
A Novel Approach for Improving
Accuracy for Distributed Storage
Networks

Liu Lu, Ke Yuanyuan, and Yuan Yong

Abstract With the development of storage technology and Internet technology,
cloud storage continues to make its impact. Scalability, reliability, and lowered costs
have made cloud storage widely used with success in businesses and individuals.
The advent of the blockchain has brought some changes. As the incentive layer for
IPFS, Filecoin allows storage resources to become tradable, greatly extending storage
capacity. However, the process of testing the integrity of data still needs constant
improvement. In this chapter, we propose a new data audit proof, in which nodes
continuously upload hashed data that has been added to random numbers, and the
smart contract will compare the result to verify the integrity of the data. Meanwhile,
data owner could calculate and then challenge to verify the data integrity. There are
audit miners responsible for regulating the behavior of miners and the protection of
users’ data, and audit miners in a state of semi-participation. It is demonstrated later
in the chapter that this proof is accurate enough and resistant to attacks.

Keywords Distributed storage networks · Cloud storage · Blockchain

1 Introduction

Storage technology has evolved rapidly over the last few decades, with continuously
decreasing hard disk prices and ever faster data speeds. However, the rapid growth of
the online economy and big data technology has caused the need for data storage to
expand exponentially, leading to the idea of cloud storage, inwhich datawill be stored
on cloud servers provided by third parties, and thus users can access data in a timely

L. Lu · K. Yuanyuan · Y. Yong (B)
School of Mathematics, Renmin University of China, Beijing, China
e-mail: yong.yuan@ruc.edu.cn

L. Lu
e-mail: liulu0309@ruc.edu.cn

K. Yuanyuan
e-mail: ke_yy@163.com

© The Author(s) 2023
Z. Zheng (ed.),Proceedings of the Second International Forum on Financial Mathematics
and Financial Technology, Financial Mathematics and Fintech,
https://doi.org/10.1007/978-981-99-2366-3_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-2366-3_4&domain=pdf
mailto:yong.yuan@ruc.edu.cn
mailto:liulu0309@ruc.edu.cn
mailto:ke_yy@163.com
https://doi.org/10.1007/978-981-99-2366-3_4


66 L. Lu et al.

and more convenient manner. Typically, cloud storage providers use technologies
such as distributed storage (Mattson et al., 1970) to significantly reduce storage costs.
However, the centralized storage makes cloud storage providers vulnerable to single
points of failure and can create risks such as overstepping provider privileges and
causing information leakage. Efficient centralized storage provisioning will remain
mainstream in the future, but there is also an emerging and urgent need to meet users’
needs for information security.

Traditional cloud storage providers, such as Amazon and Google, build cloud
storage architectures with vast resources, using distributed storage technology to
serve billions of users. Distributed storage means that data are spread across mul-
tiple storage servers and these scattered storage resources form a virtual storage
device, effectively storing data in various places across the provider. The benefits
of distributed storage are increased system reliability, availability, and access effi-
ciency, as well as improved scalability. But the disadvantages are also obvious. We
store our data on Google Cloud Drive on the basis that we trust Google to protect our
data from being tampered with or lost, which can also lead to other disadvantages.
The central server is vulnerable to attacks from adversaries, and internal failures
and malpractice can also lead to data loss. As such, the security of cloud storage
has also been a focus of attention in recent years. Traditional symmetric encryption
algorithms put the keys on a central server, which makes it easier for attackers to
get these keys and thus reduces the security of information. Moreover, data integrity
verification whether data are stored efficiently and without deletion is also a crucial
part of cloud storage services. Literature (Priyadharshini, 2012) summarizes the data
integrity verification of traditional cloud storage, which is performed by TPA (Third
Party Auditor) between the user and the CSP (Cloud Service Provider) to validate
the data. The user poses a challenge to verify the integrity of their cloud data, and
the TPA responds by comparing the original data, or the hash value of it according
to literature (Zikratov et al., 2017), to verify the integrity. However, inefficiencies
and tripartite or joint evil behavior can make opaque audit proofs unreliable. The
convenience of centralized services brings with it the corresponding pitfalls. With
the emergence of Bitcoin, decentralized technology continues to be improved, and
decentralized storage brings an important addition to the traditional storage market.

