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Abstract Traditional iterative learning control (ILC) algorithms usually assume
that full system information and operation data can be utilized. However, due to the
uncertainty and complexity of actual systems, it is difficult to access full system
information and operation data accurately and completely. In this chapter, a novel
ILC scheme based on stochastic variance reduced gradient (SVRG) is proposed. This
scheme is not only suitable for resolving the incomplete information problem, but
also converges efficiently under both strongly convex and non-strongly convex con-
trol objectives. To demonstrate the advantages, this chapter studied two scenarios,
i.e., random error data dropout and model-free data-driven approach, and proposed
two SVRG-based ILC algorithms for these two scenarios, respectively. It is theoret-
ically demonstrated and experimentally verified that the proposed SVRG-based ILC
scheme converges faster than both the full gradient and stochastic gradient methods
for the two involved scenarios.
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1 Introduction

1.1 Background

Iterative learning control (ILC) is a control method applicable to systems doing
repeated operations. The basic idea is to use the input and error signals from previ-
ous iteration to improve the input of the next iteration. Arimoto et al. first proposed
iterative learning control for robotic arms in 1984 and clarified the basic idea of
iterative learning control (Arimoto et al., 1984). Subsequently, academia has pub-
lished numerous chapters around ILC. It has gradually become one of the important
branches in the field of control and is widely used in robotics, industrial production
and hard disk manufacturing, and other controlled systems with repeated operation.

To achieve excellent control performance, most ILC assume that full operational
data and system information can be obtained and utilized. However, in real systems,
data delays and dropouts often occur due to various uncertainties. On the other
hand, when the system structure is complex or unstable, it is difficult to obtain the
system information accurately. To solve the incomplete information problems, it is
of great theoretical and practical significance to design ILC algorithms with high
performance.

Information incompleteness can be classified into two categories, objective and
subjective incompleteness. Information incompleteness caused by objective factors
is often related to the uncertainty of the system itself. For example, during the trans-
mission of the signal, the instability of the channel can cause data packet loss. Three
main random packet dropout models have been developed for this problem: the ran-
dom sequence model, the Bernoulli distributionmodel, and theMarkov chain model.
Shen (2018) designed an iterative learning control algorithm based on the stochas-
tic approximation algorithm corresponding to the three models and proved that the
algorithms satisfy mean-square convergence and probabilistic strong convergence.
Information incompleteness due to subjective factors usually artificially assumes that
the system information is unknown, thus avoiding the complexity of system model-
ing and system instability. For example, Oomen et al. (2014) designed a model-free
data-driven iterative learning control algorithm for H∞-parametric estimation of
multi-input multi-output (MIMO) systems, which obtains the full gradient by con-
ducting n0 × n1 experiments on n0 × n1-dimensionalMIMO systems. However, this
algorithm is difficult to be applied to large MIMO systems due to the excessive num-
ber of experiments. Subsequently, Aarnoudse et al. (Owens et al., 2009) designed an
iterative learning control algorithm based on the stochastic approximation method
by constructing a random matrix to estimate the gradient, which effectively reduces
the number of experiments.

It is important to note that the effect of information incompleteness on ILC track-
ing performance is essentially the robustness of ILC. However, this robustness differs
for objective and subjective-type information incompleteness problems. The former
is usually model-based and emphasizes modeling to analyze the causes of informa-
tion deficiency. While the latter is data-based and is generally not concerned with



Iterative Learning Control Based on Random Variance … 83

the causes of information deficiency but with the inherent limitations of information
deficiency on control performance. Model-based and data-based control methods are
not opposed. To achieve the best control effect, the two control methods can also
be used in combination. Existing studies on ILC for solving the information incom-
pleteness problems are usually based on stochastic approximation method or other
gradient methods. In this chapter, we will use a stochastic variance reduction gradi-
ent (SVRG) method to give a general framework for solving the system information
incompleteness problems.

1.2 Design and Analysis of SVRG-Based ILC

Modeling the control objective as an optimization function, for a deterministic
discrete-time linear system, Owens et al. (Aarnoudse & Oomen, 2020) proposed
a gradient-type ILC algorithm based on optimization ideas and analyzed the sta-
bility, monotonicity, and robustness of the algorithm. For noisy discrete-time linear
systems, Yang and Ruan (2017) proposed an enhanced gradient-based ILC algorithm
that can effectively converge in the presence of perturbations in the system. However,
the above gradient-based ILC algorithm requires full error and system information
for each iteration, and when this information is not fully available, the traditional
gradient-based ILC algorithm is no longer applicable.

Notice that in Machine Learning, Stochastic Gradient Descent (SGD) method
replaces the total gradient by randomly selecting a partial gradient each time. Corre-
sponding to the control problems, the partial gradient can also be obtainedwhen there
is insufficient information about the error or the system. This correlation inspires us
to find suitable stochastic gradient methods to solve errors or system information
insufficient problems.

In order to improve the convergence speed and apply to non-smooth and non-
strongly convex objective functions, recent research in Machine Learning has pro-
duced a large number of improved versions of stochastic gradient descent algorithms,
including momentum method, variance reduction method, and incremental aggre-
gated gradients. Allen-Zhu (2018) divided these algorithms to three types according
to their complexity under strongly convex conditions. The first generation is the
momentum-based gradient algorithm, the second generation includes the variance
reduction-based gradient algorithm and the proximal stochastic variance reduction
gradient algorithm, the third generation includes the Katyusha algorithm and incre-
mental aggregated gradient algorithms. In most cases, the complexity of the algo-
rithms decreases with the growth of generation. Considering specific control prob-
lems, the algorithms in first generation are slow to converge and often fail to meet
the practical needs, while the algorithms in third generation require accurate system
modeling to achieve faster convergence and are difficult to apply to data-driven ILC.
Therefore, the research in this chapter is mainly based on the algorithm in second
generation—Stochastic Variance Reduction Gradient (SVRG) algorithm.
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1.3 Main Work and Organization

The purpose of this chapter is to construct SVRG-based ILC and use this framework
to solve specific information incompleteness problems. As representatives of objec-
tive and subjective information incompleteness, two scenarios, error data random
dropouts and model-free ILC, are selected in this chapter to give the corresponding
SVRG-based ILC algorithms, respectively. The contribution is threefold.

1. Propose a SVRG-based ILC framework for single-input single-output (SISO)
systems. The algorithm is shown to converge linearly under smooth and strongly
convex conditions.

2. Apply the SVRG-based ILC framework to error data random data dropouts and
give the convergence proof of the algorithm.

3. Extend the SVRG-based ILC framework to multi-input multi-output (MIMO)
systems in model-free data-driven scenario and prove the convergence of the
algorithm under smooth and non-strongly convex conditions.

Section2 serves as the basis of the chapter, giving theSVRG-based ILC framework
for SISO systems. Section 3 applies the framework to error data random dropouts
problem. Section 4 extends the framework toMIMO systems in model-free scenario.
Since Sect. 2 only gives the algorithm framework and does not cover the specific
scenario, Sect. 2 does not give numerical simulations and contains only three parts:
system description, algorithm design, and convergence analysis. Both Sects. 3 and 4
include four parts: system description, algorithm design, convergence analysis, and
numerical simulation.

