMed  Google Scholar 

  • Kurebayashi J, Otsuki T, Kurosumi M, Soga S, Akinaga S, Sonoo H (2001) A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res 92(12):1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kutzki O, Park HS, Ernst JT, Orner BP, Yin H, Hamilton AD (2002) Development of a potent Bcl-x(L) antagonist based on alpha-helix mimicry. J Am Chem Soc 124(40):11838–11839

    Article  CAS  PubMed  Google Scholar 

  • Kuusk A, Boyd H, Chen H, Ottmann C (2020) Small-molecule modulation of p53 protein–protein interactions. Biol Chem 401(8):921–931. https://doi.org/10.1515/hsz-2019-0405

    Article  CAS  PubMed  Google Scholar 

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. Elsevier

    Book  Google Scholar 

  • Lawson AD, MacCoss M, Baeten DL, Macpherson A, Shi J, Henry AJ (2021) Modulating target protein biology through the re-mapping of conformational distributions using small molecules. Front Chem 9:668186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ (1996) Neurofibrillary tangles of Alzheimer’s disease brains contain 14-3-3 proteins. Neurosci Lett 209(1):57–60

    Article  CAS  PubMed  Google Scholar 

  • Le Brazidec J-Y, Kamal A, Busch D, Thao L, Zhang L, Timony G, Grecko R, Trent K, Lough R, Salazar T (2004) Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J Med Chem 47(15):3865–3873

    Article  PubMed  Google Scholar 

  • Lea MA, Xiao Q, Sadhukhan AK, Cottle S, Wang Z-Y, Yang CS (1993) Inhibitory effects of tea extracts and (−)-epigallocatechin gallate on DNA synthesis and proliferation of hepatoma and erythroleukemia cells. Cancer Lett 68(2–3):231–236

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Boger DL (2009) Synthesis of the chlorofusin cyclic peptide. Tetrahedron 65(16):3281–3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EF, Czabotar PE, Van Delft MF, Michalak EM, Boyle MJ, Willis SN, Puthalakath H, Bouillet P, Colman PM, Huang D (2008a) A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. J Cell Biol 180(2):341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Ryu JS, Jin Y, Kim W, Kaur N, Chung SJ, Jeon Y-J, Park J-T, Bang JS, Lee HS (2008b) Synthesis and anticancer activity of geldanamycin derivatives derived from biosynthetically generated metabolites. Org Biomol Chem 6(2):340–348

    Article  CAS  PubMed  Google Scholar 

  • Lee AC-L, Harris JL, Khanna KK, Hong J-H (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20(10):2383

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KY, Fang Z, Enomoto M, Gasmi-Seabrook G, Zheng L, Koide S, Ikura M, Marshall CB (2020) Two distinct structures of membrane-associated homodimers of GTP-and GDP-bound KRAS4B revealed by paramagnetic relaxation enhancement. Angew Chem Int Ed 59(27):11037–11045

    Article  CAS  Google Scholar 

  • Lei X, Chen Y, Du G, Yu W, Wang X, Qu H, Xia B, He H, Mao J, Zong W, Liao X, Mehrpour M, Hao X, Chen Q (2006) Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J 20(12):2147–2149

    Article  CAS  PubMed  Google Scholar 

  • Leone M, Zhai D, Sareth S, Kitada S, Reed JC, Pellecchia M (2003) Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63(23):8118–8121

    CAS  PubMed  Google Scholar 

  • Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1):91–102

    Article  CAS  PubMed  Google Scholar 

  • Leshchiner ES, Parkhitko A, Bird GH, Luccarelli J, Bellairs JA, Escudero S, Opoku-Nsiah K, Godes M, Perrimon N, Walensky LD (2015) Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proc Natl Acad Sci 112(6):1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2(3):183–192

    Article  CAS  PubMed  Google Scholar 

  • Li C-F, Huang W-W, Wu J-M, Yu S-C, Hu T-H, Uen Y-H, Tian Y-F, Lin C-N, Lu D, Fang F-M (2008) Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the α and β isoforms in gastrointestinal stromal tumors. Clin Cancer Res 14(23):7822–7831

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823(3):730–741

    Article  CAS  PubMed  Google Scholar 

  • Li X-X, Liu R-S, Fang H (2018) Bcl-2: research progress from target to launched drug. Acta Pharm Sin 12:509–517

    Google Scholar 

  • Liao G, Yang D, Ma L, Li W, Hu L, Zeng L, Wu P, Duan L, Liu Z (2018) The development of piperidinones as potent MDM2-P53 protein-protein interaction inhibitors for cancer therapy. Eur J Med Chem 159:1–9

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-L, Juan I-M, Chen Y-L, Liang Y-C, Lin J-K (1996) Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J Agric Food Chem 44(6):1387–1394

    Article  CAS  Google Scholar 

  • Liu W-C, Strong F (1959) The chemistry of antimycin A. VI. separation and properties of antimycin A subcomponents1, 2. J Am Chem Soc 81(16):4387–4390

    Article  CAS  Google Scholar 

  • Liu Y, Wang X, Wang G, Yang Y, Yuan Y, Ouyang L (2019) The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem 176:92–104

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Seeram NP, Ma H (2021) Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int 21(1):239

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo SC, Li X, Henzl MT, Beamer LJ, Hannink M (2006) Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 25(15):3605–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lockwood JL (1953) Production and properties of antimycin A from a new Streptomyces isolate. University of Wisconsin-Madison

    Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, Kipps TJ, Corr M, Carson DA (2004) Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci 101(9):3118–3123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Longo FM, Zhou H, Massa SM, Chen Y-H (2009) Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 16(11):1355–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J (2020a) Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 5(1):1–23

    Google Scholar 

  • Lu M, Zhang X, Zhao J, You Q, Jiang Z (2020b) A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 34:101565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lugovskoy AA, Degterev AI, Fahmy AF, Zhou P, Gross JD, Yuan J, Wagner G (2002) A novel approach for characterizing protein ligand complexes: molecular basis for specificity of small-molecule Bcl-2 inhibitors. J Am Chem Soc 124(7):1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Lutzker SG, Levine AJ (1996) Apoptosis and cancer chemotherapy. Drug Resist 345–356

    Google Scholar 

  • Lyman SK, Crawley SC, Gong R, Adamkewicz JI, McGrath G, Chew JY, Choi J, Holst CR, Goon LH, Detmer SA (2011) High-content, high-throughput analysis of cell cycle perturbations induced by the HSP90 inhibitor XL888. PLoS One 6(3):e17692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma L, Tong Y, Zhou Q, Yang Z, Yan H, Chen Y, Xu R, Pan J, Gou X, Qian W (2021) Discovery of GT19077, a c-Myc/Max protein–protein interaction (PPI) small molecule inhibitor, and GT19506 a c-Myc PROTAC molecule, for targeting c-Myc-driven blood cancers and small cell lung cancers. AACR