The idea of providing decentralized storage has become popular with the rise
of blockchain technology, and their combination could be considered a perfect fit.
Blockchain enables reaching the consensus among decentralized, untrusted nodes.
Its development has facilitated intensive research in several technologies such as
cryptography, data structures, and consensus algorithms. When data are stored in
multiple copies on the hard drives of different nodes, we cannot guarantee that all
nodes are trustworthy. How to ensure the security and integrity of the data is a very
crucial issue. After ensuring the stability of the storage, we also need to consider how
to motivate people to become nodes and provide their own storage capacity, which
requires a reasonable incentive mechanism.

Much of the current research is focused on issues such as access control,
integrity verification, data retrieval, and traceability. Many platforms that
offer distributed storage have already been launched. For example, the Sia



A Novel Approach for Improving Accuracy … 67

(Vorick & Champine, 2023) storage system, which was online earlier, has been
unable to be developed effectively due to its less than optimal incentive design. IPFS
(Benet, 2014), as a relatively complete platform, is a distributed storage system pro-
tocol for distributing and storing resources of various data types. Filecoin (Protocol
Labs, 2023), as its incentive layer, incentivizes storage miners and retrieval miners to
complete their own work by issuing tokens. Taking Filecoin as an example, there are
three roles in Filecoin: client, storage miner, and retrieval miner. Clients pay for the
service of storing and retrieving data. They can choose from a selection of available
service providers. If they want to store private data, they need to encrypt it before
submitting it to the service provider. Storage miners store clients’ data for a reward.
They decide for themselves how much space to provide for storage. After the client
and the storage miner have reached an agreement, the miner is obliged to provide
proof of their stored data on an ongoing basis. Everyone can view this proof and
make sure that the storage miner is reliable. Retrieval miners give data to customers
upon their request. They can retrieve data from clients or storage miners. Retrieval
miners and clients use small payments to exchange data and tokens. The data are
fragmented and the client pays a small amount of tokens for each fragment. Retrieval
miners can also act as storage miners at the same time.

We will now show how a decentralized storage network stores and audits. As
shown in Fig. 1, we demonstrate a cloud service with blockchain participation in two
aspects: storage and audit. Data owners upload their data to miners on the server,
who store the data and record the transactions on the blockchain. The blockchain also
verifies data owner’s information and protects the user’s privacy. In order to ensure
that their data are stored intact on the server, data owner challenges the TPA, which

Fig. 1 Decentralized storage network framework



68 L. Lu et al.

sends a request to the system and verifies the data provided by the miner in response
to data owner’s challenge. The verified result is then recorded on the blockchain. So
each block in the blockchain stores information such as the height of the block, the
block header, information about the previous block, a timestamp, storage message,
ID, and Auditing message.

Data integrity verification in distributed storage, i.e., the red lines in Fig. 1, is our
concern. Data integrity verification is the verification that data is stored intact in the
storage space of each untrusted node. This affects the security of the data and is
key to the availability of the storage service. Current data integrity validation can be
divided into two kinds, one for traditional cloud-based data integrity validation and
the other for blockchain-based data integrity validation. In turn, audit solutions using
blockchain technology can be divided into whether or not TPA is involved. Most of
these audit schemes verify against raw data and avoid dishonest behaviors such as
delayed audits, sybil attack, and generation attack through consensus and incentive
mechanisms. Blockchain-based data integrity verification can be used not only for
auditing cloud data in cloud storage networks but also for different data scenarios
to improve the security of the system. However, efficiency and accuracy cannot be
achieved together in the process of decentralized data auditing. This will be described
in Sect. 3.Most of the verification schemes that haveworked better in current research
do not run in public blockchains or require the participation of trusted central nodes.
Instead, in fully decentralized blockchains, most are more efficient in order to ensure
availability. However, the accuracy of verification cannot be fully guaranteed and
the system is vulnerable to dishonest attacks. Our algorithm will improve long-term
efficiency and stability in a fully decentralized blockchain with guaranteed accuracy.

Our work is based on a modification of Filecoin for verifying the integrity of
data in distributed storage. The audit miner in this algorithm is semi-involved and
determines whether the data are kept intact by comparing the hash values of the
data shards. If the result does not meet the desired goal, the audit miner will first
ensure the integrity of the data and then find the storage miner that created the prob-
lem, acting as a reasonable supervisor. In Sect. 2, we will summarize the past work
on distributed audit algorithms and describe the characteristics of each platform.
In Sect. 3, we will present our audit algorithm and analyze its advantages and the
problems it solves. Sect. 4 will analyze the fault tolerance of this audit proof.