2 SVRG-Based ILC Framework

As the basis of the following sections, this section uses SISO systems to give the
basic framework of SVRG-based ILC algorithm. This section includes three parts:
system description, algorithm design, and convergence analysis.

2.1 System Description

Consider the following single-input single-output (SISO) discrete-time linear system{
xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where t = 0, 1, . . . , N − 1 is time index, and k = 1, 2, 3, . . . denotes the iteration
index. xk (t) ∈ R

n, uk (t) ∈ R, and yk (t) ∈ R represent the system state, input and
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output, respectively. A ∈ R
n×n, B ∈ R

n, and C ∈ R
1×n are the systemmatrices. The

initial condition is the same for each iteration, i.e., xk (0) = x0,∀k ∈ N
∗.

Taking t = 0, 1, . . . , N − 1 in (1) yields

yk(1) = CAxk(0) + CBuk(0) = CBuk(0) + CAx0,

yk(2) = CAxk(1) + CBuk(1) = CABuk(0) + CBuk(1) + CA2x0,

...

yk(N ) = CAxk(N − 1) + CBuk(N − 1)

= CAN−1Buk(0) + CAN−2Buk(1) + · · ·
+ CABuk(N − 2) + CBuk(N − 1) + CAN x0.

Combining the above equations, system (1) can be rewritten in the following equiv-
alent form

yk = Huk + Kx0, (2)

where uk = [uk(0), uk(1), . . . , uk(N − 1)]T ∈ R
n, yk = [yk(1), yk(2), . . . , yk(N )]T ∈ R

n ,

H =

⎡
⎢⎢⎢⎣

h11 0 · · · 0
h21 h22 · · · 0
...

...
. . .

...

hN1 hN2 · · · hNN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB

⎤
⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎣

CA
CA2

...

CAN

⎤
⎥⎥⎥⎦ .

For further analysis, the following assumptions are required.

Assumption 1 The input/output coupling matrix CB �= 0.

Assumption 2 For desired trajectory yd(t), there exists a unique desired input ud(t)
and initial state xd(0) such that

{
xd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t).
(3)

Also written in the form of (2), we have

yd = Hud + Kxd(0). (4)

Remark 1 Assumptions 1 and 2 describe the realizability of the system for desired
trajectory yd . To be specific, Assumption 1 means that the relative degree of the
system is 1. Assumption 2 describes the existence of an input signal ud that can
precisely trace yd . If the system does not satisfy the Assumption 2, the system output
can only be as close as possible to the desired trajectory yd .
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Fig. 1 Block diagram of
ILC

Assumption 3 The initial states of (1) and (3) are identical, i.e., xd(0) = xk(0) =
x0,∀k. Assume that x0 = 0.

Remark 2 Assumption 3 is based on the requirement for system repeatability in
ILC. In order to simplify the algorithm, without loss of generality, take x0 = 0. It is
easy to verify that the result of this chapter is also valid when x0 �= 0.

In this chapter, the above three assumptions will be followed, but in fact, the
SVRG-based ILC can also be established when Assumptions 1 and 2 are appro-
priately relaxed. Section 4 will give specific explanations on how to relax these
assumptions.

Figure 1 illustrates the basic framework of ILC. The plant takes input uk and
generates output yk and gets the error ek = yd − yk between the output and the
desired trajectory yd , which is transmitted to the controller. The controller uses error
ek and input uk to calculate the input signal uk+1 for the next batch and transmits it
to the plant. Our goal is to find a sequence of input {uk}, s.t.

lim
k→∞

‖ek‖ = lim
k→∞

‖yd − yk‖ = 0, (5)

where ‖ · ‖ is the vector 2-norm and its induced matrix norm, and henceforth refers
to this norm if not otherwise specified.

By Assumptions 2 and 3, (5) is equivalent to the optimization problem of function
F :

F (uk) � 1

2N
‖ek‖2 = 1

2N
‖yd − Huk‖2 , lim

k→∞ F (uk) = 0. (6)

2.2 Algorithm Design

The traditional gradient-based ILC updating law (Gu et al., 2019) is
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uk+1 = uk − ηk∇k, (7)

where ηk denotes step length, and ∇k is the gradient of the objective function. From
(6), we have

∇k = ∇F (uk) = − 1

N
HT ek . (8)

In (8), calculating the full gradient requires all the information of conjugate matrix
HT and error ek . To give the gradient under partial information, consider decom-
posing the error ek = [ek(1), ek(2), . . . , ek(N )]T according to the time index. Let
fi (uk) = 1

2 ‖ek(i)‖2 = 1
2

(
yd(i) − hT

i uk
)2
, where hi = [hi1, . . . , hii , 0, . . . , 0]T

denotes the i-th row of the matrix H . Then, equation (6) can be rewritten as

F (uk) = 1

N

n∑
i=1

fi (uk) . (9)

Take the gradient of both sides, we have

∇F (uk) = 1

N

n∑
i=1

∇ fi (uk) = 1

N

n∑
i=1

−hiek(i). (10)

Define random gradient ∇̃k as a discrete random variable that takes value uni-

formly over {∇ fi (uk)}Ni=1, satisfying P
(
∇̃k = ∇ fi (uk)

)
= 1

N . ThereforeE
[
∇̃k

]
=

∇k , i.e., ∇̃k is unbiased estimation of ∇k .
Note that by decomposing (6)–(9), calculating the specific value ∇ fi (uk) of ran-

dom vector ∇̃k only requires one row of the system matrix H and one-dimensional
information of the error ek . Therefore the decomposition can effectively reduce the
information required for each iteration. This technique of gradient decomposition is
the basis for solving the ILC of information incompleteness using SVRG method in
this chapter. In Sects. 3 and 4, two specific decomposition methods are presented for
incompleteness of error and system information, respectively.

Consider the stochastic gradient descent (SGD) method used in Machine Learn-
ing. Replacing the full gradient ∇k with the stochastic gradient ∇̃k in the ILC updat-
ing law (7), we can obtain the SGD-based ILC algorithm. However, the conver-
gence rate of SGD algorithm is O(1/

√
k) even under strongly convex condition

(Allen-Zhu, 2018), which cannot meet the practical requirements. This is because
although the stochastic gradient ∇̃k is unbiased estimate of the full gradient ∇k ,
the variance accumulates as the iteration increases. To reduce the variance, Johnson
and Zhang (2013) proposed a general stochastic variance reducted gradient (SVRG)
descent method. By recording a “snapshot” ũs every few updates to construct an
converging upper bound of the gradient, the rate of convergence of SVRG method
is O

(
ρk

)
under strongly convex condition and O(1/k) under non-strongly convex
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condition. Based on this method, the input updated with “snapshot” ũs is denoted as
us,k , and the SVRG-based ILC updating law is

us,k+1 = us,k − η
(∇ fi

(
us,k

) − ∇ fi
(
ũs

) + ∇F
(
ũs

))
. (11)

For system (2), the SVRG-based ILC algorithm with updating law (11) is shown
in Algorithm 1.

