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Abstract The most known public key cryptosystem was introduced in 1978 by
Rivest et al. (1978) and is now called the RSA public key cryptosystem in their
honor. Later, a few authors gave a simple extension of RSA over algebraic numbers
field (see Takagi and Naito (2015), Uematsu et al. (1985, 1986)), but they require
that the ring of algebraic integers is Euclidean ring, and this requirement is much
more stronger than the class number one condition. In this chapter, we introduce a
high dimensional form of RSA by making use of the ring of algebraic integers of an
algebraic number field and the lattice theory. We give an attainable algorithm (see
Algorithm1)which is significant both from the theoretical and practical point of view.
Our main purpose in this chapter is to show that the high dimensional RSA is a lattice
based on public key cryptosystem indeed, of which would be considered as a new
number in the family of post-quantum cryptography (see Peikert (2014), Pradhanet
al. (2019)). On the other hand, we give a matrix expression for any algebraic number
fields (see Theorem 2), which is a new result even in the sense of classical algebraic
number theory.
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1 Introduction

Let Q, R, C be the rational numbers field, real numbers field, and complex numbers
field, respectively, and Z be the integers ring. Let E ⊂ C be an algebraic numbers
field of degree n, and R ⊂ E be the ring of algebraic integers of E . Suppose that
A ⊂ R is a non-zero ideal(all ideals in this chapter are non-zero), then the factor ring
R/A is a finite ring, we denote by N (A) the number of elements of R/A, which is
called the norm of A, and denote by ϕ(A) the number of invertible elements of R/A,
which is called the Euler totient function of A. For any α ∈ R, the principal ideal
generated by α is denoted by αR, then α is an invertible element of R/A if and only
if (αR, A) = 1. It is known (see Theorem 1.19 of Narkiewicz (2004)) that

ϕ(A) = N (A)
∏

P|A
(1 − 1

N (P)
) (1)

where the product is extended over all prime ideals P dividing A. Moreover, if α ∈ R
and (αR, A) = 1, then

αϕ(A) ≡ 1(mod A). (2)

To generalize that RSA to arbitrary algebraic number fields E , we first show the
following assertion.

Theorem 1 Let P1 and P2 be two distinct prime ideals of R and A = P1P2, then for
any α ∈ R and integer k ≥ 0, we have

αkϕ(A)+1 ≡ α(mod A). (3)

Proof Let α ∈ R. If (αR, A) = 1, then (3) follows directly from (2). If (αR, A) =
A, then αR ⊂ A and α ∈ A, (3) is trivial. Thus, we only consider the cases of
(αR, A) = P1 and (αR, A) = P2. If (αR, A) = P1, then (αR, P2) = 1, by (2) we
have

αϕ(P2) ≡ 1(mod P2).

It follows that
αkϕ(A) ≡ 1(mod P2), ∀k ∈ Z, k ≥ 0.

Therefore, there exists an element β ∈ P2 such that

αkϕ(A) = 1 + β.

We thus have

αkϕ(A)+1 = α + αβ, and αkϕ(A)+1 ≡ α(mod A),

since αβ ∈ A. The same reason gives (3) when (αR, A) = P2.
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Table 1 RSA in the ring of algebraic integers

RSA in the Ring of Algebraic Integers

• Parameters: n ≥ 1 is a positive integer, E/Q is an algebraic numbers field of

degree n, R ⊂ E is the ring of algebraic integers of E . P1 and P2
are two prime ideals of R, A = P1P2, R/A is the factor ring,

S is a set of coset representatives of R/A, ϕ(A) is the Euler

function of A, 1 ≤ e < ϕ(A) and 1 ≤ d < ϕ(A) are two positive

integers such that ed ≡ 1(mod ϕ(A))

• Public keys: The ideal A and positive integer e are the public keys.

• Private keys: The prime ideals P1, P2 and the positive integer d are the

private keys

• Encryptions: For any input message α ∈ S, the ciphertext c is c ≡ αe(mod A)

• Decryption: cd ≡ αed ≡ α( mod A), one can find plaintext α from c in S

According toTheorem1, one can easily extend the classical RSAover an algebraic
number field as follows (also see Takagi and Naito (2015)), but it does not give the
proof of (3)).

Obviously, if n = 1, the above algorithm is the ordinary RSA. However, it is
difficult to find the prime ideals in R and to construct a set of coset representatives of
R/A yet. In Takagi and Naito (2015), the author supposed the ring R is a Euclidean
ring, so that S can be constructed by Euclidean algorithm in R. The simplest way is
to select an prime element α in R, so that the principal ideal αR is a prime ideal. In
algorithm I, we would precisely construct a set of coset representatives for the factor
ring R/A by the lattice theory. Here we give an approximate construction of the set
of coset representatives for factor ring R/A.

If P ⊂ R is a prime ideal, then P ∩ Z = pZ, where p ∈ Z is a rational prime
number. Since R/P is a finite field and Z/(pZ) ⊂ R/P , thus N (P) = p f , where
f (1 ≤ f ≤ n) is called the degree of P . We write pR = Pe1

1 Pe2
2 · · · Peg

g , where
P = P1 and Pi are distinct prime ideals, ei is called the ramification index of Pi .
There exists a remarkable relation among ramification indexes and degrees (see
Theorem 3 of page 181 of Ireland and Rosen (1990))

g∑

i=1

ei fi = n. (4)

Let {α1, α2, · · · αn} ⊂ R be an integral basis for E/Q, A = P1P2. Suppose that P1 ∩
Z = pZ and P2 ∩ Z = qZ, then A ∩ Z = pqZ, where p and q are two distinct
rational prime numbers.
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Lemma 1 Let

S1 =
{

n∑

i=1

aiαi | 0 ≤ ai < pq, ai ∈ Z, 1 ≤ i ≤ n

}
. (5)

Then S1 covers a set of coset representatives of R/A. Moreover, if the degrees of P1
and P2 are n, then S1 is precisely an set of coset representatives of R/A.