2 Related Works

2.1 Audit Research

Ensuring data integrity in cloud computing has always been an important issue,
and it is a guarantee that cloud computing can be widely used. Traditional data
integrity verification can be divided into deterministic and probabilistic types. The
dishonest behavior of TPA is also an important issue for audit algorithms when they
are entrusted to perform audit integrity verification work. Blockchain technology



A Novel Approach for Improving Accuracy … 69

with a decentralized architecture no longer relies excessively on the honesty of third
parties and reaching an overall consensus based on a reasonable consensus and
incentive mechanism and then a mutual benefit for all parties is the core element to
be explored at this stage.

Literature (Zikratov et al., 2017) proposes a private blockchain called Zeppar,
which determines the integrity of data by comparing the hash values of files. The
use of cryptographic techniques to verify data integrity by comparing the original
data is a common and applicable method. Such an approach is also used in literature
(Wei et al., 2020), where smart contracts monitor data changes based on the unique
hash value corresponding to the file generated by the Merkle Hash Tree (MHT).
Verifying data integrity by constructingMHT is a relatively convenient method, e.g.,
in literature (Bai et al., 2018; Li et al., 2020). In literature (Li et al., 2020), data owner
(DO) stores the verification tag of the data on the blockchain and verifies the data
integrity by constructingMHT. After the blockchain network receives a request from
the DO, it calculates the MHT root of the specified data, the CSP receives the DO’s
challenge and also calculates the corresponding MHT root, and the DO verifies the
integrity of the data by comparing the two. We can find that neither the method of
comparing file hash values nor the construction of MHT requires the involvement
of TPA. Such an approach can be very efficient for verification but will compromise
on the degree of centralization or be less fault-tolerant. It is relatively suitable for
distributed storage systems where efficiency is required.

In order to ensure the activity of the data, some auditing schemes use the provision
of random numbers to avoid users falsifying the results of data validation in advance.
Literature (Pinheiro et al., 2020) uses the user’s data information to generate random
challenges and uses the smart contract to audit the challenge-response information
sent by the CSP. The audit scheme also assesses the trustworthiness of each CSP.

2.2 Distributed Storage Project

• Sia: A relatively early decentralized storage platform, Sia in literature Vorick and
Champine (2023) enables storage contracts to be formed between peer-to-peer
nodes. The contracts are stored in the blockchain, making them publicly auditable.
Sia divides files into 30 parts, encrypts each part using the Threefish algorithm,
and distributes them to different nodes. Reed-Solomon erasure coding makes it
possible to fully recover a file by requiring only any 10 of the 30 parts.WithMerkle
Tree (Ralph, 1988), nodes are required to upload storage proofs (Maxwell, 2023)
within a certain time frame or be penalized.

• Filecoin: Literature (Benet, 2014) proposes a distributed peer-to-peer web proto-
col: IPFS (InterPlanetary File System). Based on a content addressing protocol,
it makes network transmission faster, content storage easier and nodes protection
safer. Filecoin can be considered the incentive layer of the IPFS system, providing
decentralized cloud storage in the form of tokens distributed in a rational way.
Its audit algorithm Proof-of-Replication shown in literature (Protocol Labs, 2017)



70 L. Lu et al.

deferred encoding of data to get a copy of the data and then generates a zero-
knowledge proof to guarantee the correctness of the encoding process. Its other
consensus algorithm, Proof-of-Spacetime, requiresminers to periodically generate
Merkle proofs for the replicas and submit them to the blockchain compressed with
zero-knowledge proofs for tokens reward. Such an incentive encourages miners to
store data correctly and to prove data liveness to obtain proof of work as a reward.

• Arewave: Arweave cloud storage platform is similar to Filecoin in that it features
a service that provides permanent storage. It has designed a new consensus algo-
rithm, Proof of Access, which is based on the concept that new blocks require
random validation of previous blocks. This turns the original blockchain into a
network of blocks, where nodes no longer need to store exponentially growing
amounts of data, but only certain data, allowing the data to be distributed evenly
across the system to achieve distributed storage.