    Google Scholar 

  • MacDonald BT, Tamai K, He X (2009) Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magesh S, Chen Y, Hu L (2012) Small molecule modulators of K eap1-N rf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev 32(4):687–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magiera-Mularz K, Skalniak L, Zak KM, Musielak B, Rudzinska-Szostak E, Berlicki L, Kocik J, Grudnik P, Sala D, Zarganes-Tzitzikas T, Shaabani S, Domling A, Dubin G, Holak TA (2017) Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew Chem Int Ed Engl 56(44):13732–13735. https://doi.org/10.1002/anie.201707707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malloy KL, Choi H, Fiorilla C, Valeriote FA, Matainaho T, Gerwick WH (2012) Hoiamide D, a marine cyanobacteria-derived inhibitor of p53/MDM2 interaction. Bioorg Med Chem Lett 22(1):683–688

    Article  CAS  PubMed  Google Scholar 

  • Mancini M, Corradi V, Petta S, Barbieri E, Manetti F, Botta M, Santucci MA (2011) A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib. J Pharmacol Exp Ther 336(3):596–604

    Article  CAS  PubMed  Google Scholar 

  • Marcotte D, Zeng W, Hus J-C, McKenzie A, Hession C, Jin P, Bergeron C, Lugovskoy A, Enyedy I, Cuervo H (2013) Small molecules inhibit the interaction of Nrf2 and the Keap1 Kelch domain through a non-covalent mechanism. Bioorg Med Chem 21(14):4011–4019

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Neckers LM (2003) The C-terminal half of heat shock protein 90 represents a second site for pharmacologic intervention in chaperone function. Curr Cancer Drug Targets 3(5):343–347

    Article  CAS  PubMed  Google Scholar 

  • Marcu MG, Schulte TW, Neckers L (2000) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92(3):242–248

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Jacques-Silva MC, Ganesan L, Umland O, Kenyon NS, Ricordi C, Berggren PO, Buchwald P (2009a) Suramin inhibits the CD40-CD154 costimulatory interaction: a possible mechanism for immunosuppressive effects. Biochem Pharmacol 77(7):1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Umland O, Kenyon NS, Ricordi C, Buchwald P (2009b) Small-molecule costimulatory blockade: organic dye inhibitors of the CD40–CD154 interaction. J Mol Med 87(11):1133

    Article  CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Kenyon NS, Ricordi C, Buchwald P (2010) Effective and specific inhibition of the CD40–CD154 costimulatory interaction by a naphthalenesulphonic acid derivative. Chem Biol Drug Des 76(4):305–313

    Article  CAS  PubMed  Google Scholar 

  • Marshall J, Chen H, Yang D, Figueira M, Bouker KB, Ling Y, Lippman M, Frankel SR, Hayes DF (2004) A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann Oncol 15(8):1274–1283

    Article  CAS  PubMed  Google Scholar 

  • Martín-Gago P, Fansa EK, Klein CH, Murarka S, Janning P, Schurmann M, Metz M, Ismail S, Schultz-Fademrecht C, Baumann M, Bastiaens PI, Wittinghofer A, Waldmann H (2017a) A PDE6delta-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew Chem Int Ed Engl 56(9):2423–2428

    Article  PubMed  Google Scholar 

  • Martín-Gago P, Fansa EK, Wittinghofer A, Waldmann H (2017b) Structure-based development of PDEδ inhibitors. Biol Chem 398(5–6):535–545

    Article  PubMed  Google Scholar 

  • Martín-Gago P, Fansa EK, Klein CH, Murarka S, Janning P, Schürmann M, Metz M, Ismail S, Schultz-Fademrecht C, Baumann M (2017c) A PDE6δ-KRas inhibitor chemotype with up to seven H-bonds and picomolar affinity that prevents efficient inhibitor release by Arl2. Angew Chem 129(9):2463–2468

    Article  Google Scholar 

  • Matulis D, Cikotiene I, Kazlauskas E, Matuliene J (2012) 5-Aryl-4-(5-substituted 2, 4-dihydroxyphenyl)-1, 2, 3-thiadiazoles as inhibitors of HSP90 chaperone and the intermediates for production thereof. Google Patents

    Google Scholar 

  • McCleese JK, Bear MD, Fossey SL, Mihalek RM, Foley KP, Ying W, Barsoum J, London CA (2009) The novel HSP90 inhibitor STA-1474 exhibits biologic activity against osteosarcoma cell lines. Int J Cancer 125(12):2792–2801

    Article  CAS  PubMed  Google Scholar 

  • McDonnell TJ, Deane N, Platt FM, Nunez G, Jaeger U, McKearn JP, Korsmeyer SJ (1989) bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • McErlean CS, Proisy N, Davis CJ, Boland NA, Sharp SY, Boxall K, Slawin AM, Workman P, Moody CJ (2007) Synthetic ansamycins prepared by a ring-expanding Claisen rearrangement. Synthesis and biological evaluation of ring and conformational analogues of the Hsp90 molecular chaperone inhibitor geldanamycin. Org Biomol Chem 5(3):531–546

    Article  CAS  PubMed  Google Scholar 

  • Meabed MH, Taha GM, Mohamed SO, El-Hadidy KS (2007) Autoimmune thrombocytopenia: flow cytometric determination of platelet-associated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology 12(4):301–307

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi S, Peyrat J-F, Brion J-D, Alami M (2011) Heat-shock protein 90 inhibitors as antitumor agents: a survey of the literature from 2005 to 2010. Expert Opin Ther Pat 21(10):1501–1542

    Article  CAS  PubMed  Google Scholar 

  • Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658

    Article  CAS  PubMed  Google Scholar 

  • Mileo A, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici P, Mancuso S, Ferrini U (1990) Selective over-expression of mRNA coding for 90 KDa stress-protein in human ovarian cancer. Anticancer Res 10(4):903–906

    CAS  PubMed  Google Scholar 

  • Miller DM, Thomas SD, Islam A, Muench D, Sedoris K (2012) c-Myc and cancer metabolism. AACR

    Book  Google Scholar 

  • Miller M, Mapelli C, Allen M, Bowsher M, Boy K, Gillis E, Langley D, Mull E, Poirier M, Sanghv N, Sun L, Tenney D, Yeung K, Zhu J, Reid P, Scola P (2014a) Macrocyclic inhibitors of the pd-1/pd-l1 and cd80(b7-1)/pd-l1 protein/protein interactions. WO2014151634A1