Proof Since A = P1P2, P1 ∩ Z = pZ, and P2 ∩ Z = qZ, we have pqR ⊂ A, thus
R/pqR maps onto R/A. To prove the first assertion, it is enough to show that S1 is a
set of coset representatives of R/pqR. Since {α1, α2, . . . αn} is an integral basis and

R = Zα1 + Zα2 + · · · + Zαn.

Suppose thatα = ∑n
i=1 miαi ∈ R, writemi = ai pq + ri , where 0 ≤ ri < pq. Clearly

α ≡
n∑

i=1

riαi (mod pqR).

Thus every coset of pqR contains an element of S1. If
∑n

i=1 riαi = ∑n
i=1 r

′
iαi are in

S1 and in the same coset mod pqR, then

n∑

i=1

(
ri − r ′

i

)
αi ≡ 0(mod pqR).

Since αi are linearly independent, it follows that

ri ≡ r ′
i ( mod pq) and ri = r ′

i , 1 ≤ i ≤ n.

Next, suppose that the degrees of P1 and P2 aren, then N (P1) = pn and N (P2) = qn ,
by (4)we thus have P1 = pR, P2 = qR, and A = pqR. The second assertion follows
immediately.

If one replaces S by S1 in Table 1, then the successful probability of decryption is

N (A)/pnqn = p f1−nq f2−n, (6)

where f1 and f2 are the degrees of P1 and P2, respectively.
We note that f1 = f2 = n if and only if P1 = pR and P2 = qR; in this special

case, we may give a numerical explanation. It is easy to see that

ϕ(A) = ϕ(pR)ϕ(qR) = (
pn − 1

) (
qn − 1

)
.

By Theorem 1, for any a ∈ Z, we have
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ak(p
n−1)(qn−1)+1 ≡ a(mod pq), k ∈ Z, k ≥ 0. (7)

Since S1 is a set of coset representatives of R/A, α = ∑n
i=1 aiαi ∈ S1, wemay regard

α as a vector (a1, a2, . . . , an) ∈ Z
n
pq . Let m = pq, 1 ≤ e < (pn − 1) (qn − 1) and

1 � d < (pn − 1) (qn − 1) such that

ed ≡ 1(mod (pn − 1)(qn − 1)).

Then for every input message α = (a1, a2, · · · , an), we use the public key (m, e)
and private key (p, q, d) to encryption and decryption for each ai in order, obvi-
ously, these are the algorithms given by Takagi and Naito (2015), we consider these
algorithms are just a simple repeat of RSA.

Themain purpose of this chapter is to show that the high dimensional form of RSA
algorithm is a lattice based on cryptosystem in general. To do this, we first establish
a relationship between an algebraic number field E and the Euclidean space Qn . Let
R

n be the Euclidean space which is a linear space over R with the Euclidean norm
|x |,

|x | =
(

n∑

i=1

x2i

) 1
2

, where x ′ = (x1, x2, · · · , xn) ∈ R
n. (8)

We use the column notation for vector in R
n , and x ′ is the transpose of x , which is

called a row vector in R
n . Qn ⊂ R

n is a subspace of R
n.

Without loss of generality, an algebraic number field E of degree n may be
expressed as E = Q(θ), where θ is an algebraic integer of degree n and Q(θ) is
the field generated by θ over Q. Let φ(x) be the minimal polynomial of θ ,

φ(x) = xn − φn−1x
n−1 − · · · − φ1x − φ0 ∈ Z[x], (9)

where all φi ∈ Z. It is known that

E = Q[θ ] =
{

n−1∑

i=0

aiθ
i | ai ∈ Q

}
. (10)

We define an one to one correspondence between E and Qn by τ :

α =
n−1∑

i=0

aiθ
i ∈ E

τ−→ α =

⎛

⎜⎜⎜⎝

a0
a1
...

an−1

⎞

⎟⎟⎟⎠ ∈ Qn (11)

and write τ(α) = α or α
τ→ α. In fact, τ is a homomorphism of additive group from

E to Qn , because of τ(aα) = aτ(α) for all a ∈ Q.
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As usual, the trace and norm mappings from E to Q are denoted by

tr(α) = trE/Q(α), and N (α) = NE/Q(α).

It is known (see corollary of page 58 of Narkiewicz (2004)) that

N (αR) = |N (α)|, ∀α ∈ R. (12)

A full-rank lattice L is a discrete addition subgroup of R
n , the equivalent expression

for L is (See Micciancio and Regev (2009), Zheng et al. (2023))

L = L(B) = {
Bx | x ∈ Z

n
}
, (13)

where B = [
β1, β2, · · · , βn

]
n×n ∈ R

n×n is an invertible matrix of n × n dimension,
B is called a generatedmatrix of L . If L ⊂ Qn , we call L a rational lattice, if L ⊂ Z

n ,
we call L an integer lattice. It is not difficult to see that every ideal of R corresponds
to an rational lattice, we have the following.