• Storj: Storj Labs (2018) built at Kademlia is not a fully decentralized cloud storage
system and it is dedicated to data storage durability and storage quality. Satellite
nodes act as fully trusted nodes in storj for data management and data integrity
review. The data are sliced after encryption and the data integrity is guaranteed by
Proof of Retrievability (Juels et al., 2007) consensus algorithm. The satellite nodes
are responsible for communication between the user and the storage node, for stor-
ing metadata for the user, as well as auditing and enforcing Proof of Retrievability.
The presence of the satellite nodes makes storj resistant to Byzantine attacks, but
at the expense of the network’s performance, resulting in poor scalability.

Table 1 has given the difference among these four platforms. We can find that
their audit proofs are different and lead to other differences in other natures.

However, there are still some flaws. The current work almost verifies the integrity
of distributed storage data under specific conditions, but none of it has a systematic
analysis of the limitations of auditing. We will analyze the compromise factors that

Table 1 Distributed storage networks comparison

Degree of
decentralization

Storage location Consensus
algorithm

Audit proof

Sia Fully Off chain Proof of work Proof of storage
(Maxwell, 2023)

Filecoin Fully Off chain Expected
consensus
(Protocol Labs,
2017)

Proof of
replication, proof
of spacetime

Arweave Fully On chain Proof of work,
proof of access

Proof of access

Storj Satellite nodes
exist

Off chain Proof of work,
proof of stake

Proof of
retrievability
(Juels et al.,
2007)



A Novel Approach for Improving Accuracy … 71

can arise from audit algorithms in distributed storage in the next section. We also
analyze what requirements the Filecoin platform should have for auditing and what
constraints it should have on storage miners. We design an audit proof for distributed
storage and prove that it is sufficiently accurate and fault-tolerant.

3 Audit Algorithm

3.1 An Audit Framework

In this chapter, we will reformulate the audit proof of Filecoin to address the current
problems of Filecoin platform. Our goal is to retain the decentralized nature and
allow the distributed storage network to complete the audit process on its own. Audit
miners will only appear when necessary. This will ensure the accuracy of the audit
and improve the efficiency of all nodes in reaching consensus on the audit results.
We propose the audit impossibility proposition regarding the distributed storage
networks as follows:

Proposition 1 (Audit impossibility): The degree of decentralization, the accu-
racy of audit results, and audit efficiency cannot be reached at the same time.

When integrity checks are performed on an absolutely centralized storage server,
CSP can invest significant resources in a way that increases the efficiency and accu-
racy of the audit, as many cloud storage providers do nowadays. This is the approach
that currently dominates the cloud storage market. However, with decentralization,
we cannot perform fast and efficient integrity checks on untrustworthy storage nodes
based on today’s computing power and the sheer volume of data. How to balance
accuracy and efficiency is currently the key issue for auditing in all distributed stor-
age. For Filecoin, decentralization is its biggest advantage. However, too frequent
data auditing not only affects the accuracy of the data audit results, but also causes
the system to be less stable when the nodes are offline. Therefore, to improve the
efficiency of auditing while ensuring the accuracy of the audit results is the issue
considered in this chapter.

Our design starts by slicing and numbering the data owners encrypted data using
the shard technique and then generates multiple copies (k copies) by replication,
which will be stored randomly on storage miners. When auditing these files, we will
take the last 16 bits of the hash of the previous block as the new random numberN ,
which all miners will add to each of their stored shards for hashing. The result will
need to be uploaded to the hash pool in a certain order with the miners’ signatures.
All the hash values are automatically matched by the smart contract. By determining
whether the corresponding hash value is equal to k, it is concluded that the data are
stored intact in the distributed storage network. This allows a simple comparison of



72 L. Lu et al.

Fig. 2 Algorithm overview

the results to determine whether the data owners’ data are completely stored across
the network. The data owner can also, but not necessarily, add his/her own shard
data to the random number N and hash them. The result is then compared across
the hash pool to determine if the data are stored correctly on the miners by finding
the same k values in the network result. If the storage miner is not validly stored, the
audit miner needs to find the problem miner quickly and back up the data in time
(Fig. 2).