    Google Scholar 

  • Miller M, Mapelli C, Allen M, Bowsher M, Gillis E, Langley D, Mull E, Poirier M, Sanghvi N, Sun L, Tenney D, Yeung K, Zhu J, Gillman K, Zhao Q, Grant-Young K, Scola P (2014b) Macrocyclic inhibitors of the pd-1/pd-l1 and cd80 (b7-1)/pd-li protein/protein interactions. WO2016039749A1

    Google Scholar 

  • Milroy LG, Bartel M, Henen MA, Leysen S, Adriaans JM, Brunsveld L, Landrieu I, Ottmann C (2015) Stabilizer-guided inhibition of protein–protein interactions. Angew Chem Int Ed 54(52):15720–15724

    Article  CAS  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271(37):22796–22801

    Article  CAS  PubMed  Google Scholar 

  • Moarefi I, Scheufler C, Hartl U, Brinker A (2003) 3D structure of polypeptides containing a TPR-structure motif with chaperone-binding function, crystals thereof and compounds for inhibition of said polypeptides. Google Patents

    Google Scholar 

  • Modell AE, Blosser SL, Arora PS (2016) Systematic targeting of protein–protein interactions. Trends Pharmacol Sci 37(8):702–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffat D, Baker K, Donald A, Day F (2009) Purine derivatives suitable for the treatment of cancer, autoimmune and inflammatory diseases. WO2009136144

    Google Scholar 

  • Moldoveanu T, Follis AV, Kriwacki RW, Green DR (2014) Many players in BCL-2 family affairs. Trends Biochem Sci 39(3):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenaar M, Van De Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V, Roose J, Destrée O, Clevers H (1996) XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86(3):391–399

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26(15):3453–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore B, Perez V (1967) Specific acidic proteins of the nervous system. In: Carlson FD (ed) Physiological and biochemical aspects of nervous integration. Prentice Hall, Englewood Cliffs, pp 343–359

    Google Scholar 

  • Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein–protein interface determinant amino-acid residues. Proteins 68(4):803–812

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW (1997) Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275(5307):1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Morrow JK (2018) Discovery and effects of pharmacological inhibition of the E3 ligase Skp2 by small molecule protein–protein interaction disruptors

    Google Scholar 

  • Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, DaGama EMG, Caldas-Lopes E, Beebe K, Perna F, Hatzi K (2011) Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol 7(11):818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moulin E, Barluenga S, Winssinger N (2005) Concise synthesis of pochonin A, an HSP90 inhibitor. Org Lett 7(25):5637–5639

    Article  CAS  PubMed  Google Scholar 

  • Murarka S, Martin-Gago P, Schultz-Fademrecht C, Al Saabi A, Baumann M, Fansa EK, Ismail S, Nussbaumer P, Wittinghofer A, Waldmann H (2017) Development of pyridazinone chemotypes targeting the PDEdelta prenyl-binding site. Chemistry 23(25):6083–6093

    Article  CAS  PubMed  Google Scholar 

  • Naidoo J, Page D, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok J (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26(12):2375–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair SK, Burley SK (2003) X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 112(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Najjar A, Karaman R (2019) The prodrug approach in the era of drug design. Expert Opin Drug Deliv 16(1):1–5

    Article  PubMed  Google Scholar 

  • Nanbu K, Konishi I, Komatsu T, Mandai M, Yamamoto S, Kuroda H, Koshiyama M, Mori T (1996) Expression of heat shock proteins HSP70 and HSP90 in endometrial carcinomas: correlation with clinicopathology, sex steroid receptor status, and p53 protein expression. Cancer 77(2):330–338

    Article  CAS  PubMed  Google Scholar 

  • Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18(1):64–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neckers L, Schulte TW, Mimnaugh E (1999) Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Investig New Drugs 17(4):361–373

    Article  CAS  Google Scholar 

  • Nevola L, Giralt E (2015) Modulating protein–protein interactions: the potential of peptides. Chem Commun 51(16):3302–3315

    Article  CAS  Google Scholar 

  • Norrild J, Lauritsen A, Björkling F, Vadlamudi S (2009) 4-Substituted-6-isopropyl-benzene-1,3-diol compounds and their use. WO2009066060

    Google Scholar 

  • O’Sullivan B, Thomas R (2003) Recent advances on the role of CD40 and dendritic cells in immunity and tolerance. Curr Opin Hematol 10(4):272–278

    Article  PubMed  Google Scholar 

  • Oflazoglu E, Stone I, Brown L, Gordon K, Van Rooijen N, Jonas M, Law C, Grewal I, Gerber H (2009) Macrophages and Fc-receptor interactions contribute to the antitumour activities of the anti-CD40 antibody SGN-40. Br J Cancer 100(1):113–117

    Article  CAS  PubMed  Google Scholar 

  • Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R (1998) Redundant regulation of T cell differentiation and TCRα gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435(7042):677–681

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan B, Tong KI, Ohta T, Nakamura Y, Scharlock M, Ohtsuji M, Kang M-I, Kobayashi A, Yokoyama S, Yamamoto M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21(5):689–700

    Article  CAS  PubMed  Google Scholar 

  • Pamukcu B, Lip GY, Snezhitskiy V, Shantsila E (2011) The CD40-CD40L system in cardiovascular disease. Ann Med 43(5):331–340

    Article  CAS  PubMed  Google Scholar 

  • Papke B, Der CJ (2017) Drugging RAS: know the enemy. Science 355(6330):1158–1163

    Article  CAS  PubMed  Google Scholar 

  • Papke B, Murarka S, Vogel HA, Martin-Gago P, Kovacevic M, Truxius DC, Fansa EK, Ismail S, Zimmermann G, Heinelt K, Schultz-Fademrecht C, Al Saabi A, Baumann M, Nussbaumer P, Wittinghofer A, Waldmann H, Bastiaens PI (2016) Identification of pyrazolopyridazinones as PDEdelta inhibitors. Nat Commun 7:11360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C-M, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, Marsh KC, Nimmer P, Shoemaker AR, Song X (2008) Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem 51(21):6902–6915