Algorithm 1 SISO SVRG-based ILC framework for SISO systems
Input: η, u0,0;
m ← 2N ; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs , μs ← ∇F (ũs);
for k ← 0 to m − 1 do
wk ← ∇ fi

(
us,k

) − ∇ fi (ũs) + μs ; where i from {1, 2, . . . , N } randomly
us,k+1 ← us,k − ηwk ;

end for
Option I: ũs+1 ← 1

m

∑m−1
k=0 us,k ;

Option II: ũs+1 ← us,m ;
end for

Algorithm 1 has two loops. The outer loop updates the “snapshot” ũs once when
the inner loop iterates m times. The iteration length m is taken as an integer multiple
of N , which is empirically set to 2N . Line 9 and 10 of Algorithm 1 shows twoways of
updating the “snapshot”, Option I andOption II. Option I takes the average of the first
m − 1 inputs as the “snapshot”, without using us,m , so actually the inner loop only
requires m − 1 iterations. The corresponding Option II takes the mth-iteration and
uses us,m as the “snapshot”. The two “snapshot” updating methods do not change the
convergence of Algorithm 1 (Bottou et al., 2018). Due to the limitation of space, we
only prove the convergence of Option I under strongly convex conditions and Option
II under non-strongly convex conditions in this section and Sect. 4, respectively.

2.3 Convergence Analysis

This subsection is divided into two parts, first giving the convex optimization knowl-
edge required for the proof of this chapter and then analyzing the convergence of the
system (2) when the “snapshot” update method of Algorithm 1 is set for Option I.

2.3.1 Preliminaries of Convex Optimization

The basics of convex optimization required for this chapter are given below
(Lyubashevsky, 2005).
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Definition 1 (Smoothness)Suppose S is an nonempty convex subset ofRd , f : S →
R ∈ C1. If ∃L > 0, s.t. ∀x, y ∈ S,

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖,

then we say that f is L-smooth or ∇ f (x) is L-Lipschitz continuous on S, where L
is the Lipschitz constant.

Definition 2 (Strong convexity) Suppose S is an nonempty convex subset of Rd ,
f : S → R ∈ C1. If ∃σ > 0, s.t. ∀x, y ∈ S,

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + σ

2
‖x − y‖2,

then we say that f is σ -strongly convex on S. When σ = 0, f (y) ≥ f (x) +
〈∇ f (x), y − x〉, f is convex.
Definition 3 (Conditional number) If f is L-smooth and σ -strongly convex,
κ = L/σ is the conditional number of f .

Theorem 1 For convex function f , the followings are equivalent:
a. ∇ f (x) is L-Lipschitz continuous,
b. f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L

2 ‖y − x‖2,
c. f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + 1

2L ‖∇ f (y) − ∇ f (x)‖2,
d. 1

L ‖∇ f (y) − ∇ f (x)‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉.
Proof a → b : Denote g(t) = f (t (y − x) + x), then f (x) = g(0), f (y) = g(1),
and g′(t) = 〈∇ f (t (y − x) + x), y − x〉. Therefore,

f (y) − f (x) − 〈∇ f (x), y − x〉 = g(1) − g(0) − 〈∇ f (x), y − x〉

=
1∫

0

g′(t)dt − 〈∇ f (x), y − x〉

=
1∫

0

〈∇ f (t (y − x) + x) − ∇ f (x), y − x〉dt

≤
1∫

0

‖∇ f (t (y − x) + x) − ∇ f (x)‖ · ‖y − x‖dt

≤
1∫

0

L‖t (y − x)‖ · ‖y − x‖dt = L

2
‖y − x‖2.

b → c : Denote fx (z) = f (z) − 〈∇ f (x), z〉, for ∀z, z′ ∈ R
d ,
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f
(
z′) − f (z) ≤ 〈∇ f (z), z′ − z

〉 + L

2

∥∥z′ − z
∥∥2 ,

f
(
z′) − f (z) − 〈∇ f (x), z′ − z

〉 ≤ 〈∇ f (z) − ∇ f (x), z′ − z
〉 + L

2

∥∥z′ − z
∥∥2 ,

fx
(
z′) − fx (z) ≤ 〈∇ fx (z), z

′ − z
〉 + L

2

∥∥z′ − z
∥∥2 . (12)

By using the convexity of f , we have

fx
(
z′) − fx (z) = f

(
z′) − f (z) − 〈∇ f (x), z′ − z

〉
≥ 〈∇ f (z), z − z′〉 − 〈∇ f (x), z − z′〉 = 〈∇ fx (z), z − z′〉 .

Therefore fx (z) is also convex, since ∇ fx (z) = ∇ f (z) − ∇ f (x), fx (z) achieves
its minimum at z = x . By (12),

fx (x) = min
z′ fx

(
z′) ≤ min

z′

{
fx (z) + 〈∇ fx (z), z

′ − z
〉 + L

2

∥∥z′ − z
∥∥2}

= fx (z) + min‖y‖=1
min
t≥0

{
t 〈∇ fx (z), y〉 + L

2
t2
}

= fx (z) + min‖y‖=1

{
−〈∇ fx (z), y〉2

2L

}

= fx (z) − 1

2L
‖∇ fx (z)‖2 .

Therefore fx (z) − fx (x) ≥ 1
2L ‖∇ fx (z)‖2, which implies

f (y) − f (x) − 〈∇ f (x), y − x〉 = fx (y) − fx (x)

≥ 1

2L
‖∇ fx (y)‖2 = 1

2L
‖∇ f (y) − ∇ f (x)‖2.

c → d : Swapping x and y in c. , we have

f (x) ≥ f (y) + 〈∇ f (y), x − y〉 + 1

2L
‖∇ f (y) − ∇ f (x)‖2.

Summing the two equations, we have

1

L
‖∇ f (y) − ∇ f (x)‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉.

d → a: ‖∇ f (y) − ∇ f (x)‖2 ≤ L〈∇ f (x) − ∇ f (y), x − y〉 ≤ L‖∇ f (x) − ∇ f (y)‖ · ‖x −
y‖ by Cauchy inequality, thus ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖. �
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Theorem 2 Let f (x) = 1
2 x

T Qx + qT x + c, whereQ is positive definite. Then f (x)
is L-smooth and σ -strongly convex, where L = λM , and σ = λm. λM , and λm are
the maximum and minimum eigenvalues of Q, respectively.

Proof Since ∇ f (x) = Qx + q, we have

‖∇ f (x) − ∇ f (y)‖ ≤ ‖Q(x − y)‖ ≤ ‖Q‖ · ‖x − y‖ = λM‖x − y‖.

Hence f (x) is λM -smooth. It is easy to verify that

f (x) − f (y) − 〈∇ f (y), x − y〉 = 1

2
(x − y)T Q(x − y).

Since Q is positive definite, the orthogonal similarity can be diagonalized as Q =
PT�P , where P is the orthogonal matrix, � is the diagonal matrix of eigenvalues,
and λm > 0. Thus

1

2
(x − y)T Q(x − y) = 1

2
zT�z = 1

2

∑
i

λi z
2
i ≥ 1

2
λm‖z‖2 = 1

2
λm‖x − y‖2.

Thus f (x) is λm-strongly convex. �
For system (2) and objective function (6), we have:

Proposition 1 Each fi is convex and L-smooth.

Proof For f (x) = 1
2

(
qT x + c

)2
, where q = [q1, q2, . . . , qn]T ∈ R

n, x ∈ R
n, c ∈

R. Obviously, f is convex, and ∇ f (x) = qqT x + cq, ‖∇ f (x) − ∇ f (y)‖ =∥∥qqT (x − y)
∥∥ ≤ ∥∥qqT

∥∥ · ‖x− y‖ ≤ ‖q ∥∥2·∥∥ x − y‖. Therefore, for each fi in (9),
let L = maxi {‖hi‖2} > 0, hi = [hi1, . . . , hii , 0, . . . , 0]T , then fi is L-smooth. �
Proposition 2 F is L-smooth and σ -strongly convex.

