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Abstract Here we mainly provide a probability inequality about GGH public-key
encryption scheme. Given a constant σ , we first choose a lattice vector v ∈ Z

n , and a
small error vector e is generated satisfying |e| � σ . The ciphertext result c could be
computed by the function fB,σ (v, e) = Bv + e with a public basis B. To extract the
message v, the function f −1

B,σ (c) = B−1[c]R will be used based on the private basis
R. In this work we produce a bound for the error probability of v �= B−1[c]R . We
also illustrate the way choosing σ such that the error probability is arbitrarily small.
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1 Introduction

Given a full-rank lattice L ⊂ Z
n , we denote the public basis of L by B and private

basis of L by R. Both B and R are n × n invertible matrices. In the GGH public-key
encryption scheme, for a plaintext vector v ∈ Z

n , the random error vector e is chosen
by setting the absolute value of each entry nomore than a constantσ , whereσ is a pos-
itive real number. The ciphertext c is computed by c = fB,σ (v, e) = Bv + e ∈ R

n .
Using the results of BaBai and some other ones (Ajtai, 1996; Ajtai & Dwork, 1997;
Babai, 1986; Coppersmith&Shamir, 1997;Goldreich et al., 1997;Micciancio, 2001;
Hoffstein et al., 2017, 1998), we can decipher the plaintext v = B−1[c]R given B,
R and ciphertext c. Here the lattice point [c]R is obtained by representing c as a
linear combination on the columns of R and rounding the coefficients in this linear
combination to the nearest integers. The problem is that how σ should be chosen
so that we can get a right plaintext v or guarantee a low error probability. We show
three theorems to solve this problem. A probability inequality is given to estimate
the bound of inversion error probability.
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2 Main Results

Theorem 1 B is the public basis and R is the private basis of lattice L. v ∈ Z
n, e

is the random error vector, |e|∞ � σ , c = fB,σ (v, e) = Bv + e. Then B−1[c]R = v
if and only if [R−1e] = 0, here [R−1e] denotes the vector in Zn which is obtained by
rounding each entry in R−1e to the nearest integer.

Proof Let T = B−1R, then

B−1[c]R = B−1[Bv + e]R = B−1R[R−1(Bv + e)] = T [T−1v + R−1e]

since T = B−1R is a unimodular matrix, T−1 is also a unimodular matrix. v ∈ Z
n ,

so T−1v ∈ Z
n .

B−1[c]R = T [T−1v + R−1e] = v + T [R−1e]

Thus B−1[c]R = v is equivalent to T [R−1e] = 0, and this equality holds if and only
if [R−1e] = 0.

Remark 1 This theorem gives an equivalent condition to check whether the decryp-
tion result is accurate.

Theorem 2 Let R be the private basis of lattice L. e is the random error vector
such that |e|∞ � σ . Suppose the maximum L1 norm of the rows in R−1 is ρ. Then if
σ < 1

2ρ , [R−1e] = 0 holds.

Proof Let R−1 = (ci j )n×n , R−1e = (a1, a2, ..., an)T , i.e., ai = ∑n
j=1 ci j e j , 1 � i �

n.

|ai | = |
n∑

j=1

ci j e j | � |e j ||
n∑

j=1

ci j | � σρ <
1

2

This means that [R−1e] = 0.

Remark 2 Theorem 2 shows how σ can be chosen so that no inversion error occurs.

Theorem 3 Let an n × n matrix R be the private basis used in the inversion of fB,σ ,
and denote the maximum L∞ norm of the rows in R−1 by r√

n
. Then the probability

of inversion errors is bounded by

P{[R−1e] �= 0} � 2n · exp
(

− 1

8σ 2r2

)

,

here e = (e1, e2, ..., en)T and e1, e2, ..., en are n independent random variables such
that |ei | � σ and E(ei ) = 0 for 1 � i � n.
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Lemma 1 For any non-negative random variable X with finite expectation E(X)

and any positive real number μ, we have

P{X � μ} � E(X)

μ
.

Proof Here we treat X as a random variable of continuous type. For the other situ-
ations, the proof is similar. Let f (x) be the probability density function of X . Since
E(X) = ∫ +∞

0 x f (x)dx �
∫ +∞
μ

x f (x)dx �
∫ +∞
μ

μ f (x)dx = μP{X � μ}, then we
have P{X � μ} � E(X)

μ
.

Lemma 2 Given random variable X satisfying −a � X � a with E(X) = 0, here
a > 0. For any real number λ, we have

E(eλX ) � exp

(
λ2a2

2

)

.

Proof For any real number λ, f (x) = eλx is a convex function. Notice that

x = x + a

2a
· a + a − x

2a
· (−a), −a � x � a

then
f (x) � x + a

2a
f (a) + a − x

2a
f (−a)

eλx � x + a

2a
eλa + a − x

2a
e−λa

E(eλX ) � E(
X + a

2a
eλa + a − X

2a
e−λa) = 1

2
(eλa + e−λa)

Let t = λa, next we prove that 1
2 (e

t + e−t ) � exp( t
2

2 ). This inequality is equivalent
to

ln
et + e−t

2
� t2

2

Let g(t) = t2

2 − ln et+e−t

2 , then g′(t) = t − et−e−t

et+e−t and g′(0) = 0. Since g′′(t) � 0, we
get g′(t) � 0 if t � 0 and g′(t) � 0 if t � 0. Then g(t) � g(0) = 0 and we complete
the proof.

Lemma 3 Suppose X1, X2, ..., Xn are n independent random variables. For 1 �
i � n, we have−a � Xi � a and E(Xi ) = 0, here a > 0. Let Sn = ∑n

i=1 Xi , ε > 0,
then

P{|Sn| � ε} � 2exp(− ε2

2na2
).
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Proof For any λ > 0, based on Lemma 1, we can get

P{Sn � ε} = P{eλSn � eλε} � E(eλSn )

eλε

Since X1, X2, ..., Xn are independent random variables, combine with Lemma 2,

E(eλSn ) =
n∏

i=1

E(eλXi ) �
n∏

i=1

e
λ2a2

2 = e
nλ2a2

2

P{Sn � ε} � E(eλSn )

eλε
� e−λε+ nλ2a2

2

Let λ = ε
na2 , therefore, the above inequality becomes to

P{Sn � ε} � exp

(

− ε2

2na2

)

In the same way, we can prove that

P{Sn � −ε} � exp

(

− ε2

2na2

)

Thus

P{|Sn| � ε} � 2exp

(

− ε2

2na2

)

Proof of Theorem3. Nowwe can proveTheorem3 given at first according to Lemma
3.
Let R−1 = (ci j )n×n , e = (e1, e2, ..., en)T , here e1, e2, ..., en are n independent ran-
dom variables such that |ei | � σ and E(ei ) = 0 for 1 � i � n.
We denote R−1e = (a1, a2, ..., an)T , i.e., ai = ∑n

j=1 ci j e j , 1 � i � n.
Since |ci j | � r√

n
and |e j | � σ , then the randomvariable ci j e j is limited to the interval

[− rσ√
n
, rσ√

n
]. Based on Lemma 3,

P{|ai | � 1

2
} = P{|

n∑

j=1

ci j e j | � 1

2
} � 2exp(− ( 12 )

2

2n( rσ√
n
)2

) = 2exp(− 1

8σ 2r2
)

P{[R−1e] �= 0} �
n∑

i=1

P{|ai | >
1

2
} �

n∑

i=1

P{|ai | � 1

2
} � 2n · exp(− 1

8σ 2r2
)

Thus the inequality in Theorem 3 holds.
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Corollary 1 P{[R−1e] �= 0} < ε if σ <

(

2r
√
2 ln 2n

ε

)−1

.

Proof σ <

(

2r
√
2 ln 2n

ε

)−1

⇔ 2n · exp (− 1
8σ 2r2

)
< ε, from Theorem 3,

P{[R−1e] �= 0} � 2n · exp
(

− 1

8σ 2r2

)

< ε

Remark 3 Theorem 3 provides a way to estimate the bound of inversion error prob-
ability, and Corollary 1 gives a detailed bound for σ based on Theorem 3 to get the
error probability no more than a constant ε.

3 Conclusions

In this work we mainly present a probability inequality about GGH public-key
encryption scheme. In this scheme, we first take a lattice vector v ∈ Z

n and gen-
erate a small error vector e such that |e| � σ . Given a public basis B, the function
fB,σ (v, e) = Bv + e computes the ciphertext result c. To decrypt, the private basis
R and the function f −1

B,σ (c) = B−1[c]R will be used to extract the message v. We
give a bound for the error probability of v �= B−1[c]R and explain how to choose σ

in order to obtain the error probability no more than a given constant ε.
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