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Borin BN, Martinez-Yamout MA, Dyson HJ (2011a) The client protein p53 adopts a molten globule–like state in the presence of Hsp90. Nat Struct Mol Biol 18(5):537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Kostic M, Dyson HJ (2011b) Dynamic interaction of Hsp90 with its client protein p53. J Mol Biol 411(1):158–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HK, Yoon NG, Lee JE, Hu S, Yoon S, Kim SY, Hong JH, Nam D, Chae YC, Park JB, Kang BH (2020) Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1. Exp Mol Med 52(1):79–91. https://doi.org/10.1038/s12276-019-0360-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DJ, LaFrance LV, Calvo RR, Milkiewicz KL, Gupta V, Lattanze J, Ramachandren K, Carver TE, Petrella EC, Cummings MD (2005) 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2–p53 interaction: discovery and SAR. Bioorg Med Chem Lett 15(3):765–770

    Article  CAS  PubMed  Google Scholar 

  • Patgiri A, Yadav KK, Arora PS, Bar-Sagi D (2011) An orthosteric inhibitor of the Ras-Sos interaction. Nat Chem Biol 7(9):585–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl LH (2005) Hsp90 and Cdc37–a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410(3):439–453

    Article  CAS  PubMed  Google Scholar 

  • Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci 9(12):2528–2534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petros AM, Olejniczak ET, Fesik SW (2004) Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta 1644(2–3):83–94

    Article  CAS  PubMed  Google Scholar 

  • Petta I, Lievens S, Libert C, Tavernier J, De Bosscher K (2016) Modulation of protein–protein interactions for the development of novel therapeutics. Mol Ther 24(4):707–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers MV, Workman P (2007) Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 581(19):3758–3769

    Article  CAS  PubMed  Google Scholar 

  • Poy F, Lepourcelet M, Shivdasani RA, Eck MJ (2001) Structure of a human Tcf4–β-catenin complex. Nat Struct Biol 8(12):1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872

    Article  CAS  PubMed  Google Scholar 

  • Prodromou C, Piper PW, Pearl LH (1996) Expression and crystallization of the yeast Hsp82 chaperone, and preliminary x-ray diffraction studies of the amino-terminal domain. Proteins 25(4):517–522

    CAS  PubMed  Google Scholar 

  • Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Proisy N, Sharp SY, Boxall K, Connelly S, Roe SM, Prodromou C, Slawin AM, Pearl LH, Workman P, Moody CJ (2006) Inhibition of Hsp90 with synthetic macrolactones: synthesis and structural and biological evaluation of ring and conformational analogs of radicicol. Chem Biol 13(11):1203–1215

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, Strasser A (2002) Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9(5):505–512

    Article  CAS  PubMed  Google Scholar 

  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian C, Cai X, Gould S (2009) Quinazoline-based EGFR inhibitors containing a zinc-binding moiety. Google Patents

    Google Scholar 

  • Rajan A, Kelly RJ, Trepel JB, Kim YS, Alarcon SV, Kummar S, Gutierrez M, Crandon S, Zein WM, Jain L (2011) A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res 17(21):6831–6839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S, Fernandez-Luna JL (2004) Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res 64(21):7947–7953

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1994) Bcl-2 and the regulation of programmed cell death. J Cell Biol 124(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Rew Y, Sun D, Gonzalez-Lopez De Turiso F, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Deignan J, Fox BM (2012) Structure-based design of novel inhibitors of the MDM2–p53 interaction. J Med Chem 55(11):4936–4954

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42(2):260–266

    Article  CAS  PubMed  Google Scholar 

  • Rudin CM, Hann CL, Garon EB, De Oliveira MR, Bonomi PD, Camidge DR, Chu Q, Giaccone G, Khaira D, Ramalingam SS (2012) Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer. Clin Cancer Res 18(11):3163–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruxer J-M, Certal V, Alasia M, Bertin L, Minoux H, Mailliet P, Halley F, Mendez-Perez M (2012) HSP90 inhibitory carbazole derivatives, compositions containing same and use thereof. Google Patents

    Google Scholar 

  • Ryan DP, Matthews JM (2005) Protein–protein interactions in human disease. Curr Opin Struct Biol 15(4):441–446

    Article  CAS  PubMed  Google Scholar 

  • Sabo A, Kress TR, Pelizzola M, De Pretis S, Gorski MM, Tesi A, Morelli MJ, Bora P, Doni M, Verrecchia A (2014) Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511(7510):488–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T, Takeda M (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108(1):33–43

    Article  CAS  PubMed  Google Scholar 

  • Salim H, Song J, Sahni A, Pei D (2020) Development of a cell-permeable cyclic peptidyl inhibitor against the Keap1-Nrf2 interaction. J Org Chem 85(3):1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Sampietro J, Dahlberg CL, Cho US, Hinds TR, Kimelman D, Xu W (2006) Crystal structure of a β-catenin/BCL9/Tcf4 complex. Mol Cell 24(2):293–300

    Article  CAS  PubMed  Google Scholar 

  • Sang P, Shi Y, Lu J, Chen L, Yang L, Borcherds W, Abdulkadir S, Li Q, Daughdrill G, Chen J (2020) α-Helix-mimicking sulfono-γ-AApeptide inhibitors for p53–MDM2/MDMX protein–protein interactions. J Med Chem 63(3):975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasiela CA, Stewart DH, Kitagaki J, Safiran YJ, Yang Y, Weissman AM, Oberoi P, Davydov IV, Goncharova E, Beutler JA (2008) Identification of inhibitors for MDM2 ubiquitin ligase activity from natural product extracts by a novel high-throughput electrochemiluminescent screen. J Biomol Screen 13(3):229–237

    Article  CAS  PubMed  Google Scholar 

  • Sasikumar P, Ramachandra M, VadlamaniK S, Shrimali R, Subbarao K (2011) Therapeutic compounds for immunomodulation. WO2012168944A1

    Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275(5302):983–986

    Article  CAS  PubMed  Google Scholar 

  • Sausville EA, Tomaszewski JE, Ivy P (2003) Clinical development of 17-allylamino, 17-demethoxygeldanamycin. Curr Cancer Drug Targets 3(5):377–383

    Article  CAS  PubMed  Google Scholar 

  • Scaltriti M, Dawood S, Cortes J (2012) Molecular pathways: targeting hsp90—who benefits and who does not. Clin Cancer Res 18(17):4508–4513

    Article  CAS  PubMed  Google Scholar 

  • Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, Hartl FU, Moarefi I (2000) Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Schmick M, Vartak N, Papke B, Kovacevic M, Truxius DC, Rossmannek L, Bastiaens PI (2014) KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport. Cell 157(2):459–471

    Article  CAS  PubMed  Google Scholar 

  • Schmitt CA, Lowe SW (1999) Apoptosis and therapy. J Pathol 187(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Schnur RC, Corman ML (1994) Tandem [3, 3]-sigmatropic rearrangements in an ansamycin: stereospecific conversion of an (S)-allylic alcohol to an (S)-allylic amine derivative. J Org Chem 59(9):2581–2584