There are three roles in our platform, data owners U , storage miners M , and
audit miners A. Data owners upload encrypted data according to their needs and can
challenge the integrity of the data. The storage miner stores the data sequentially as
assigned by the smart contract as well as uploads proof of data integrity every once in
a while. The audit miner is responsible for handling the distribution of data, as well
as reviewing and supervising miners, protecting data integrity, regulating content,
and assuming legal responsibility. The number of audit miners is limited and storage
miners can be audit miners at the same time. Audit miners only appear if there are
problems with the audit.

3.2 Data Uploading

From the moment the user uploads data, the user Ui should divide his/her data D(i)
into several shards by using slicing and encryption technology in order to keep the
data secure. If he/she does not have enough computing power to handle too large
data, he/she can upload them to audit miner A for slicing and encrypting and then
pay some tokens. All the shards are then distributed by the audit miner to storage



A Novel Approach for Improving Accuracy … 73

miner M and back to userUi . Data slicing is a common technique used in distributed
storage to protect the data. We use D(i, j) to denote the j th shard of Ui ’s data. The
number of shardsUi has, Ji , will be determined by the size ofUi ’s data. Replication
is also used to replicate k copies of D(i, j): D(i, j, k). Before uploading, the Ui

can add a random number N known only to him/her to calculate the result for all
D(i, j) and encrypt the result as a validation audit option later. Next, the miner Ma

is randomly sent a request to store the corresponding shard or not, with a specific
request (Definition 1). Ma that receives the request has to choose whether to store
the data or not, depending on its storage capacity. The miner who confirms storage
will store the corresponding D(i, j) on his local hard disk. The label (i, j) of the
data D(i, j) will only be stored in the smart contract and will not be transmitted
to the miner who stored it. The miner will not know the exact label (i, j) of the
data he/she stores, but will only number them sequentially according to the order
in which he/she stores D(i, j). If D(i, j) is the sixth data storage of Ma , then the
corresponding D(i, j) is Ma(6). We would use Ma() to express the set of shards
stored by Ma . This allows for better protection of the user’s information and data,
and prevents the exchange of content between miners as much as possible.

We can effectively prevent malicious miners from sybil attacks or other attacks
by slicing and replicating the data and storing them in a decentralized manner. We
also require an appropriate specific request for sending shards to avoid joint attacks
by miners.

Definition 1 (Request of distributing shards): The distribution of the set
{D(i, j, k),∀i, j} to miners is subject to the following principles:

1. The number of Ma storing the data of D(i) cannot be less than half of Ji .
2. No miner Ma will receive two or more storage requests for a single copy of data

D(i, j).
3. No miner Ma will receive storage requests for D(i, j) and D(i, j + 1).
4. Miners Ma and Ma′ will not receive storage requests for D(i, j) and D(i, j

′
)

together.
5. No miner will store more than y copies of D(i).
6. Miners Ma and Ma′ will store no more than z identical shards in the shards pool.

This ensures that the data are stored in a sufficiently decentralized manner, with
enough miners storing the data owner’s data together, so that a single point of failure
does not have a major impact on the overall storage. It also ensures that the user’s
data are not stolen in its entirety, guaranteeing the security of the data. Definition 1
also makes the data stored by the two nodes different, avoiding outsourcing attack.
We will specifically analyze the effectiveness of our algorithm in Sect. 4.

3.3 Self-integrity Verification

Now all data owner’s data has been uploaded to each storage miner. We then need to
continuously interact with all miners to ensure that data liveness is guaranteed and



74 L. Lu et al.

the data are being stored intact. This is the core of the work in this chapter. We have
described in Sect. 2, the current auditing methods, both fully decentralized and not
fully decentralized, that are able to do the job but not well in the accuracy of audit
results or audit efficiency. This chapter proposes a solution that does not require the
data owner’s data to be compared and achieves self-auditing through self-comparison
in the blockchain network, which substantially improves the long-term stability of
the system. At the same time, our proof is more efficient and can quickly reach a
consensus on the integrity of all data in a short period of time with responses from
all nodes. We also allow data owners to initiate challenges and quickly check the
integrity of their own data through the hash algorithm.