Proof By (6), we have

F (uk) = 1

2N
(yd − Huk)

T (yd − Huk)

= 1

2N

(
uT
k H

T Huk − yTd Huk − uT
k H

T yd + yTd yd
)
,

where HT H is positive definite. Then by Theorem 2, F (uk) is L-smooth and σ -
strongly convex, where L and σ are the 1

2N of the maximal and minimal eigenvalues
of HT H , respectively. �

2.3.2 Proof of Convergence

In Algorithm 1, set the “snapshot” updating as Option I. Then, under the assumptions
of system (2), the convergence of Algorithm 1 is given by the following theorem.
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Theorem 3 If each fi is convex and L-smooth, and F is σ -strongly convex. We
denote the optimal point u∗ = argminu F(u), and assume that m is large enough
such that

α = 1

ση(1 − 2Lη)m
+ 2Lη

1 − 2Lη
< 1.

Then the convergence of Algorithm 1 satisfies

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

(
F
(
ũ0

) − F
(
u∗)) .

Proof Since fi is convex and L-smooth, for any i , by Theorem 1,

∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2 ≤ 2L

[
fi (u) − fi

(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉] . (13)

Since 1
N

∑n
i=1 ∇ fi (u) = ∇F(u), and∇F (u∗) = 0,we regard∇ fi as randomvectors

which take values from {∇ fi }Ni=1, then

E

[∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2] = 1

N

n∑
i=1

∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2 ≤ 2L

[
F(u) − F

(
u∗)] .

(14)
For any fixed s, we set wk = ∇ fi

(
us,k

) − ∇ fi (ũs) + ∇F (ũs), then

E
[‖wk‖2

] ≤ 2E
[∥∥∇ fi

(
us,k

) − ∇ fi
(
u∗)∥∥2]

+ 2E
[∥∥∇ fi

(
ũs

) − ∇ fi
(
u∗) − ∇F

(
ũs

)∥∥2]
= 2E

[∥∥∇ fi
(
us,k

) − ∇ fi
(
u∗)∥∥2]

+ 2E
[∥∥[∇ fi

(
ũs

) − ∇ fi
(
u∗)] − E

[∇ fi
(
ũs

) − ∇ fi
(
u∗)]∥∥2]

≤ 2E
[∥∥∇ fi

(
us,k

) − ∇ fi
(
u∗)∥∥2] + 2E

[∥∥∇ fi
(
ũs

) − ∇ fi
(
u∗)∥∥2]

≤ 4L
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)] . (15)

In the above, we have used the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, and the
property E

[‖ζ − Eζ‖2] = E‖ζ‖2 − ‖Eζ‖2 ≤ E‖ζ‖2, as well as (14). Notice that
E [wk] = ∇F

(
us,k

)
, thus
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E

[∥∥us,k+1 − u∗∥∥2]
= ∥∥us,k − u∗∥∥2 − 2ηE

[〈
wk, us,k − u∗〉] + η2

E
[‖wk‖2

]
≤ ∥∥us,k − u∗∥∥2 − 2η

[〈∇F
(
us,k

)
, us,k − u∗〉]

+ 4Lη2
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)]

≤ ∥∥us,k − u∗∥∥2 − 2η
[
F
(
us,k

) − F
(
u∗)]

+ 4Lη2
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)]

= ∥∥us,k − u∗∥∥2 − 2η(1 − 2Lη)
[
F
(
us,k

) − F
(
u∗)]

+ 4Lη2
[
F
(
ũs

) − F
(
u∗)] .

In the above, we have used (15) and the convexity of F , i.e.,
〈∇F

(
us,k

)
, us,k − u∗〉 ≥

F
(
us,k

) − F (u∗).
We sum up the expectations of the above equation for k = 0, 1, . . . ,m − 1. Using

the convexity of F and the selection of ũs+1 under Option I, we have F
(
ũs+1

) =
F
(

1
m

∑m−1
k=0 us,k

)
≤ 1

m

∑m−1
k=0 F

(
us,k

)
. Therefore,

E

[∥∥us,m − u∗∥∥2] + 2η(1 − 2Lη)mE
[
F
(
ũs+1

) − F
(
u∗)]

≤ E

[∥∥us,0 − u∗∥∥2] + 4Lη2mE
[
F
(
ũs

) − F
(
u∗)]

≤ 2

σ
E
[
F
(
ũs

) − F
(
u∗)] + 4Lη2mE

[
F
(
ũs

) − F
(
u∗)] .

Thus, we obtain

E
[
F
(
ũs+1

) − F
(
u∗)] ≤

(
1

ση(1 − 2Lη)m
− 2Lη

1 − 2Lη

)
E
[
F
(
ũs

) − F
(
u∗)]

= αE
[
F
(
ũs

) − F
(
u∗)] .

Summing up the above equation for s = 0, 1, . . . , S − 1, we have

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

E
[
F
(
ũ0

) − F
(
u∗)] . �

Remark 3 Theorem3 indicates thatAlgorithm1has the rate of convergenceO
(
αS

)
.

And this convergence rate is related to the value of α. If the information of the system
H is known, to make α as small as possible, we generally take η = 0.1

L ,m = 
(n),
so that the value of α is close to 1

2 . If the system information is unknown, we need
to find the appropriate η and m by experiment.
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3 SVRG-Based ILC Under Random Data Dropouts

This section follows the SISO system in Sect. 2, but assumes that random data
dropouts occur in the error signal transmission. This section consists of four parts:
system description, algorithm design, performance analysis, and numerical simula-
tion.

3.1 System Description

In SISO system (2), we still hold Assumptions 1–3, but assuming that data dropouts
occur in the transmission of the error signal, as shown in Fig. 2. We further assume
that the dropouts satisfy the Bernoulli distribution model (Shen, 2018). Therefore,
the ILC updating law (7) becomes

uk+1 = uk + η
1

N
HT�kek, (16)

where �k = diag {γk(1), γk(2), . . . , γk(N )}. {γk(i)}Ni=1 is i.i.d following Bernoulli
distribution. Let γ � E

[
γk(i)

]
be the successful transmission rate, where γk(i) = 0

means data dropout occurs in the i-th time of k-th batch, and otherwise, data dropout
does not occur.

Fig. 2 ILC with random
data dropouts
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3.2 Algorithm Design

Based on gradient descent method, there are two main approaches to solve the data
dropouts problem:

(1) Obtain the full gradient by retransmissing. For each transmission, the controller
stores the successfully transmitted data and asks the lost data to be retransmitted
until all data are received. This method eliminates the effect of data dropouts by
retransmissing.

(2) Use successfully transmitted data to construct random gradient. The data is
updated directly using successfully transmitted data each iteration, as shown in
the update law (16).

The first method requires a lot of wasted time when data retransmission is slow.
Although the secondmethod saves the time of data retransmission, the actual running
time may be larger than first method when data retransmission.

Based on the framework of Algorithm 1, the SVRG-based ILC under error data
dropouts can be constructed by utilizing the second method for each iteration, but
calculating the full gradient every several iterations using the first method. This
algorithm does not require data retransmission in most cases compared to the first
method and has a significant improvement in convergence speed compared to the
second method. Thus it can achieve a good balance between convergence rate and
data retransmission speed, and it is more suitable for general data dropout cases.

The formal construction of the algorithm is given below.
Firstly, we take the random gradient ∇̃k � − 1

γ N HT�kek , and we note that

E

[
∇̃k

]
= − 1

N HT ek = ∇k . For the convenience of proof, we present ∇̃k as

∇ F̃k (uk) = 1

γ N

∑
{i |γk (i)=1}

∇ fi (uk) , (17)

where ∇ fi is defined in the same way as (10). Notice that if there is no dropout,
γ = 1, and therefore (17) is equivalent to (10).

Remark 4 Equation (17) is similar to the Batch Gradient Descent (BGD) method
in Machine Learning, but they are fundamentally different. In (17), the number of
∇ fi in each summation

∑
i ∇ fi varies according to the value of the random vector

{γk(i)}Ni=1. But in BGD, the number of ∇ fi is fixed. Therefore, the algorithm based
on gradient ∇ F̃k cannot be directly applied to BGD.

Secondly, similar to (11), ILC updating law under random data dropouts is con-
structed:

us,k+1 = us,k − η
(
∇ F̃k

(
us,k

) − ∇ F̃k
(
ũs

) + ∇F
(
ũs

))
. (18)



96 Y. Gao et al.

Finally, change the iteration lengthm in Algorithm 1 from 2N to �2γ N�. Because
the number of summation in each batch isE

[∑N
i=1 γk(i)

]
= γ N in the desired sense,

∇ F̃k is equivalent to γ N sum of ∇ fi .
In conclusion, SVRG-based ILC under random data dropouts is shown in Algo-

rithm 2.

Algorithm 2 Data dropout SISO SVRG-based ILC
Input: η, u0,0;
m ← 2γ N ; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs , μs ← ∇F (ũs);
for k ← 0 to m − 1 do
wk ← ∇ fi

(
us,k

) − ∇ fi (ũs) + μs ;
us,k+1 ← us,k − ηwk ;

end for
ũs+1 ← 1

m

∑m−1
k=0 us,k ;

end for

For the “snapshot” of Algorithm 2, the update method is taken as Option I in
Algorithm 1, and the recommended iteration length is set to �2γ N�. When γ is
unknown, we need to find the appropriate m by experiments.

3.3 Convergence Analysis

By Proposition 1, every fi is convex and L-smooth, and the following proposition
holds:

Proposition 3 Each value of ∇ F̃k (uk) is convex and L ′-smooth, where L ′ = L/γ ,
and L is the Lipschitz constant corresponding to the smoothness of fi in Proposition
1.

Proof Since every fi is convex and L-smooth, 1
γ N

∑N
i=1 ∇ fi (uk) is L ′-Lipschitz

continuous, where L ′ = L/γ . Because each value of ∇ F̃k (uk) is a linear combina-
tion of ∇ fi , the summation number does not exceed 1

γ N

∑N
i=1 ∇ fi (uk). Therefore

∇ fi (uk); as a result, ∇ F̃k (uk) is convex and L ′-smooth. �

For the convergence of Algorithm 2, we have the following theorem.

Theorem 4 If each value of ∇ F̃k (uk) is convex and L ′-smooth, F is L-smooth and
σ -strongly convex, and for the optimal point u∗ = argminu F(u), assuming that m
is large enough s.t.

α = 1

ση (1 − 2L ′η)m
+ 2L ′η

1 − 2L ′η
< 1.
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Then the convergence of Algorithm 2 satisfies

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

(
F
(
ũ0

) − F
(
u∗)) .

Proof By Proposition 3, replacing fi in the proof of Theorem 3 with ∇ F̃k , equation
(13) is rewritten as:

∥∥∥∇ F̃k(u) − ∇ F̃k
(
u∗)∥∥∥2 ≤ 1

γ N

∑
{i |γk (i)=1}

2L ′ [ fi (u) − fi
(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉] .

The corresponding Eq. (14) is

E

[∥∥∥∇ F̃k(u) − ∇ F̃k
(
u∗)∥∥∥2]

≤ 1

γ N
E

⎡
⎣ ∑

{i |γk (i)=1}
2L ′ [ fi (u) − fi

(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉]

⎤
⎦

= 1

γ N
γE

[
2L ′ [F(u) − F

(
u∗) − 〈∇F

(
u∗) , u − u∗〉]]

= 2L ′
E
[
F(u) − F

(
u∗)] .

The rest of the proof repeats the proof of Theorem 3. �

Remark 5 Theorem 4 shows that Algorithm 2 also converges linearly, and the speed
of convergence is related to α. For the choice of m, note that Theorem 4 differs
from Theorem 3 in the Lipschitz constant corresponding to the smoothness of the
condition. By Proposition 3, with L ′ = L/γ , for

α = 1

ση (1 − 2L ′η)m
+ 2L ′η

1 − 2L ′η
.

We can consider multipling m by γ times, i.e., changing m from 2N to �2γ N�, to
approximately keep the convergence of Algorithm 2.

3.4 Numerical Simulation

In SISO system (1), take the system matrix (A, B,C) as

A =
⎡
⎣ 0.50 −0.25 1.00

0.15 0.30 −0.50
−0.75 0.25 −0.25

⎤
⎦ , B =

⎡
⎣0
0
1

⎤
⎦ , C = [

0 0 1.0
]
.
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Take desired trajectory yd(t) = sin(2π t/50), time length N = 50, initial state x0 =
0, and initial input u0 = 0.When γ = 0.9 and γ = 0.6, the ILCbased on full gradient
(GD), stochastic gradient (SGD) and stochastic variance reduced gradient (SVRG)
is shown in Fig. 3.

When calculating the full gradient, each data retransmission increases 1 to the
iteration number, which means that the controller skips one round of computation
until all error information is completely transmitted. Take the optimal step that the
three methods can converge.

When γ = 0.9, Fig. 3a shows that the SVRG-based ILC converges slightly faster
than the GD- and SGD-based ILC. When γ = 0.6, Fig. 3b illustrates a significant
difference in the convergence speed of the three types ILC, from fast to slow for
SVRG-, SGD-, and GD-based ILC. In summary, the SVRG-based ILC under error
data dropouts, i.e., Algorithm 2, outperforms the GD- and SGD-based ILC under
different successful transmission rates, and the difference becomes more significant
as the γ decreases.

4 Model-Free SVRG-Based ILC for MIMO Systems

This section extends theAlgorithm1 in Sect. 2 fromSISO systems toMIMOsystems.
Firstly, a system description of the discrete linear MIMO system is given. Secondly,
the existing model-free data-driven methods are introduced, and a new model-free
data-driven ILC based on SVRG method is constructed. Thirdly, the convergence
of the algorithm under non-strongly convex conditions is proved. Finally, numerical
simulations are established to verify the convergence performance of SVRG-based
ILC in deterministic and noisy systems.