    Article  CAS  Google Scholar 

  • Schnur R, Corman M, Gallaschun R, Cooper B, Dee M, Doty J, Muzzi M, Moyer J, DiOrio C (1995) Inhibition of the oncogene product p185erbB-2 in vitro and in vivo by geldanamycin and dihydrogeldanamycin derivatives. J Med Chem 38(19):3806–3812

    Article  CAS  PubMed  Google Scholar 

  • Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18(6):345–360

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Neick I, Luther Y-C, Ewert P, Lehmkuhl HB, Hetzer R, Lange PE (2004) End-stage heart failure with pulmonary hypertension: levosimendan to evaluate for heart transplantation alone versus combined heart-lung transplantation. Transplantation 78(8):1237–1238

    Article  PubMed  Google Scholar 

  • Scott DE, Bayly AR, Abell C, Skidmore J (2016) Small molecules, big targets: drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 15(8):533–550

    Article  CAS  PubMed  Google Scholar 

  • Sellers RP, Alexander LD, Johnson VA, Lin C-C, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR (2010) Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 18(18):6822–6856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senhaji N, Kojok K, Darif Y, Fadainia C, Zaid Y (2015) The contribution of CD40/CD40L axis in inflammatory bowel disease: an update. Front Immunol 6:529

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaginian A, Whitby LR, Hong S, Hwang I, Farooqi B, Searcey M, Chen J, Vogt PK, Boger DL (2009) Design, synthesis, and evaluation of an alpha-helix mimetic library targeting protein-protein interactions. J Am Chem Soc 131(15):5564–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J (2008) Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proc Natl Acad Sci 105(10):3933–3938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankaramma SC, Athanassiou Z, Zerbe O, Moehle K, Mouton C, Bernardini F, Vrijbloed JW, Obrecht D, Robinson JA (2002) Macrocyclic hairpin mimetics of the cationic antimicrobial peptide protegrin I: a new family of broad-spectrum antibiotics. Chembiochem 3(11):1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Sharp SY, Prodromou C, Boxall K, Powers MV, Holmes JL, Box G, Matthews TP, Cheung KM, Kalusa A, James K, Hayes A, Hardcastle A, Dymock B, Brough PA, Barril X, Cansfield JE, Wright L, Surgenor A, Foloppe N, Hubbard RE, Aherne W, Pearl L, Jones K, McDonald E, Raynaud F, Eccles S, Drysdale M, Workman P (2007) Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther 6(4):1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Blagg BS (2005) Radester, a novel inhibitor of the Hsp90 protein folding machinery. Org Lett 7(11):2157–2160

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Van de Water R, Hong K, Lamer RB, Weichert KW, Sandoval CM, Kasibhatla SR, Boehm MF, Chao J, Lundgren K (2012) EC144 is a potent inhibitor of the heat shock protein 90. J Med Chem 55(17):7786–7795

    Article  CAS  PubMed  Google Scholar 

  • Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127(2):329–340

    Article  CAS  PubMed  Google Scholar 

  • Shimamura T, Perera SA, Foley KP, Sang J, Rodig SJ, Inoue T, Chen L, Li D, Carretero J, Li YC, Sinha P, Carey CD, Borgman CL, Jimenez JP, Meyerson M, Ying W, Barsoum J, Wong KK, Shapiro GI (2012) Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer. Clin Cancer Res 18(18):4973–4985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin W-H, Kumazawa K, Imai K, Hirokawa T, Kihara D (2020) Current challenges and opportunities in designing protein–protein interaction targeted drugs. Adv Appl Bioinform Chem 13:11

    PubMed  PubMed Central  Google Scholar 

  • Shiotsu Y, Neckers LM, Wortman I, An WG, Schulte TW, Soga S, Murakata C, Tamaoki T, Akinaga S (2000) Novel oxime derivatives of radicicol induce erythroid differentiation associated with preferential G1 phase accumulation against chronic myelogenous leukemia cells through destabilization of Bcr-Abl with Hsp90 complex. Blood 96(6):2284–2291

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2008) Extracellular HSP90: conquering the cell surface. Cell Cycle 7(11):1564–1568

    Article  CAS  PubMed  Google Scholar 

  • Sidera K, Patsavoudi E (2014) HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov 9(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Silke J, Vaux DL (1998) Cell death: shadow baxing. Curr Biol 8(15):R528–R531

    Article  CAS  PubMed  Google Scholar 

  • Silverstein AM, Grammatikakis N, Cochran BH, Chinkers M, Pratt WB (1998) p50cdc37 binds directly to the catalytic domain of Raf as well as to a site on hsp90 that is topologically adjacent to the tetratricopeptide repeat binding site. J Biol Chem 273(32):20090–20095

    Article  CAS  PubMed  Google Scholar 

  • Sims JD, McCready J, Jay DG (2011) Extracellular heat shock protein (Hsp) 70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 6(4):e18848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar A, Kumar P, Nayak N, Bhardwaj T, Giri R, Garg N (2021) A novel inhibitor L755507 efficiently blocks c-Myc-MAX heterodimerization and induces apoptosis in cancer cells. J Biol Chem 297(1):100903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaar JR, Pagan JK, Pagano M (2013) Mechanisms and function of substrate recruitment by F-box proteins. Nat Rev Mol Cell Biol 14(6):369–381

    Article  CAS  PubMed  Google Scholar 

  • Skaar JR, Pagan JK, Pagano M (2014) SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov 13(12):889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluchanko NN, Seit-Nebi AS, Gusev NB (2009) Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3ζ. FEBS Lett 583(17):2739–2742

    Article  CAS  PubMed  Google Scholar 

  • Smith MC, Gestwicki JE (2012) Features of protein–protein interactions that translate into potent inhibitors: topology, surface area and affinity. Expert Rev Mol Med 14:e16

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JR, Clarke PA, de Billy E, Workman P (2009) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Smyth T, Van Looy T, Curry JE, Rodriguez-Lopez AM, Wozniak A, Zhu M, Donsky R, Morgan JG, Mayeda M, Fletcher JA, Schoffski P, Lyons J, Thompson NT, Wallis NG (2012) The HSP90 inhibitor, AT13387, is effective against imatinib-sensitive and -resistant gastrointestinal stromal tumor models. Mol Cancer Ther 11(8):1799–1808. https://doi.org/10.1158/1535-7163.MCT-11-1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F (2018) Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 378(24):2288–2301