The blockchain network audits whether the storage miners have correctly stored
the corresponding data within a period T . To ensure timeliness, we use the last 16 bits
of the hash value of the previous block as a random numberN . After gettingN , the
miner has to upload the result of the hash operation of all his shards andN together
with his signature Ma_sign within a specified time T . Now we obtain a new set:
{hash(Ma(),N ), Ma_sign} to express the result of the hash of all Ma’s shards and
its signature. It is important to note that the set is ordered, again according to the order
in which Ma stores the shards. The advantage of this design is that even when faced
with a pile of results, the smart contract can determine the corresponding label (i, j)
based on its position. We will use H(a, b) to denote the hash value corresponding
to the bth shard of the miner a with N , D(i, j)_hash to denote the hash value of
D(i, j) withN (Table2).

After the storage miner Ma has uploaded his/her {hash(Ma(),N ), Ma_sign},
the smart contract will quickly determine if the number of H(a, b) is equal to the
number of shards already stored by Ma , and if it does not match, invalidate this
result and demand Ma to recalculate and upload the new result. If the result matches,
the result is accepted and moves on to the hash pool. Next, the smart contract will
compare the number of occurrences of all the results in the hash pool. If there are
exactly k identical results, i.e., if there are k sets (a, b) s.t. all the results of H(a, b)
are equal, then it will be decided that all the copies of the shard have been stored
correctly. This would be the best result that can be achieved. All the storage miners
need to store their data correctly for their own benefits. If all miners store correctly,
all the nodes can quickly and accurately obtain the result that the data are stored
intact. We will now determine whether the data are stored correctly based on the
occurrences of each hash value.

Definition 2 (strong integrity): The number of occurrences of D(i, j)_hash
is exactly equal to k.

Definition 3 (weak integrity): The number of occurrences of D(i, j)_hash is
greater than or equal to 2 and less than k.



A Novel Approach for Improving Accuracy … 75

Table 2 Notations for
operations/implications

Symbol Notations for
operations/implications

U Data owners

M Storage miners

A Audit miners

Ui The j th data owner

D(i) Data owner i’s data

D(i, j) The j th shard of Ui ’s data

k The number of copies

Ji The number of Ui ’s shards

D(i, j, k) All of the Ui ’s shards

Ma The ath storage miner

(i, j) The label of D(i, j)

Ma(6) The sixth shard stored by Ma

Ma() The set of Ma’s storage

T Cycle time for storage
miners uploads

N The random number set by
the user

N The random number from the
previous block

Ma_sign Ma’s digital signature

H(a, b) Ma(b)’s hash value with N

D(i, j)_hash D(i, j)’s hash value with N

If all shards achieve strong integrity, we can assume that the storage network has
stored all data correctly and that all nodes would agree on this. If all shards achieve
weak integrity, we can assume that all data are stored securely on the storage network.
Weak integrity is a lower requirement for data availability in storage networks.During
auditing, it is more of a constraint on theminers, so strong integrity is what is required
by distributed storage networks.

Wewill now discuss what to do if strong integrity is not achieved. If the number of
occurrences of a hash value is greater than k, the possible scenario is that the miners
are jointly misbehaving with each other and copying the same result for output. This
is because when the storage miner receives the shard corresponding to that result, no
other shards are received, and only if the miner has stored other miners’ shards. In
this case, the k + α results are assigned a number (i, j) based on their location, and
the numbers are then compared to find the miner with the incorrect result by audit
miners A. The first step is to find the set of {(i ′, j ′)} corresponding to the wrong
hash value, and then check whether the number of occurrences of hash value is k. If
it is k, the shard has been completely stored in the storage network. Otherwise, this



76 L. Lu et al.

number can only be less than k, if so, A needs to find which miners did not upload
the right value and ask them to upload in time. If they upload the wrong results, ask
them to re-store correctly to solve the problem.

In fact, it is more often the case that the number is less than k. In case when the
hash values whose number is less than k, we need the correspondingminers to upload
proofs of the correct storage of the corresponding D(i, j). The following results may
occur:

1. The miner correctly stores D(i, j) and uploads the correct hash result.
2. The miner correctly stores D(i, j) but uploads the wrong hash result.
3. The miner incorrectly stored D(i, j) but uploaded the correct result.
4. The miner incorrectly stored D(i, j) and uploaded the wrong result.