4.1 System Description

Consider the following discrete linear multi-input multi-ouput (MIMO) systemJ ,
which has q inputs u1k, u

2
k, . . . , u

q
k , and p outputs y1k , y

2
k , . . . , y

p
k . Rewrite the system

in the form of (2),
yk = J uk, (19)

where

J =

⎡
⎢⎢⎢⎣

J11 J12 · · · J1q
J21 J22 · · · J2q
...

...
. . .

...

Jp1 Jp2 · · · Jpq

⎤
⎥⎥⎥⎦ , uk =

⎡
⎢⎢⎢⎣
u1k
u2k
...

uqk

⎤
⎥⎥⎥⎦ , yk =

⎡
⎢⎢⎢⎣
y1k
y2k
...

y p
k

⎤
⎥⎥⎥⎦ .
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Fig. 3 Comparison of three
gradient-based ILC under
error data dropouts

Each Ji j ∈ R
N×N has the sameproperties asmatrixH in (2). yik =

[
yik(1), . . . , y

i
k(N )

]T
,

u j
k =

[
u j
k (0), . . . , u

j
k (N − 1)

]T
, N is the length of time, and the desired trajectory

is

yd =
[(
y1d
)T

,
(
y2d
)T

, . . . ,
(
y p
d

)T ]T
.

For this system, consider the following assumptions:

Assumption 4 System matrixJ �= 0.

Assumption 5 The dimension of input signal does not exceed the dimension of
output signal, i.e., p ≥ q.
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Remark 6 If p = q = 1, the system (19) degenerates to SISO system (2). Unlike
Assumptions 1 and 4 can no longer guarantee that the system matrix J is of full
rank. Assumption 4 is themost fundamental, since ifJ = 0, any input signal cannot
track yd . Assumption 2 is also relaxed from the system, the reasons will be given
in the proof of the convergence. In addition, Assumption 5 is added for the MIMO
system, because if the input dimension is larger than the output dimension, it means
that there is a redundant information.

For desired trajectory yd , consider control objective similar to (6), i.e., to find a
sequence {uk}, s.t.

G (uk) = 1

2p
‖ek‖2 = 1

2p

∥∥ yd − J uk

∥∥2 , lim
k→∞ G (uk) = G

(
u∗) , (20)

where u∗ is the input when G takes the minimum value, and the error signal ek is

ek = yd − yk =

⎡
⎢⎢⎢⎣

y1k − y1d
y2k − y2d

...

y p
k − y p

d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
e1k
e2k
...

epk

⎤
⎥⎥⎥⎦ .

4.2 Algorithm Design

The full gradient ofG in (20) is∇k = ∇G (uk) = − 1
pJ

T
(
yd − J uk

)
.Weneed the

information of J T to calculate the full gradient. However, in model-free learning,
we want to obtain the gradient by conducting experiments on system J only. For
this purpose, Oomen et al. (2014) gives the following method to estimate J T .

Lemma 1 For SISO systemJ = J11, its transposeJ T can be obtained by matrix
multiplication

(J11)
T = TN J11TN ,

where T is the N-order permutation matrix whose anti-diagonal is 1, i.e.,

TN =

⎡
⎢⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0

⎤
⎥⎥⎥⎦ .

Therefore the full gradient of SISO system − 1
p (J11)

T ek = − 1
pTN J11TN ek can be

obtained by a single experiment.

Lemma 2 For MIMO systemJ , whose transpose J T is
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J T =

⎡
⎢⎢⎣

(J11)
T · · · (Jp1)T

...
. . .

...(
J1q

)T · · · (Jpq)T

⎤
⎥⎥⎦ =

⎡
⎢⎣
TN · · · 0
...

. . .
...

0 · · · TN

⎤
⎥⎦

︸ ︷︷ ︸
T qN

⎡
⎢⎣
J11 · · · Jp1
...

. . .
...

J1q · · · Jpq

⎤
⎥⎦

︸ ︷︷ ︸
˜J

⎡
⎢⎣
TN · · · 0
...

. . .
...

0 · · · TN

⎤
⎥⎦

︸ ︷︷ ︸
T pN

.

For symmetric MIMO systems, −J̃ �= J , so the full gradient − 1
pJ

T ek of
MIMO system cannot be obtained from a single experiment on system J . The
method proposed by Oomen et al. (2014) estimates J T from pq experiments:

J T = J qN

⎛
⎝ q∑

i=1

p∑
j=1

Li jJLi j

⎞
⎠J pN , (21)

whereLi j is a matrix consisting of q × p blocks. InLi j , the (i, j) block is unit matrix
of order N , and the remaining blocks are all 0:

Li j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · IN · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
qN×pN .

In (21), the left multiplication matrix Li j takes the i-th row of J , and the right
multiplication matrix Li j takes out the j-th column of J . The two multiplications
lead to a great loss of system information. We would like to improve the above
method by extracting as much system information as possible. Therefore, consider
the following decomposition as (9).

Set gi (uk) = 1
2

∥∥eik∥∥2 = 1
2

∥∥∥yid − ∑q
j=1 Ji j u

j
k

∥∥∥2, then (20) can be written as

G (uk) = 1

p

n∑
i=1

gi (uk) . (22)

Taking gradient on the both sides, we have

∇G (uk) = 1

p

n∑
i=1

∇gi (uk) , (23)

where
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∇gi (uk) = −

⎡
⎢⎢⎢⎣
J T
i1e

i
k

J T
i2e

i
k

...

J T
iqe

i
k

⎤
⎥⎥⎥⎦ ∈ R

qN .

Note that the∇gi (uk) canbe calculate byone line of the systemmatrix. The following
lemma can help us design a controller to take out this information.

Lemma 3 Calculating ∇gi (uk) only needs a single experiment.

Proof First, we note that

[
0, . . . , 0,JN , 0, . . . , 0

]
︸ ︷︷ ︸

T qN
i

⎡
⎢⎢⎢⎣

J11 J12 · · · J1q
J21 J22 · · · J2q
.
.
.

.

.

.
. . .

.

.

.

Jp1 Jp2 · · · Jpq

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣
TN · · · 0
.
.
.

. . .
.
.
.

0 · · · TN

⎤
⎥⎥⎦

︸ ︷︷ ︸
T qN

=
[
J Ti1, . . . , J

T
iq

]
∈ R

N×qN ,

where T pN
i ∈ R

N×pN is the matrix whose i-th block is TN and the rest blocks are 0.
For eik ∈ R

N ,
eik = [0, . . . , 0, IN , 0, . . . , 0]︸ ︷︷ ︸

L i

ek,

where Li ∈ R
N×qN is the matrix whose i-th block is an identity matrix of order N

and the rest blocks are 0.
The matrix multiplication method can retrieve a row of information of the system,

but it cannot directly obtain thematrix for further computation. Therefore, simple and
easy-to-implement linear mappings are considered to change the matrix to suitable
dimension.

Set Ei
k ∈ R

qN×q and define a linear mapping �:

�eik = Ei
k =

⎡
⎢⎣
eik · · · 0
...

. . .
...

0 · · · eik

⎤
⎥⎦ ,

where Ei
k is the matrix blocked by N × 1, with eik on the diagonal and 0 in the rest

of the blocks.
Since

T pN
i J T qN Ei

k = [
J T
i1e

i
k, . . . , J

T
iqe

i
k

] ∈ R
N×q ,

we can define the linear map �: RN×q → R
qN . It maps matrix in R

N×q to R
qN by

arranging each column of the matrix in order to a vector, i.e.,
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Fig. 4 Controller for
model-free MIMO systems

�
[
J T
i1e

i
k, . . . , J

T
iqe

i
k

] =

⎡
⎢⎢⎢⎣
J T
i1e

i
k

J T
i2e

i
k

...

J T
iqe

i
k

⎤
⎥⎥⎥⎦ .

Combining above, we have

∇gi (uk) = −�J pN
i J T qN Li ek .

Thus, ∇gi (uk) can be calculated in a single experiment. �

Based on Lemma 3, a controller can be designed as shown in Fig. 4.
This controller can reduce the calculation of the full gradient in (21) from pq

experiments to p experiments. However, when the system is noisy, there is no guar-
antee that the partial gradient estimated for each experiment ∇gi (uk) all correspond
to the same full gradient ∇G (uk). In nosiy systems, we can use the random gradient

∇̃k , which takes values uniformly {∇gi (uk)}Ni=1 s.t. P
(
∇̃k = ∇gi (uk)

)
= 1

N . How-

ever, the SGD method converges slowly. Combining the convergence speed and the
effect of noise in the system, we consider to design a SVRG-based ILC algorithm
similar to Algorithm 1, as shown in Algorithm 3.

Algorithm 3 Data-driven MIMO SVRG-based ILC
Input: η, u0,0;
m ← 2p; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs,µs ← ∇G

(
ũs

)
;

for k ← 0 to m − 1 do
wk ← ∇gi

(
us,k − ũs

) + µs ; where i from {1, 2, . . . , p} randomly
us,k+1 ← us,k − ηwk;

end for
ũs+1 ← us,m;

end for

Algorithm 3 uses Option II in Algorithm 1 to update the “snapshot”. Ifm is twice
as many as p, a total of 2p experiments are required for each internal iteration.
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p experiments are required to compute the full gradient, so a total of 3p system
experiments are required for each iteration. Compared with the SGD-based ILC,
Algorithm 3 requires pmore systematic experiments perm iterations to compute the
full gradient in order to accelerate the convergence.

4.3 Convergence Analysis

From the following two propositions, we will see that G is not necessarily strongly
convex.

Proposition 4 G and gi are convex and L-smooth.

Proof We note that

∇gi (x) = −

⎡
⎢⎢⎢⎣
J T
i1
J T
i2
...

J T
iq

⎤
⎥⎥⎥⎦
⎛
⎝yid −

q∑
j=1

Ji j x
j

⎞
⎠ = −J T

i

(
yid − Ji x

)
,

where Ji = [
Ji1 Ji2 . . . Jiq

]
, x ∈ R

qN .gi is convex, and

‖∇gi (x) − ∇gi ( y)‖ =
∥∥∥Ji J Ti (x − y)

∥∥∥
≤

∥∥∥Ji J Ti ∥∥∥ · ‖x − y‖ ≤
q∑
j=1

∥∥Ji j∥∥2 · ‖x − y‖.

Let L = maxi
{∑q

j=1 λi j

}
, where λi j is the maximum eigenvalue of J T

i j Ji j . Since

J T
i j Ji j is always semipositive definite, λi j = 0 if and only if Ji j = 0. Hence by

Assumption 4, L > 0, gi is convex and L-smooth.
Since G is a convex combination of gi , G is convex and L-smooth. �

When p = q = 1,J = J11 = diag{1, 0, . . . , 0}, G is not strong convex. The
following proposition gives a sufficient condition for G to be strongly convex.

Proposition 5 If the system matrix J is of full column rank, then G is σ -strongly
convex.

Proof By Assumption 5, p ≥ q, and

G (uk) = 1

2p

(
uT
k J

TJ uk − yTd J uk − uT
k J

T yd + yTd yd
)
.
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Since J TJ is positive definite if and only if J has full column rank. Therefore
by Theorem 2.2, G (uk) is σ -strongly convex whenJ has full column rank, and the
strong convexity factor is 1

2p of the minimum eigenvalue of matrix J TJ . �

When G is strongly convex, we can prove that Algorithm 3 converges linearly
similar to Algorithm 1 (Bottou et al., 2018). The convergence proof of Algorithm 3
under the strongly convex condition is omitted because of limited space. We only
give the convergence proof under non-strongly convex.

First we have the following lemma (Reddi et al., 2016).

Lemma 4 Assume that ck, ck+1, β > 0,

ck = ck+1
(
1 + ηβ + 2η2L2

) + η2L3.

If η, β and ck+1 are chosen such that

Tk =
(

η − ck+1η

β
− η2L − 2ck+1η

2

)
> 0,

then each iteration of Algorithm 3 has an upper bound

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,k − Rs,k+1

Tk
,

where Rs,k � E

[
G

(
us,k

) + ct
∥∥us,k − ũs

∥∥2].
Proof Since gi is L-smooth,

gi
(
us,k+1

) ≤ gi
(
us,k

) + 〈∇gi
(
us,k

)
, us,k+1 − us,k

〉 + L

2

∥∥us,k+1 − us,k

∥∥2 .

For fixed s, let wk = ∇gi
(
us,k

) − ∇gi
(
ũs) + µs , then E [wk] = ∇G

(
us,k

)
.

Since us,k+1 − us,k = −ηwk , we use the above equation and take the expectation on
both sides to obtain

E
[
G

(
us,k+1

)] ≤ E

[
G

(
us,k

) − η
∥∥∇G

(
us,k

)∥∥2] + Lη2

2
E
[‖wk‖2

]
. (24)

In addition, for
∥∥us,k+1 − ũs

∥∥2 , we have
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E

[∥∥us,k+1 − ũs
∥∥2]

= E

[∥∥us,k+1 − us,k

∥∥2 + ∥∥us,k − ũs
∥∥2 + 2

〈
us,k+1 − us,k, us,k − ũs 〉]

= E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2] − 2ηE
[〈∇G

(
us,k

)
, us,k − ũs 〉]

≤ E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2]
− 2ηE

[
1

2β

∥∥∇G
(
us,k

)∥∥2 + β

2

∥∥us,k − ũs
∥∥2] . (25)

In the above, we have used Young’s inequality 〈x, y〉 ≤ 1
2β ‖x‖2 + β

2 ‖y‖2.
For E

[‖wk‖2
]
, we have the following estimation:

E
[‖wk‖2

] = E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) + ∇G

(
ũs)∥∥2]

= E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) + ∇G

(
ũs) − ∇G

(
us,k

) + ∇G
(
us,k

)∥∥2]
≤ 2E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) − (∇G

(
us,k

) − ∇G
(
ũs))∥∥2]

+ 2E
[∥∥∇G

(
us,k

)∥∥2]
≤ 2E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs)∥∥2] + 2E

[∥∥∇G
(
us,k

)∥∥2]
≤ 2L2

E

[∥∥us,k − ũs
∥∥2] + 2E

[∥∥∇G
(
us,k

)∥∥2] , (26)

where the inequality is given by ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, E [‖ζ − Eζ‖2] =
E‖ζ‖2 − ‖Eζ‖2 ≤ E‖ζ‖2 and the smoothness of gi , i.e., ‖∇gi

(
us,k

)− ∇gi
(
ũs) ‖ ≤

‖us,k − ũs‖2.
Denoting Rs,k � E

[
G

(
us,k

) + ck
∥∥us,k − ũs

∥∥2], by (24) and (25), we have

Rs,k+1 ≤ E

[
G

(
us,k

) − η
∥∥∇G

(
us,k

)∥∥2] + Lη2

2
E
[‖wk‖2

]
+ ck+1E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2]
− 2ck+1ηE

[
1

2β

∥∥∇G
(
us,k

)∥∥2 + β

2

∥∥us,k − ũs
∥∥2]

≤ E

[
G

(
us,k

) − η

(
1 − ck+1

β

)∥∥∇G
(
us,k

)∥∥2]

+ η2

(
L

2
+ ck+1

)
E
[‖wk‖2

]
+ ct+1(1 + ηβ)E

[∥∥us,k − ũs
∥∥2]
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From (26), we have

Rs,k+1 ≤ E
[
G

(
us,k

)] + (
ck+1

(
1 + ηβ + 2η2L3

) + η2L3
)
E

[∥∥us,k − ũs
∥∥2]

−
(

η − ck+1η

β
− Lη2 − 2ck+1η

2

)
E

[∥∥∇G
(
us,k

)∥∥2]

= Rs,k −
(

η − ct+1η

β
− Lη2 − 2ck+1η

2

)
E

[∥∥∇G
(
us,k

)∥∥2] .

Let Tk �
(
η − ck+1η

β
− η2L − 2ck+1η

2
)

,Tk > 0, then

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,k − Rs,k+1

Tk
. �

Because of the complexity of non-strongly convex problem, we do not consider
convergence criteria in Theorems 3 and 4 such asE [G(u) − G (u∗)] ≤ ε, but instead
proving E

[‖∇G(u)‖2] ≤ ε for Algorithm 3. Note that if G is σ -strongly convex, it
is easy to verify that

G(u) − G
(
u∗) ≤ 1

2σ
‖∇G(u)‖2.

Thus by E
[‖∇G(u)‖2] ≤ ε, we have E [G(u) − G (u∗)] ≤ ε. However, this rela-

tionship does not always hold under non-strongly convex case (Ghadimi & Lan,
2013). The following theorem gives the proof of the convergenceE

[‖∇G(u)‖2] ≤ ε

of Algorithm 3.

Theorem 5 Suppose each gi is convex and L-smooth, and G is convex. For 0 ≤ k ≤
m − 1, ck, ck+1, β > 0, cm = 0 satisfying

ck = ck+1
(
1 + ηβ + 2η2L2

) + η2L3.

and η, β, ck+1 are chosen such that

Tk =
(

η − ck+1η

β
− η2L − 2ck+1η

2

)
> 0.

Let τm = mink Tk, ua be a uniformly distributed random vector with values {us,k |
0 ≤ s ≤ S − 1, 0 ≤ k ≤ m − 1}. Denote that u∗ = argminu G(u), then Algorithm 3
satisfies

E
[‖∇G (ua)‖2

] ≤
E

[
G

(
ũ0

)
− G (u∗)

]
Smτm

.

Proof We take k = 0, 1, . . . ,m − 1 in Lemma 1 and sum up to obtain
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m−1∑
k=0

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,0 − Rs,m

τm
=

E

[
G

(
ũs) − G

(
ũs+1

)]
τm

.

By the definition of Rs,k , we choose us,0 = ũs
, us,m = ũs+1 in ũs . We take s =

0, 1, . . . , S − 1 in the above and sum up to get

E
[‖∇G (ua)‖2

] = 1

Sm

S−1∑
s=0

m−1∑
k=0

E

[∥∥∇G
(
us,k

)∥∥2]

≤
E

[
G

(
ũ0

)
− G

(
ũs)]

Smτm
≤

E

[
G

(
ũ0

)
− G (u∗)

]
Smτm

.

In the above, use the definition of ua and G
(
ũs) ≥ G (u∗). �

Remark 7 Theorem 5 shows that the convergence of Algorithm 3 is O(1/Sm)

under non-strongly convex conditions. The convergence of the corresponding SGD-
based ILC under non-strongly convex conditions is O(1/

√
Sm) ((Johnson & Zhang,

2013)). Moreover, the theorem states that the convergence of Algorithm 3 is only
related to the step size η but not to the choice of the number of iterations m. Since
the system information is unknown, η needs to be estimated by experiment.

Remark 8 Theorem 5 indicates that G (uk) can approach the optimal value
G (u∗) = (1/2p)‖ yd− J u∗‖2, i.e., uk can converge to the optimal input u∗. Simi-
larly, the Assumption 2 can also be changed to limk→∞ F (uk) = F (u∗) without
affecting the convergence of Algorithm 1 and Algorithm 2. If F (u∗) = 0, then
limk→∞ F (uk) = 0.

Remark 9 System (21) degenerates to SISO system when both input and out-
put are one dimension. At this point, the theorem indicates that when system (2)
satisfies Assumption 4 (Assumption 1 need not to be satisfied), Algorithm 1 and
Algorithm 2 still converge with updating the “snapshot” as Option II. But the con-
vergence rate becomes O(1/Sm)when the objective function is not strongly convex.

4.4 Numerical Simulation

We take MIMO systems with 21 × 21 input-output dimensions randomly generated
by the Matlab drss function (Aarnoudse & Oomen, 2021) and set the time length to
N = 42. The desired trajectory yd is 0.025 in each dimension.Model-free ILC based
on full gradient (GD), stochastic gradient (SGD), and stochastic variance reduced
gradient (SVRG) are performed in Fig. 5. We take the optimal step of each algorithm
after multiple experiments.

As shown in Fig. 5a, the GD- and SVRG-based ILC converge similarly for deter-
ministic systems, and both are faster than the SGD-based ILC algorithm.
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Fig. 5 Comparison of three
data-driven gradient-based
ILC under MIMO systems

For randomly generatedMIMO systems with input-output dimensions of 21 × 21
and N = 42, we add Gaussian white noise to the system.

From Fig. 5b, we can see that both GD- and SGD-based ILC converge worse than
SVRG type ILC when the system is noisy, and SVRG-based ILC can still maintain
excellent convergence when the system is noisy.
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5 Conclusions

This chapter focuses on exploring ILC based on the SVRG method. Firstly, Sect. 2
gives the basic framework of SVRG-based ILC and proves that the algorithm con-
verges at a rate of O(αk) under smooth and strongly convex condition. Secondly,
Sect. 3 designs a SVRG-based ILC algorithm to solve random error data dropouts
and proves that the algorithm converges linearly. Finally, Sect. 4 constructs a model-
free SVRG-based ILC by improving the existing model-free algorithm for MIMO
systems and proves that the convergence rate is O(1/k) under smooth and convex
condition. Compared to the GD- and SGD-based ILC, two numerical simulations in
Sects. 3 and 4 verify that the SVRG-based ILC has superior convergence rate in both
the random error dropouts and model-free contexts, respectively.

It should be noted that the SVRG-based ILC framework given in this chapter is
not only applicable to the random error dropouts and model-free problems but can
also be utilized to solve other error or system information deficient problems by
properly decomposing the control objectives. Future research includes comparing
its advantages and disadvantages with the stochastic approximation (SA) method,
extending the framework to other information deficient problems, and attempting to
develop algorithms with faster convergence based on this framework.
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