    Article  CAS  PubMed  Google Scholar 

  • Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3(5):359–369

    Article  CAS  PubMed  Google Scholar 

  • Solit DB, Scher HI, Rosen N (2003) Hsp90 as a therapeutic target in prostate cancer. In: Seminars in oncology, vol 5. Elsevier, pp 709–716

    Google Scholar 

  • Söti C, Rácz A, Csermely P (2002) A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90: N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277(9):7066–7075

    Article  PubMed  Google Scholar 

  • Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ (2013) ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 19(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90–geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Stellas D, Karameris A, Patsavoudi E (2007) Monoclonal antibody 4C5 immunostains human melanomas and inhibits melanoma cell invasion and metastasis. Clin Cancer Res 13(6):1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Stellas D, El Hamidieh A, Patsavoudi E (2010) Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol 11(1):1–9

    Article  Google Scholar 

  • Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J (2017) Modulators of 14-3-3 protein–protein interactions. J Med Chem 61(9):3755–3778

    Article  PubMed  PubMed Central  Google Scholar 

  • Stites WE (1997) Protein–protein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97(5):1233–1250

    Article  CAS  PubMed  Google Scholar 

  • Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD, Carrasco DE, Zheng M, He H, Tai Y-T (2007) Targeting the β-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci 104(18):7516–7521

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun H-P, Jiang Z-Y, Zhang M-Y, Lu M-C, Yang T-T, Pan Y, Huang H-Z, Zhang X-J, You Q-d (2014) Novel protein–protein interaction inhibitor of Nrf2–Keap1 discovered by structure-based virtual screening. MedChemComm 5(1):93–98

    Article  CAS  Google Scholar 

  • Taveras A, Remiszewski S, Doll R, Cesarz D, Huang E, Kirschmeier P, Pramanik B, Snow M, Wang Y-S, Del Rosario J (1997) Ras oncoprotein inhibitors: the discovery of potent, ras nucleotide exchange inhibitors and the structural determination of a drug-protein complex. Bioorg Med Chem 5(1):125–133

    Article  CAS  PubMed  Google Scholar 

  • Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99(2):67–86

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F (1999) β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426

    Article  CAS  PubMed  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267(5203):1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Tian Z-Q, Liu Y, Zhang D, Wang Z, Dong SD, Carreras CW, Zhou Y, Rastelli G, Santi DV, Myles DC (2004) Synthesis and biological activities of novel 17-aminogeldanamycin derivatives. Bioorg Med Chem 12(20):5317–5329

    Article  CAS  PubMed  Google Scholar 

  • Tian Z-Q, Wang Z, MacMillan KS, Zhou Y, Carreras CW, Mueller T, Myles DC, Liu Y (2009) Potent cytotoxic C-11 modified geldanamycin analogues. J Med Chem 52(10):3265–3273

    Article  CAS  PubMed  Google Scholar 

  • Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N, Luo G, Li YM, Han X, Huang Z, An J (2012) Structure-based discovery of a novel inhibitor targeting the beta-catenin/Tcf4 interaction. Biochemistry 51(2):724–731. https://doi.org/10.1021/bi201428h

    Article  CAS  PubMed  Google Scholar 

  • Tisi R, Gaponenko V, Vanoni M, Sacco E (2020) Natural products attenuating biosynthesis, processing, and activity of ras oncoproteins: state of the art and future perspectives. Biomol Ther 10(11):1535

    CAS  Google Scholar 

  • Tkachev V, Menshchikova E, Zenkov N (2011) Mechanism of the Nrf2/Keap1/ARE signaling system. Biochem Mosc 76(4):407–422

    Article  CAS  Google Scholar 

  • Tovar C, Graves B, Packman K, Filipovic Z, Xia BHM, Tardell C, Garrido R, Lee E, Kolinsky K, To K-H (2013) MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res 73(8):2587–2597

    Article  CAS  PubMed  Google Scholar 

  • Trendowski M (2015) PU-H71: An improvement on nature’s solutions to oncogenic Hsp90 addiction. Pharmacol Res 99:202–216. https://doi.org/10.1016/j.phrs.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  • Trosset JY, Dalvit C, Knapp S, Fasolini M, Veronesi M, Mantegani S, Gianellini LM, Catana C, Sundstrom M, Stouten PF, Moll JK (2006) Inhibition of protein-protein interactions: the discovery of druglike beta-catenin inhibitors by combining virtual and biophysical screening. Proteins 64(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, Johnson EF, Marsh KC, Mitten MJ, Nimmer P (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto S, Yoshida T, Hosono H, Ohta T, Yokosawa H (2006) Hexylitaconic acid: a new inhibitor of p53–HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp. Bioorg Med Chem Lett 16(1):69–71

    Article  CAS  PubMed  Google Scholar 

  • Tzung S-P, Kim KM, Basañez G, Giedt CD, Simon J, Zimmerberg J, Zhang KY, Hockenbery DM (2001) Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat Cell Biol 3(2):183–191

    Article  CAS  PubMed  Google Scholar 

  • Vallee F, Carrez C, Pilorge F, Dupuy A, Parent A, Bertin L, Thompson F, Ferrari P, Fassy F, Lamberton A, Thomas A, Arrebola R, Guerif S, Rohaut A, Certal V, Ruxer JM, Gouyon T, Delorme C, Jouanen A, Dumas J, Grepin C, Combeau C, Goulaouic H, Dereu N, Mikol V, Mailliet P, Minoux H (2011) Tricyclic series of heat shock protein 90 (Hsp90) inhibitors part I: discovery of tricyclic imidazo[4,5-c]pyridines as potent inhibitors of the Hsp90 molecular chaperone. J Med Chem 54(20):7206–7219

    Article  CAS  PubMed  Google Scholar 

  • Van Kooten C (2000) Immune regulation by CD40-CD40-l interactions-2; Y2K update. Front Biosci 5(1):D880–D693

    Article  PubMed  Google Scholar 

  • Vasko RC, Rodriguez RA, Cunningham CN, Ardi VC, Agard DA, McAlpine SR (2010) Mechanistic studies of Sansalvamide A-amide: an allosteric modulator of Hsp90. ACS Med Chem Lett 1(1):4–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  • Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, Robinson CV, Saibil HR, Pearl LH (2006) Structure of an hsp90-cdc37-cdk4 complex. Mol Cell 23(5):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335(6189):440–442

    Article  CAS  PubMed  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7(12):979–987

    Article  CAS  PubMed  Google Scholar 

  • Vázquez J, López M, Gibert E, Herrero E, Luque FJ (2020) Merging ligand-based and structure-based methods in drug discovery: an overview of combined virtual screening approaches. Molecules 25(20):4723