Lemma 2 Let A ⊂ R be an ideal and A �= 0, then τ(A) is a rational lattice.

Proof Let {β1, β2, · · · , βn} ⊂ A be an integral basis for E/Q, one has

A = Zβ1 + Zβ2 + · · · + Zβn.

It follows that
τ(A) = Zβ1 + Zβ2 + · · · + Zβn,

where β i = τ(βi ) ∈ Qn . Let B = [β1, β2, · · · , βn], since {β1, β2, · · · , βn} is lin-
early independent over Q, thus B is an invertible matrix, and we have

τ(A) = L(B) = {Bx | x ∈ Z
n}.

The lemma follows at once.

Let L ⊂ Qn be a rational lattice, of which be corresponded by an ideal A in E for
some suitable algebraic number field E , we call L an ideal lattice. Ideal lattice was
first introduced by Lyubashevsky andMicciancio (2006) in the case of integer lattice,
here we generalize this notation to the case of rational lattices. For more detailed
discussion about ideal lattice, we refer to (Zheng et al., 2023).

To give an attainable algorithm for high dimensional RSA, we require the follow-
ing NC-property for the algebraic number field E.

NC- property: E = Q(θ) and R = Z[θ ], (14)

where
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Table 2 Algebraic number fields with NC-property

Algebraic Number Fields with NC-property

• Quadratic Fields(see Proposition 13.1.1 of Ireland and Rosen (1990))

E = Q(
√
d), where d ∈ Z is a square-free integer and d = 2, 3(mod 4)

• Cyclotemic Fields (see Theorem 2.6 of Washington (1982))

E = Q (ξn), where ξn = e2π i/n is a primitive n-th root of unity

• Totally Real Algebraic Number Fields (see Proposition 2.16 of Washington (1982))

E = Q(ξn + ξ−1
n ), and E ⊂ R is the maximal real subfield of Q(ξn)

Z[θ ] =
{

n−1∑

i=0

aiθ
i | ai ∈ Z, 1 ≤ i ≤ n

}
. (15)

Some of the well-known algebraic number fields satisfy the NC-property, we list
a few as follows (Table2).

2 Ideal Matrices

Suppose that θ is an algebraic integer of degree n, φ(x) = xn − φn−1xn−1 − · · · −
φ1x − φ0 ∈ Z[x] is the minimal polynomial of θ , thus φ(x) is irreducible. Let θ =
θ0, θ1, θ2, · · · , θn−1 be n different roots of φ(x), the Vandermonde matrix of φ(x) is
defined by

V = Vφ = [
θ i
j

]
0≤i, j≤n−1

, and 
 = det(Vφ) �= 0. (16)

According to φ(x), we denote the rotation matrix or adjoint matrix (see page 116
of Manin and Panchishkin (2005)) by

H = Hφ =

⎛

⎜⎜⎜⎝

0 · · · 0 φ0

φ1

In−1
...

φn−1

⎞

⎟⎟⎟⎠ ∈ Z
n×n, (17)

where In−1 is the unit matrix of n − 1 dimension.

Definition 1 An idealmatrix H∗( f ) generated by the input vector f ∈ R
n is defined

by
H∗( f ) = [

f , H f , · · · , Hn−1 f
]
n×n ∈ R

n×n (18)

and all ideal matrices are denoted by
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M∗
R

= {
H∗( f ) | f ∈ R

n
}

and M∗
Q = {

H∗( f ) | f ∈ Qn
}
. (19)

Definition 2 For any two vectors f and g in R
n , the φ-conventional product is

defined by
f ⊗ g = H∗( f )g (20)

and the m-multi product is denoted by

f
⊗m =

m︷ ︸︸ ︷
f ⊗ f ⊗ · · · ⊗ f , m ∈ Z, m ≥ 1. (21)

Remark 1 If φ(x) = xn − 1, then Hφ is the classical circulant matrix (see Davis
(1994)), and conventional product with circulant matrix was first proposed by Hoff-
stein et al. (1998), which plays a key role in their cryptosystem. In Zheng et al.
(2023), we generalized this definition with more general rotation matrices.

By (18), H∗( f ) = 0 is a zero matrix if and only if f = 0 is a zero vector, and
H∗( f + g) = H∗( f ) + H∗(g), then H∗( f ) = H∗(g) if and only if f = g. Thus
we may regard H∗ : R

n → M∗
R
as an one to one correspondence, which is also a

homomorphism of Abel group.
The main aim of this subsection is to show the Qn is a field under the φ-

conventional product and M∗
Q is also a field under the ordinary additive and product

of matrices, both of which are isomorphic to the algebraic number field E = Q(θ).
To do this, we require some basic properties of the ideal matrices.

Let e1, e2, · · · , en be the unit vectors of R
n , namely

e1 =

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ , e2 =

⎛

⎜⎜⎜⎝

0
1
...

0

⎞

⎟⎟⎟⎠ , · · · , en =

⎛

⎜⎜⎜⎝

0
0
...

1

⎞

⎟⎟⎟⎠ . (22)

Lemma 3 Let τ be defined by (11), then we have

{
τ
(
θ k
) = ek+1, 0 ≤ k ≤ n − 1

H∗ (ek) = Hk−1, 1 � k � n.
(23)

Proof τ
(
θ k
) = ek+1 follows directly from the definition of τ . We use induction

to prove H∗ (ek) = Hk−1. It is easy to see that H∗ (e1) = In , the unit matrix of n
dimension. Suppose that H∗ (ek−1) = Hk−2, for k ≥ 2, note that ek = Hek−1, it
follows that
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H∗ (ek) = [
Hek−1, H

2ek−1, · · · , Hnek−1
]

= H
[
ek−1, Hek−1, · · · , Hn−1ek−1

]

= HH∗(ek−1) = HHk−2 = Hk−1.

The lemma follows immediately.

Since φ(x) is the characteristic polynomial of H , by the Hamilton-Cayley theo-
rem, we have

φ(H) = 0, or Hn = φ0 + φ1H + · · · + φn−1H
n−1. (24)

Therefore, all the rotation matrices Hk(k ≥ 0) are the ideal matrices, especially, the
unit matrix In = H∗ (e1) is an ideal matrix.

Let R[x] be the polynomials ring and R(x)/〈φ(x)〉 be the quotient ring, where
〈φ(x)〉 is the principal ideal generated by φ(x) in R[x]. We establish an one to one
correspondence t between R

n and R[x]/〈φ(x)〉 by

f =

⎛

⎜⎜⎜⎝

f0
f1
...

fn−1

⎞

⎟⎟⎟⎠ ∈ R
n t−→ f (x) = f0 + f1x + · · · + fn−1x

n−1 ∈ R[x]/〈φ(x)〉

(25)
and write t ( f ) = f (x), or t−1( f (x)) = f .

Lemma 4 For any f ∈ R
n, the ideal matrix H∗( f ) is given by

H∗( f ) = f (H) = f0 In + f1H + · · · + fn−1H
n−1. (26)

Moreover, if F(x) ∈ R[x] and F(x) ≡ f (x)(mod φ(x)), then f (H) = F(H).

Proof Writing f = f0e1 + f1e2 + · · · + fn−1en , by Lemma 3, we have

H∗( f ) = f0H
∗(e1) + f1H

∗(e2) + · · · + fn−1H
∗(en)

= f0 In + f1H + · · · + fn−1H
n−1 = f (H).

Suppose that F(x) ≡ f (x)(mod φ(x)), by (24), we have f (H) = F(H) immedi-
ately.

Lemma 5 Let f and g be two vectors in R
n, and f (x), g(x) be the corresponding

polynomials, respectively, then we have

t ( f ⊗ g) ≡ f (x)g(x)(mod φ(x)). (27)

Proof Since t is a bijection, it is suffice to show that
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t−1( f (x)g(x)) = f ⊗ g. (28)

Let g(x) = g0 + g1(x) + · · · + gn−1xn−1 ∈ R[x]/〈φ(x)〉, then

xg(x) = g0x + · · · + gn−1x
n

= gn−1φ0 + (g0 + φ1gn−1)x + · · · + (gn−2 + φn−1gn−1)x
n−1.

It follows that
t−1(xg(x)) = Ht−1(g(x)) = Hg.

More generally, we have

t−1
(
xkg(x)

) = Hkt−1(g(x)) = Hkg, 0 ≤ k ≤ n − 1. (29)

Let f (x) = f0 + f1x + · · · + fn−1xn−1, then

t−1( f (x)g(x)) =
n−1∑

k=0

fk t
−1 (xkg(x)

) =
n−1∑

k=0

fk H
kg = H∗( f )g = f ⊗ g.

The lemma follows immediately.

Lemma 6 For any two vectors f =

⎛

⎜⎜⎜⎝

f0
f1
...

fn−1

⎞

⎟⎟⎟⎠ ∈ R
n, g =

⎛

⎜⎜⎜⎝

g0
g1
...

gn−1

⎞

⎟⎟⎟⎠ ∈ R
n,we have

the following properties for ideal matrices:

i H∗( f )H∗(g) = H∗ (g)H∗( f
) ;

ii H∗( f )H∗(g) = H∗(H∗( f )g);
iii H∗( f ) = V−1

φ diag { f (θ0) , f (θ1) , · · · , f (θn−1)} Vφ;

iv det
(
H∗( f )

) = ∏n−1
i=0 f (θi );

v If f ∈ Qn, f �= 0, then H∗( f ) is an invertible matrix and

(
H∗( f )

)−1 = H∗(u),

where u(x) ∈ Q[x] is the unique polynomial such that u(x) f (x) ≡ 1(mod φ(x)) in
Q[x].
Proof By Lemma 4, we have

H∗( f )H∗(g) = f (H)g(H) = g(H) f (H) = H∗(g)H∗( f ).

To prove (ii), we write H∗( f )g = f ⊗ g, it follows that
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H∗ (H∗( f )g
) = H∗( f ⊗ g) = f (H)g(H) = H∗( f ) · H∗(g).

By Theorem 3.5 of Davis (1994), we have

H = V−1
φ diag {θ0, θ1, · · · , θn−1} Vφ. (30)

It follows that

H∗( f ) = f (H) = V−1
φ diag { f (θ0) , f (θ1) , · · · , f (θn−1)} Vφ.

Since diag { f (θ0) , f (θ1) , · · · , f (θn−1)} is a diagonal matrix, we have

det
(
H∗( f )

) = det (diag { f (θ0) , f (θ1) , · · · , f (θn−1)}) =
n−1∏

i=0

f (θi ) .

To show the last assertion, since f ∈ Qn, f �= 0, and φ(x) is an irreducible poly-
nomial, thus we have ( f (x), φ(x)) = 1 in Q[x], There are u(x) ∈ Q[x] and v(x) ∈
Q[x] such that

u(x) f (x) + v(x)φ(x) = 1.

By (29) and noting that t−1(1) = e1 ∈ R
n , we have u ⊗ f = e1. It follows that

H∗(u) · H∗( f ) = H∗(e1) = In.

We complete the proof of Lemma.

Next, we discuss the algebraic number field E = Q(θ) and recall τ is an one to
one correspondence between E and Qn .

Lemma 7 For any two elements α and β in E, we have

τ(αβ) = τ(α) ⊗ τ(β) = α ⊗ β. (31)

Proof Let β = β0 + β1θ + · · · + βn−1θ
n−1, where βi ∈ Q, it is easily seen that

θβ = φ0βn−1 + (β0 + φ1βn−1) θ + · · · + (βn−2 + φn−1βn−1) θn−1,

thus we have τ(θβ) = Hτ(β) = Hβ, and

τ
(
θ kβ

) = Hkτ(β) = Hkβ, 0 ≤ k ≤ n − 1. (32)

Let α = α0 + α1θ + · · · + αn−1θ
n−1, by Lemma 4, we have



180 Z. Zhiyong et al.

τ(αβ) =
n−1∑

k=0

αkτ
(
θ kβ

) =
n−1∑

k=0

αk H
kβ = H∗(α)β = α ⊗ β,

the lemma follows immediately.

Let A = (
ai j
)
n×n be a square matrix, and the trace of A is defined by Tr(A) =∑n

i=1 aii as usual. The main result of this subsection is the following theorem.

Theorem 2 Let E = Q(θ) be an algebraic number field of degree n, and φ(x) ∈
Z[x] be the minimal polynomial of θ . Then the linear space Qn is a field under
the φ-conventional product, and all of the ideal matrices M∗

Q generated by rational
vectors is also a field with the ordinary additive and product of matrices. Both of
them are isomorphic to E, namely

E ∼= Qn ∼= M∗
Q . (33)

Moreover, let α ∈ E, tr(α) and N (α) be the trace and norm of α, then we have

tr(α) = Tr
(
H∗(α)

)
, and N (α) = det

(
H∗(α)

)
. (34)

Proof τ : E → Qn given by (11), it is clearly that

τ(α + β) = τ(α) + τ(β), and τ(αβ) = τ(α) ⊗ τ(β).

Thus Qn is a field under the φ-conventional product and E ∼= Qn . By Lemma 6, we
have

H∗(α + β) = H∗(α) + H∗(β) and H∗ (α ⊗ β
) = H∗(α)H∗(β),

thus M∗
Q is also a field and E ∼= Qn ∼= M∗

Q .
The main difficulty is to prove (34). We observe that θ induces a linear transfor-

mation of E/Q by α → θα, and the matrix of this linear transformation under basis{
1, θ, θ2, · · · , θn−1

}
is just H , namely

θ
(
1, θ, θ2, · · · , θn−1

) = (
1, θ, θ2, · · · , θn−1

)
H.

By the definition of trace, we have

tr(θ) = Tr(H), and tr(θ k) = Tr(Hk), , 1 ≤ k ≤ n − 1.

Let α = α0 + α1θ + · · · + αn−1θ
n−1 ∈ E , it follows that

tr(α) =
n−1∑

k=0

αi tr
(
θ k
) =

n−1∑

i=0

αi Tr
(
Hk
) = Tr

(
n−1∑

k=0

αi H
k

)
= Tr

(
H∗(α)

)
.
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To show that conclusion on the norm, letα(i)(0 ≤ i ≤ n − 1)be then conjugations
of α in the smallest normal extension of Q containing E , where α(0) = α = α0 +
α1θ + · · · + αn−1θ

n−1. It is easily seen that

α(i) =
n−1∑

k=0

αkθ
k
i , where θ0 = θ and 0 ≤ i ≤ n − 1.

By property (iii) of Lemma 6, we have

N (α) =
n−1∏

i=0

α(i) =
n−1∏

i=0

α (θi ) = det
(
H∗(α)

)
.

We complete the proof of Theorem 2.

The cyclic lattice in R
n was introduced by Micciancio (2007), (also see Zheng

et al. (2023)), which plays an important role in Ajtai’s construction of collision
resistant Hash function (see Ajtai and Dwork (1997)). As an application, we show
that every ideal in an algebraic number field corresponds to a cyclic lattice:

Corollary 1 Let A ⊂ R be an ideal and A �= 0, then τ(A) ⊂ Qn is a cyclic lattice.

Proof Suppose that α ∈ A. Since θ ∈ R, then θα ∈ A. By (31), we have

τ(θα) = Hα ∈ τ(A).

Thus τ(A) is a cyclic lattice.

3 High Dimensional RSA

In this section, we give an attainable algorithm for the high dimensional RSA by
making use of lattice theory, and this algorithm is significant both from the theoretical
and practical point of view. Suppose that the algebraic numbers field E satisfying
the NC-property, then R = Z[θ ] is the ring of algebraic integers of E , the restriction
of correspondence τ gives a ring isomorphism from R to Z

n . Let Z(x) be the ring of
integer coefficients polynomials and (φ(x)) be the principal ideal generated by φ(x)
in Z(x), it is easy to see that R ∼= Z[x]/(φ(x)). Let M∗

Z
be the set of ideal matrices

generated by an integral vector, i.e.

M∗
Z

= {
H∗( f ) | f ∈ Z

n
}
. (35)

Then the following four rings are isomorphic from each other

Z[x]/(φ(x)) ∼= R ∼= Z
n ∼= M∗

Z
. (36)
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For any polynomial α(x) = α0 + α1x + · · · + αn−1xn−1 ∈ Z[x]/(φ(x)), the cor-
responding algebraic integer is α = α0 + α1θ + · · · + αn−1θ

n−1 ∈ R, we write this
isomorphism by

α(x) → α
τ−→ α

H∗−→ H∗(α). (37)

A φ-ideal lattice means an integer lattice of which corresponds an ideal of
Z(x)/(φ(x)), it was first introduced by Lyubashevsky and Micciancio in (see also
Zheng et al. (2023)), which also plays a key role in Gentry’s construction for the full
homomorphic cryptosystem (see Gentry (2009)), and Fluckiger and Suarez (2006)
extended this definition to total real number field.

Lemma 8 Let E be an algebraic numbers field with NC- property, R = Z[θ ] be the
ring of algebraic integers of E. Then there is an one to one correspondence between
ideals of R and the φ-ideal lattices. Moreover, if α ∈ R, then we have

τ(αR) = L
(
H∗(α)

)
. (38)

In general, suppose that A ⊂ R is an ideal and A �= 0, then there exist two elements
α and β in A such that

τ(A) = L
(
H∗(α)

)+ L
(
H∗(β)

)
. (39)

Proof Since there is an one to one correspondence between the φ-ideal lattices and
the ideals of Z[x]/(φ(x)) (See Corollary of Zheng et al. (2023)), by (36), the first
assertion follows immediately. Let α ∈ R, then αR = {αx | x ∈ R}, by Lemma 7
we have

τ(αx) = H∗(α)x, where x =

⎛

⎜⎜⎜⎝

x0
x1
...

xn−1

⎞

⎟⎟⎟⎠ ∈ Z
n.

It follows that
τ(αR) = {

H∗(α)x | x ∈ Z
n
} = L

(
H∗(α)

)
.

To prove (39), it is known that any ideal of R is generated by at most two elements
(see corollary 5 of page 11 of Narkiewicz (2004) ), namely, A = αR + βR, then we
have

τ(A) = τ(αR) + τ(βR) = L
(
H∗(α)

)+ L
(
H∗(β)

)
.

To introduce an attainable algorithm for high dimensional RSA, we require some
basic results from lattice theory. Let L = L(B) ⊂ R

n be a full-rank lattice, and the
determinant of L is defined by

d(L) = | det(B)|. (40)
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Suppose that the generated matrix B = [
b1, b2, · · · , bn

]
, bi ∈ R

n is the column

vectors of B. Since
{
b1, b2, · · · , bn

}
is a basis for R

n , let B∗ =
{
b

∗
1, b

∗
2, · · · , b

∗
n

}

be the corresponding orthogonal basis, where b
∗
1 = b1, and b

∗
i is obtained by the

Gram-Schmidt orthogonal process in order.
A basis B is called in Hermited Normal Form (HNF) if it is upper triangular, all

elements on the diagonal are strictly positive, and any other elements bi j satisfies
0 ≤ bi j < bii . It is easy to see that every integer lattice L = L(B)has a unique basis in
Hermited Normal Form, denoted by HNF(L) (see Theorem 2.4.3 of Cohen (1993)).
Moreover, given any basis B for lattice L ,HNF(L) can be efficiently computed from
B (see Cohen (1993), Micciancio (2001)).

Proposition 1 Let L = L(B) and B = (bi j )n×n be the basis in HNF. Then the cor-
responding orthogonal basis B∗ is a diagonal matrix, namely

B∗ = diag {b11, b22, · · · , bnn} . (41)

Moreover, we have

d(L) =
n∏

i=1

bii . (42)

Proof See Micciancio (2001).

Definition 3 Let L = L(B) ⊂ R
n be a full-rank lattice, and B∗ =

[
b

∗
1, b

∗
2, · · · , b

∗
n

]

be the corresponding orthogonal basis, the orthogonal parallelepiped F (B∗) is
defined by

F(B∗) =
{

n∑

i=1

xib
∗
i | 0 ≤ xi < 1 and xi ∈ R

}
. (43)

Proposition 2 Let L = L(B) ⊂ Z
n be an integer lattice, B = HNF(L) be the basis

in HNF and B∗ = diag {b11, b22, · · · , bnn} be the corresponding orthogonal basis,
F (B∗) is the orthogonal parallelepiped given by (43), then S is a set of coset repre-
sentatives for the quotient group Z

n/L, where

S = F
(
B∗) ∩ Z

n = {
x ′ = (x1, x2, · · · , xn) | ∀xi ∈ Z and 0 ≤ x1 < bii

}
.

Proof See Sect. 4.1 of Micciancio (2001).

Now, we return to the algebraic numbers field E = Q[θ ] (with NC-property). Let
α, β ∈ R be two algebraic integers, by Lemma 8, the principal ideal αR corresponds
to the minimal φ-ideal lattice L(H∗(α)). Thus A = (αR)(βR) = αβR corresponds
to L (H∗(α ⊗ β)).

Definition 4 For given α, β ∈ R, τ(α) = α, and τ(β) = β, we denote the lattice
Lα,β by
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Lα,β = L
(
H∗(α ⊗ β)

)
. (44)

The HNF basis of Lα,β is denoted by Bα,β and the corresponding orthogonal basis
is denoted by

B∗
α,β = diag {b1, b2, · · · , bn} , (45)

where bi ∈ Z and bi ≥ 1. The parallelepiped is given by

Sα,β = {
(x1, x2, · · · , xn) ∈ Z

n | xi ∈ Z and 0 ≤ xi < bi
}
. (46)

Lemma 9 Let α ∈ R, β ∈ R, and A = αβR. Then Sα,β given by (46) is correspond-
ing to a set of coset representatives of the factor ring R/A in the algebraic numbers
field E with NC-property.

Proof By Proposition 1, it is easy to see that

∣∣Sα,β

∣∣ =
n∏

i=1

bi = ∣∣det
(
H∗(α ⊗ β)

)∣∣ = ∣∣det
(
H∗(α)

)∣∣ · ∣∣det (H∗(β)
)∣∣ = d

(
Lα,β

)
.

By Theorems 2 and (12), we have

N (A) = |N (α · β)| = |N (α)| · |N (β)| = ∣∣det
(
H∗(α)

)∣∣ · ∣∣det (H∗(β)
)∣∣ = d

(
Lα,β

)
.

It follows that N (A) = ∣∣Sα,β

∣∣. Since E satisfies NC-property, if α ∈ R, then α =
τ(α) ∈ Z

n , hence α ≡ β(mod A) in R, if and only if

α ≡ β
(
mod Lα,β

)
.

The lemma follows from Proposition 2 immediately.

The main result of this subsection is the following theorem.

Theorem 3 Let E be an algebraic numbers field of degree n with NC-property,
α ∈ R, β ∈ R be two distinct prime elements, A = αβR, and Lα,β be the lattice
given by (44). Then for any a ∈ Z

n, k ∈ Z, k ≥ 0, we have

a⊗(kϕ(α,β)+1) ≡ a
(
mod Lα,β

)
, (47)

where
ϕ(α, β) = (∣∣det

(
H∗(α)

)∣∣− 1
) (∣∣det

(
H∗(β)

)∣∣− 1
)
. (48)

Proof Since E satisfies NC-property, a ∈ Z
n , then a = τ−1(a) ∈ R. By Theorem 1,

we have
akϕ(A)+1 ≡ a( mod A).

It is easy to see that
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Table 3 Algorithm I

Algorithm 9.1: RSA in the Algebraic Numbers Field

n ≥ 1 is a positive integer, E/Q is an algebraic numbers field with NC-property of

degree n, R ⊂ E is the ring of algebraic integers of E , α ∈ R, β ∈ R are two distinct

prime elements of R, A = αβR is a principal ideal of R, H∗(α ⊗ β) is the ideal

matrix corresponding to A, Lα,β = L
(
H∗(α ⊗ β)

)
is the lattice generated by

H∗(α ⊗ β), Bα,β = HNF
(
Lα,β

)
is the basis of Lα,β in HNF,

B∗
α,β = diag {b1, b2, · · · , bn} is the corresponding orthogonal basis

• Parameters: ϕ(α, β) = (|det (H∗(α))| − 1)
(∣∣det

(
H∗(β)

)∣∣− 1
)
,

Sα,β = {x ′ = (x1, x2, · · · , xn) ∈ Z
n | 0 ≤ xi < bi }. 1 ≤ e < ϕ(α, β),

1 ≤ d < ϕ(α, β), such that ed ≡ 1(mod ϕ(α, β))

• Public keys: The rotation matrix H , the lattice L(Bα,β) = Lα,β and the

positive integer e are public keys

• Private keys: Ideal matrices H∗(α), H∗(β), the basis H∗(α ⊗ β) of Lα,β

and positive integer d are private keys.

• Encryption: For any input message a ∈ Sα,β , the ciphertext c is given by

c ≡ a⊗e(mod Lα,β).

• Decryption: c⊗d ≡ a⊗de ≡ a⊗(kϕ(α,β)+1) ≡ a(mod Lα,β). One can find the plaintext

a from c in Sα,β

ϕ(A) = ϕ(αR)ϕ(βA) = (N (αR) − 1)(N (βR) − 1)

= (|N (α)| − 1)(|N (β)| − 1)

= (∣∣det
(
H∗(α)

)∣∣− 1
) (∣∣det

(
H∗(β)

)∣∣− 1
)

= ϕ(α, β).

By Lemma 8, we have

τ(A) = τ(αβR) = L
(
H∗(α ⊗ β)

) = Lα,β and τ
(
akϕ(α,β)+1

) = a⊗(kϕ(α,β)+1).

Therefore, (47) follows immediately.

According to the above theorem, we may describe an attainable algorithm for
high dimensional RSA as follows (Table3).

Remark 2 If the class number hE = 1, in other words, R is a UFD, then the prime
elements are equivalent to irreducible elements in R, and one can find prime elements
α from α(x) ∈ Z[x]/(φ(x)) and α(x) irreducible.
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4 Security and Example

The classical RSA public key cryptosystem is nowadays used in a wide variety of
applications ranging from web browsers to smart cords. Since its initial publication
in 1978, many researchers have tried to look for vulnerabilities in the system. Some
clever attacks have been found (see Bonech (2002), Coppersmith (2001)). How-
ever, none of the known attacks is devastating and the ordinary RSA system is still
considered secure.

The security of highdimensionalRSAdepends onvirtually factoringof an element
of the algebraic integers ring R into product of of distinct prime elements. Factoring
on R is much more complicated than factoring of a positive integer, and none of
efficient method is known up to day, thus we consider the high dimensional RSA
almost absolutely secure.

To see the size of private keys, since det (H∗(α)) = N (α), it may be extremely
huge, for example, if α = p ∈ Z, β = q ∈ Z are prime numbers, then

det
(
H∗(α)

) = N (α) = pn, det
(
H∗(β)

) = qn

and
ϕ(α, β) = (

pn − 1
) (
qn − 1

)
,

which is much larger than pq, the latter is the site of public key of the classical RSA
cryptosystem.

The lattice based on cryptography has been intensively studied for the past two
decades. The GGH cryptosystem proposed by Goldreich et al. (1997) is perhaps
the most intuitive encryption scheme based on lattices. The public key is a “bad”
basis for a lattice, and Micciancio proposed in (2001) to use, as the public basis, the
Hermite Normal Form B = HNF(L). The private key of GGH is an exceptionally
good basis for L . The security of GGH relies on the assumption that it is difficult to
find a special basis for L from a known basis of L . In this sense, we regard the high
dimensional RSA as secure as GGH/HNF cryptosystem at least.

Another number theoretic cryptosystem based on the lattice is NTRUEncrypt.
The public key cryptosystem NTRU proposed in 1996 by Hoffstein et al. (1998)
is the fastest known lattice-based encryption scheme, although its description relies
on arithmetic over polynomial quotient ring Z [x]/〈xn − 1〉, it was easily observed
that it could be expressed as a lattice based on cryptosystem. NTRU uses a q-ary
convolutional modular lattice(see Micciancio and Regev (2009), Zheng (2022)), its
public key is also the HNF basis of L, and the private key is a special basis of L
containing two secrete polynomials f (x) and g(x). Obviously, our algorithm I is at
least as hard as solving NTRUEncrypt.

Unfortunately, neither GGH nor NTRU is supported by a proof of security show-
ing that breaking the cryptosystem is at least as hard as solving some underlying
lattice problem; they are primarily practical proposals aimed at offering a concrete
alternative to RSA or other number theoretic cryptosystems (see page 166 of Mic-



On the High Dimensional RSA Algorithm … 187

ciancio and Regev (2009)). However, the significance of this chapter is to show that
the real alternative of RSA is the high dimensional RSA we present here rather than
GGH and NTRU.

Example 1 Finally, we give an example and see how to work the high dimensional
RSA in a quadratic field. Let E = Q(

√
d), d ∈ Z be a square-free integer and d ≡ 2,

or 3 mod 4, thus E satisfies the NC-property. Let δE be the discriminant of E , and
it is known that δE = 4d (see Proposition 13.1.2 of Ireland and Rosen (1990)). Let
p ∈ Z be an odd prime satisfying the following condition:

p � 4d, and x2 ≡ d(mod p) is not solvable in Z. (49)

ByProposition 13.1.3 of Ireland andRosen (1990), we know that p is a prime element
in E .

According to Algorithm I, we select two large primes p and q of which satisfying
(49). Let α = p and β = q, then

ᾱ =
(
p
0

)
, β̄ =

(
q
0

)
, H∗(α) =

(
p 0
0 p

)
, and H∗(β) =

(
q 0
0 q

)
.

It follows that

H∗(α ⊗ β) = H∗(α)H∗(β) =
(
pq 0
0 pq

)
, Lα,β = L

(
H∗(α ⊗ β)

)
(50)

and

Sα,β =
{
x =

(
x1
x2

)
∈ Z

2 | 0 ≤ x1, x2 < pq

}
. (51)

It is easy to see that
ϕ(α, β) = (p2 − 1)(q2 − 1). (52)

In this special case, the two-dimensional RSA may be described as follows
(Table4).

We can similarly deal with the cases of Cyclotomic Fields. Let n = ϕ(m) for some
positive integers m, ξm = e2π i/m, E = Q(ξm), and R ⊂ E be the ring of algebraic
integers of E . Suppose that p ∈ Z is a rational prime number, then p is a prime
element of R if and only if (see Theorem 2 of page 196 of Ireland and Rosen (1990))

p � m and pϕ(m) ≡ 1(mod m). (53)

Suppose that p ∈ Z and q ∈ Z are two distinct prime numbers satisfying (53), we
obtain the lattice L(H∗(p ⊗ q)) and an attainable algorithm in Q(ξm).
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Table 4 RSA in a quadratic field

RSA in A Quadratic Field

• Parameters: E = Q(
√
d), d is a square-free integer and d ≡ 2 or 3(mod 4)

the rotation matrix H =
(
0 d

1 0

)
, p, q are two large and distinct

prime numbers of which satisfy (49). N = pq and χ(N ) = (
p2 − 1

) (
q2 − 1

)

L = L(B) is a lattice, B =
(
N 0

0 N

)
. 1 ≤ e < χ(N ), 1 ≤ d1 < χ(N )

such that ed1 ≡ 1(mod χ(N ))

• Public keys: H, N and the positive integer e are public keys

• Private keys: p, q and the positive integer d1 are private keys

• Encryption: For any a =
(
a1
a2

)
∈ Z

2
pq , the ciphertext c =

(
c1
c2

)
∈ Z

2

given by c ≡ a⊗e(mod L)

• Decryption: c⊗d1 ≡ a⊗d1e ≡ a(mod L). One can find the plaintext a from c in Z
2
pq
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