Audit miners A need to immediately copy D(i, j) to ensure that they couldn’t
be lost. After that, A will handle errant storage miners as above. Such handling
effectively avoids errors caused by miners offline. We will also judge storage miners
who make frequent errors as malicious miners. If for the same D(i, j), all the results
of the hash operation are different or it is not possible to distinguish the correctness
of the result, then A can ask all miners storing the D(i, j) to recalculate it with the
random number N and compare it with the result calculated byUi . In time, copy the
data of the miners that output the correct result and askUi to re-add another random
number N to the calculation and keep the result for future use (Fig. 3).

The above is the process by which a blockchain storage network audits of its own.
This process allows for quick consensus to be reached under the condition that all
the data are stored correctly, as well as finding malicious nodes if consensus is not
reached.

3.4 Data Owner’s Integrity Verification

After the data owner getsN , he/she can also get a set of hashvalues H(i, j)generated
by Ui by performing a hash operation on his/her own data shards D(i, j). Smart
contract will look for k occurrences of these values in the hash pool to determine
whether his/her data have been stored completely. If exactly each result occurs k
times, then it is almost certain that Ui ’s data has been stored correctly. If not, then
the storage miner in problem can be found quickly and the data copied by the audit
miner in his/her storage in time. Such an audit approach improves the shortcomings
of self-integrity verification and increases the accuracy of data integrity verification.

3.5 The Game of Miners Versus Storage Networks

Storageminers can only earn if they store the user’s data correctly and upload H(a, b)
correctly. If the miner wants to earn without storing correctly, he needs to join with



A Novel Approach for Improving Accuracy … 77

Fig. 3 Audit algorithm

other miners. The miner does not know the number (i, j) of the data he is storing,
so he needs to send a request to all miners in the network. And other miners can
be rewarded by reporting those malicious nodes. The union of storage miners does
not earn a reward, only the individual fulfillment of the storage function makes the
storage network maximize its benefits. For audit miners, audit miners are only given
the appropriate audit access if there is a problemwith the storageminer. Audit miners
are only able to earn more rewards by continuously completing audit tasks and tasks
delegated by data owners. These ensure that all miners are driven by profit to achieve
stability.



78 L. Lu et al.

Thus our system satisfies incentive-compatible property and also data integrity,
recoverability, publicly verifiable, and auditability. The satisfaction of the five prop-
erties is obvious. These are the same properties that filecoin satisfies. We can say
that our audit proof is reasonable.

4 Fault-Tolerance Verification

We now describe three attacks that are common in distributed storage networks.

• Sybil Attack (Douceur, 2002): Sybil attack is a type of attack in peer-to-peer
networks in which a node in the network operates multiple identities actively at
the same time and undermines the authority/power in reputation systems. In a
distributed storage network, a malicious miner can create multiple sybil identities
pretending to store many copies in order to be rewarded, but only one copy is
stored in his local.
In our proof, a miner cannot claim to have stored multiple shards, as the number
of shards per share is limited to k. Meanwhile, there is a little additional gain for a
malicious miner to pretend to store multiple copies by creating multiple identities.
Since each miner stores different content and for two storage miners, they have
the number of the same shards less than z. We control the revenue in such a way
that storage miners will not receive enough benefit in creating a witch identity,
making them less likely to take risks for it. Subsequently, we can limit such a
situation even further by monitoring IP address, generating Ma() proofs, etc. Such
a scenario makes sybil attacks much less profitable.

• Outsourcing Attack: By relying on fast access to data from other storage providers,
malicious miners promise to store more data than they can actually store.
If a malicious miner wants to launch an outsourcing attack, the miner cannot
know the shard number and can only determine if there is an overlapping shard by
sharing the miner’s H(a, b) set with each other; if there is an overlapping shard,
the hash result can be quickly retrieved later in the audit. But the benefit to the
provider is weak, and the inclusion of an exposing mechanism keeps miners from
going to extremes for the weak benefit. So we can conclude that the benefits of a
small number of miners cooperating are much less than the risks associated with
incomplete storage.

• GenerationAttack:Maliciousminers claim to havemore storage than they actually
have through a small program to gain a greater advantage in the mining competi-
tion.
With slicing and cryptography, miners cannot effectively generate data with small
program. The generated proof results need to be computed by hash function, and
a small change can lead to a huge difference in results. There are strict penalties
for generation attack in Filecoin, so this attack can be substantially avoided from
an incentive point of view.



A Novel Approach for Improving Accuracy … 79

5 Concluding Remarks

In this chapter, we focus on current research on auditing and point out the imper-
fections of current auditing. We also analyze the audit requirements for Filecoin and
redesign an audit algorithm for it. The algorithm determines whether the data have
been stored intact in the storage network by comparing the results in the hash pool
by means of storage miners uploading the hash results. The audit miner is set to a
semi-participating state and will only join in time to gain access if a problem arises.
Such an auditing algorithm is relatively accurate and secure for decentralized storage
networks. Besides, it is obtained that the algorithm is highly fault-tolerant.

Our algorithm is not yet well designed in terms of incentives and needs to prove
that the algorithm can be put into widespread use. Incentives are a key part of getting
the algorithm used, and it is important to play the game between miners and the
storage network so that both sides can get the optimal solution for their interests.
The regulation of the data is also something that needs to be considered in the next
phase. Our algorithm needs to be more complete in the future.

Acknowledgements This work was supported in part by the National Natural Science Foundation
of China (72171230), and the Science and Technology Development Fund, Macau SAR (File No.
0050/2020/A1).

References

Bai, L. H., Xue, J. T., Xu, C. X., et al. (2018). DStore: A distributed cloud storage system based
on smart contracts and blockchain. In International Conference on Algorithms and Architectures
for Parallel Processing. Springer.

Benet, J. (2014). IPFS—Content addressed, versioned. P2P File System.
Douceur, J. R. (2002). The sybil attack. Springer.
Juels, A., Kaliski, B. S., PORs, J. (2007). Proofs of retrievability for large files. InProceedings of the
14th ACM Conference on Computer and Communications Security, CCS (Vol. 07, pp. 584–597).
ACM.

Li, J., Wu, J., Jiang, G., et al. (2020). Blockchain-based public auditing for big data in cloud storage.
Information Processing & Management, 57(6), 102382.

Mattson, R. L., Gecsei, et al. (1970). Evaluation techniques for storage hierarchies. IBM Systems
Journal.

Maxwell, G. Proof of storage to make distributed resource consumption costly. https://bitcointalk.
org/index.php?topic=310323

Pinheiro, A., Canedo, E. D., Sousa, R., et al. (2020). Monitoring file integrity using blockchain and
smart contracts. IEEE Access, 8, 198548–198579.

Priyadharshini, B. (2012). Data integrity in cloud storage. IEEE.
Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/filecoin.pdf
Protocol Labs. Technical report: Expected consensus.
Protocol Labs. Technical report: Proof-of-replication.

https://bitcointalk.org/index.php?topic=310323
https://bitcointalk.org/index.php?topic=310323
https://filecoin.io/filecoin.pdf


80 L. Lu et al.

Ralph, C. (1988). Merkle: A digital signature based on a conventional encryption function. In C.
Pomerance (Ed.), Advances in cryptology, CRYPTO (Vol. 87, pp. 369–378). Springer.

Storj Labs. Inc. Storj: A decentralized cloud storage network framework.
Vorick, D., & Champine, L. Sia: Simple decentralized storage. https://blockchainlab.com/pdf/
whitepaper3.pdf

Wei, P. C., Wang, D., Zhao, Y., et al. (2020). Blockchain data-based cloud data integrity protection
mechanism. Future Generation Computer Systems, 102, 902–911.

Zikratov, I., Kuzmin, A., Akimenko, V., et al. (2017). Ensuring data integrity using blockchain
technology. In 2017 20th Conference of Open Innovations Association (FRUCT).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://blockchainlab.com/pdf/whitepaper3.pdf
https://blockchainlab.com/pdf/whitepaper3.pdf
http://creativecommons.org/licenses/by/4.0/

	 A Novel Approach for Improving Accuracy for Distributed Storage Networks
	1 Introduction
	2 Related Works
	2.1 Audit Research
	2.2 Distributed Storage Project

	3 Audit Algorithm
	3.1 An Audit Framework
	3.2 Data Uploading
	3.3 Self-integrity Verification
	3.4 Data Owner's Integrity Verification
	3.5 The Game of Miners Versus Storage Networks

	4 Fault-Tolerance Verification
	5 Concluding Remarks
	References