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira HL, Boya P, Cohen I, El Hamel C, Haouzi D, Druillenec S, Belzacq AS, Brenner C, Roques B, Kroemer G (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21(13):1963–1977

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310

    Article  CAS  PubMed  Google Scholar 

  • Vogler M, Dinsdale D, Dyer MJ, Cohen GM (2009) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16(3):360–367

    Article  CAS  PubMed  Google Scholar 

  • von Kries JP, Winbeck G, Asbrand C, Schwarz-Romond T, Sochnikova N, Dell’Oro A, Behrens J, Birchmeier W (2000) Hot spots in β-catenin for interactions with LEF-1, conductin and APC. Nat Struct Biol 7(9):800–807

    Article  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8(4):275–283

    Article  CAS  PubMed  Google Scholar 

  • Vu B, Wovkulich P, Pizzolato G, Lovey A, Ding Q, Jiang N, Liu J-J, Zhao C, Glenn K, Wen Y (2013) Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett 4(5):466–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukovic V, Teofilovici F (2012) HSP90 inhibitors for treating non-small cell lung cancer in wild-type EGFR and/or KRAS patients. Google Patents

    Google Scholar 

  • Wagner DH, Vaitaitis G, Sanderson R, Poulin M, Dobbs C, Haskins K (2002) Expression of CD40 identifies a unique pathogenic T cell population in type 1 diabetes. Proc Natl Acad Sci 99(6):3782–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305(5689):1466–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J, Smith E, Verdine GL, Korsmeyer SJ (2006) A stapled BID BH3 helix directly binds and activates BAX. Mol Cell 24(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Yin X-M, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10(22):2859–2869

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Yang H, Liu Y-C, Jelinek T, Zhang L, Ruoslahti E, Fu H (1999) Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 38(38):12499–12504

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z (2000) Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci U S A 97(13):7124–7129. https://doi.org/10.1073/pnas.97.13.7124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Nikolovska-Coleska Z, Yang C-Y, Wang R, Tang G, Guo J, Shangary S, Qiu S, Gao W, Yang D (2006) Structure-based design of potent small-molecule inhibitors of anti-apoptotic Bcl-2 proteins. J Med Chem 49(21):6139–6142

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Barluenga S, Koripelly GK, Fontaine J-G, Chen R, Yu J-C, Shen X, Chabala JC, Heck JV, Rubenstein A (2009) Synthesis of pochoxime prodrugs as potent HSP90 inhibitors. Bioorg Med Chem Lett 19(14):3836–3840

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-L, Qian W-J, Wei W-G, Zhang Y, Yao Z-J (2010) Synthesis of the cyclic nonapeptide of chlorofusin using a convergent [3+ 3+ 3]-fragment coupling strategy. Tetrahedron 66(19):3427–3432

    Article  CAS  Google Scholar 

  • Wang L, Li L, Gu K, Xu X-L, Sun Y, You Q-D (2017) Targeting Hsp90-Cdc37: a promising therapeutic strategy by inhibiting Hsp90 chaperone function. Curr Drug Targets 18(13):1572–1585

    Article  CAS  PubMed  Google Scholar 

  • Wang X-N, Su X-X, Cheng S-Q, Sun Z-Y, Huang Z-S, Ou T-M (2019a) MYC modulators in cancer: A patent review. Expert Opin Ther Pat 29(5):353–367

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Zhang M, Wang J, Ji H (2019b) Optimization of peptidomimetics as selective inhibitors for the β-catenin/T-cell factor protein–protein interaction. J Med Chem 62(7):3617–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber BN, Chi AW-S, Chavez A, Yashiro-Ohtani Y, Yang Q, Shestova O, Bhandoola A (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476(7358):63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14(16):2060–2071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Kitada S, Rega MF, Emdadi A, Yuan H, Cellitti J, Stebbins JL, Zhai D, Sun J, Yang L, Dahl R, Zhang Z, Wu B, Wang S, Reed TA, Wang HG, Lawrence N, Sebti S, Reed JC, Pellecchia M (2009) Apogossypol derivatives as antagonists of antiapoptotic Bcl-2 family proteins. Mol Cancer Ther 8(4):904–913. https://doi.org/10.1158/1535-7163.MCT-08-1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells G (2015) Peptide and small molecule inhibitors of the Keap1–Nrf2 protein–protein interaction. Biochem Soc Trans 43(4):674–679

    Article  CAS  PubMed  Google Scholar 

  • Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450(7172):1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Westlake T, Sun M, Rosenblum BC, Zhuang Z, Rosenblum JS (2019) Targeting Hsp-90 related disease entities for therapeutic development. In: Heat shock protein 90 in human diseases and disorders. Springer, pp 201–215

    Chapter  Google Scholar 

  • Woodhead AJ, Angove H, Carr MG, Chessari G, Congreve M, Coyle JE, Cosme J, Graham B, Day PJ, Downham R, Fazal L, Feltell R, Figueroa E, Frederickson M, Lewis J, McMenamin R, Murray CW, O’Brien MA, Parra L, Patel S, Phillips T, Rees DC, Rich S, Smith DM, Trewartha G, Vinkovic M, Williams B, Woolford AJ (2010) Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydrois oindol-2-yl]methanone (AT13387), a novel inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J Med Chem 53(16):5956–5969

    Article  CAS  PubMed  Google Scholar 

  • Woon EC, Arcieri M, Wilderspin AF, Malkinson JP, Searcey M (2007) Solid-phase synthesis of chlorofusin analogues. J Org Chem 72(14):5146–5151

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Burrows F, Neckers L, Rosen N (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 1113(1):202–216

    Article  CAS  PubMed  Google Scholar 

  • Xing C, Wang L, Tang X, Sham YY (2007) Development of selective inhibitors for anti-apoptotic Bcl-2 proteins from BHI-1. Bioorg Med Chem 15(5):2167–2176

    Article  CAS  PubMed  Google Scholar 

  • Xiong C, Changgeng Q, Haixiao Z (2008) Fused amino pyridine as HSP90 inhibitors. WO2008115719A1

    Google Scholar 

  • Xu H, Shi Y, Wang J, Jones D, Weilrauch D, Ying R, Wakim B, Pritchard KA Jr (2007) A heat shock protein 90 binding domain in endothelial nitric-oxide synthase influences enzyme function. J Biol Chem 282(52):37567–37574

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Garbaccio RM, Stachel SJ, Solit DB, Chiosis G, Rosen N, Danishefsky SJ (2003) Total synthesis as a resource in the discovery of potentially valuable antitumor agents: cycloproparadicicol. Angew Chem 115(11):1318–1322

    Article  Google Scholar 

  • Yang Z-Q, Geng X, Solit D, Pratilas CA, Rosen N, Danishefsky SJ (2004) New efficient synthesis of resorcinylic macrolides via ynolides: establishment of cycloproparadicicol as synthetically feasible preclinical anticancer agent based on Hsp90 as the target. J Am Chem Soc 126(25):7881–7889

    Article  CAS  PubMed  Google Scholar 

  • Yang R-Y, Ali SM, Ashwell MA, Kelleher E, Palma R, Westlund N (2011) Substituted tetrazole compounds and uses thereof. Google Patents

    Google Scholar 

  • Yeung K, Connolly T, Frennesson D, Grant-Young K, Hewawasam P, Langley D, Meng Z, Mull E, Parcella K, Saulnier M, Sun L, Wang A, Xu N, Zhu J, Scola P (2016) Compounds useful as immunomodulators. WO2017066227A1

    Google Scholar 

  • Yeung K, Grant-Young K, Zhu J, Frennesson D, Langley D, Hewawasam P, Wang T, Zhang Z, Meng Z, Sun L, Mull E, Scola P (2017a) Biaryl compounds useful as immunomodulators. WO2018044963A1

    Google Scholar 

  • Yeung K, Grant-Young K, Zhu J, Saulnier M, Frennesson D, Meng Z, Scola P (2017b) 1,3-Dihydroxy-phenyl derivatives useful as immunomodulators. WO2018009505A1

    Google Scholar 

  • Yeung K, St. Laurent DR, Romine J, Scola P (2018) Substituted isoquionline derivatives as immunomudulators. WO2018183171A1

    Google Scholar 

  • Yi F, Zhu P, Southall N, Inglese J, Austin CP, Zheng W, Regan L (2009) An AlphaScreenTM-based high-throughput screen to identify inhibitors of Hsp90-cochaperone interaction. J Biomol Screen 14(3):273–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Gi L, Park HS, Payne GA, Rodriguez JM, Sebti SM, Hamilton AD (2005) Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew Chem 117(18):2764–2767

    Article  Google Scholar 

  • Yu XM, Shen G, Neckers L, Blake H, Holzbeierlein J, Cronk B, Blagg BS (2005) Hsp90 inhibitors identified from a library of novobiocin analogues. J Am Chem Soc 127(37):12778–12779

    Article  CAS  PubMed  Google Scholar 

  • Yu B, Huang Z, Zhang M, Dillard DR, Ji H (2013) Rational design of small-molecule inhibitors for β-catenin/T-cell factor protein–protein interactions by bioisostere replacement. ACS Chem Biol 8(3):524–529

    Article  CAS  PubMed  Google Scholar 

  • Zak KM, Kitel R, Przetocka S, Golik P, Guzik K, Musielak B, Domling A, Dubin G, Holak TA (2015) Structure of the complex of human programmed death 1, PD-1, and its ligand PD-L1. Structure 23(12):2341–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng M, Lu J, Li L, Feru F, Quan C, Gero TW, Ficarro SB, Xiong Y, Ambrogio C, Paranal RM (2017) Potent and selective covalent quinazoline inhibitors of KRAS G12C. Cell Chem Biol 24(8):1005–1016, e1003

    Article  CAS  PubMed  Google Scholar 

  • Zhan W, Hu X, Yi J, An Q, Huang X (2015) Inhibitory activity of apogossypol in human prostate cancer in vitro and in vivo. Mol Med Rep 11(6):4142–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38(4):769–789

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD (2010) The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid Redox Signal 13(11):1623–1626

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Du-Cuny L (2009) Development and evaluation of a new statistical model for structure-based high-throughput virtual screening. Int J Bioinforma Res Appl 5(3):269–279

    Article  CAS  Google Scholar 

  • Zhang Y, Wang W (2018) Small-molecule inhibitors for the β-catenin/T cell factor protein-protein interaction. In: Targeting protein-protein interactions by small molecules. Springer, pp 239–248

    Chapter  Google Scholar 

  • Zhang Y-H, Bhunia A, Wan KF, Lee MC, Chan S-L, Yu VC-K, Mok Y-K (2006) Chelerythrine and sanguinarine dock at distinct sites on BclXL that are not the classic BH3 binding cleft. J Mol Biol 364(3):536–549

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li S, Doan T, Rieke F, Detwiler P, Frederick J, Baehr W (2007) Deletion of PrBP/δ impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc Natl Acad Sci 104(21):8857–8862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008) DOVIS: an implementation for high-throughput virtual screening using AutoDock. BMC Bioinformatics 9(1):1–4

    Article  Google Scholar 

  • Zhang S, Lou J, Li Y, Zhou F, Yan Z, Lyu X, Zhao Y (2021) Recent progress and clinical development of inhibitors that block MDM4/p53 protein–protein interactions. J Med Chem 64:10621

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y, Zhang X, Du L, Li M, Wang B, Zhang L, Barbieri JT, Khuri FR, Cheng X, Fu H (2011) Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Proc Natl Acad Sci U S A 108(39):16212–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M (2002) Structure of the Cul1–Rbx1–Skp1–F box Skp2 SCF ubiquitin ligase complex. Nature 416(6882):703–709

    Article  CAS  PubMed  Google Scholar 

  • Zhuang C, Narayanapillai S, Zhang W, Sham YY, Xing C (2014) Rapid identification of Keap1–Nrf2 small-molecule inhibitors through structure-based virtual screening and hit-based substructure search. J Med Chem 57(3):1121–1126

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G, Papke B, Ismail S, Vartak N, Chandra A, Hoffmann M, Hahn SA, Triola G, Wittinghofer A, Bastiaens PI (2013) Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature 497(7451):638–642

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann G, Schultz-Fademrecht C, Küchler P, Murarka S, Ismail S, Triola G, Nussbaumer P, Wittinghofer A, Waldmann H (2014) Structure-guided design and kinetic analysis of highly potent benzimidazole inhibitors targeting the PDEδ prenyl binding site. J Med Chem 57(12):5435–5448

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poluri, K.M., Gulati, K., Tripathi, D.K., Nagar, N. (2023). Small-Molecule Inhibitors of Protein–Protein Interactions as Therapeutics. In: Protein-Protein Interactions. Springer, Singapore. https://doi.org/10.1007/978-981-99-2423-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2423-3_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2422-6

  • Online ISBN: 978-981-99-2423-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics