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Preface

Financial technology is reshaping the financial industry ecology with explosive
growth, making China’s financial industry constantly achieve breakthroughs on a
new runway. The rapid development of FinTech at the same time triggers the indepth
integration between mathematics, finance, and advanced technology.

The Second International Academic Forum on Financial Mathematics and Finan-
cial Technology was successfully held online on August 13–15, 2021, jointly held
by the School of Mathematics of Renmin University of China, the Engineering
Research Center of the Ministry of Financial Computing and Digital Engineering,
the Statistics and Big Data Research Institute of Renmin University of China, the
Blockchain Research Institute of Renmin University of China, the Zhong guancun
Internet Finance Research Institute, and the Renmin University Press. Several distin-
guished scholars engaged in the interdisciplinary research of mathematics, statistics,
information technology, and finance delivered excellent speeches and discussed in
depth on the bottlenecks faced by emerging technologies such as big data, AI, cloud
computing, and blockchain. This forum has provided insightful understandings on
the development frontier and research hotspot of financial mathematics and financial
technology, and strengthened the contact between our institute and research institutes
from home and abroad.

The proceedings emphasize the selected aspects of current and upcoming trends
in FinTech, presenting the innovative mathematical models and state-of-the-art tech-
nologies, benefiting both scholars and practitioners in pursuing perfect integration
of elegant mathematical models and up-to-date data mining technologies in financial
market analysis.

Chapter “On the Development of Fintech in Asia” provides the general overview
on theDevelopment of Fintech inAsia. Chapter “AProbability InequalitywithAppli-
cation to Lattice Theory” gives a more precise estimation probability of decryption
error about GGH public-key encryption scheme based on the Hoeffding inequality.
The upper bound probability could be closed to 0 with applicable parameters, which
means that the probability of decryption error for the cryptosystem could be suffi-
ciently small. It is also confirmed that the GGH public-key cryptosystem could
have high security. Chapter “Robust Identification of Gene-Environment Interactions

v
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Under High-Dimensional Accelerated Failure Time Models” considers censored
survival data and adopt a high-dimensional accelerated failure time (AFT) model for
robust identification of gene-environment interactions. Chapter “A Novel Approach
for Improving Accuracy for Distributed Storage Networks” propose two approaches,
periodic self-verification and user verification, to guarantee the reliability of the
storage network while improving efficiency in distributed storage. Chapter “Iter-
ative Learning Control Based on Random Variance Reduction Gradient Method”
proposed a novel iterative learning control scheme based on stochastic variance
reduced gradient (SVRG), which is not only suitable for resolving the incomplete
information problem, but also converges efficiently under both strongly convex and
non-strongly convex control objectives. Chapter “A Generalization of NTRUEn-
crypt” first discusses a more general form of the ordinary cyclic code and gives a
generalized construction of NTRU based on ideal matrix and q-ary lattice theory.
Compared with other variations of NTRU, such as CTRU, GNTRU, QTRU, and
BITRU, the extended NTRU cryptosystem is constructed with general ideal matrix
rather than some special algebraic structures. Chapter “CyclicLattices, Ideal Lattices,
and Bounds for the Smoothing Parameter” shows that ideal lattices are actually
a special subclass of cyclic lattices, and proves that there is a one-to-one corre-
spondence between cyclic lattices and finitely generated R-modules. Chapter “On
theLWECryptosystemwithMoreGeneralDisturbance” gives estimation probability
of decryption error based on Gaussian disturbances and proves that the decryption
error could be sufficiently small. The most salient innovation and contribution is
that for any general disturbances, the decryption error could also be small enough.
This indicates high security and reliability of LWE-based cryptosystem. In other
words, this cryptosystem is secure enough against passive eavesdroppers and could
be applied in many kinds of encryption process. Chapter “On the High Dimen-
sional RSAAlgorithm—APublic KeyCryptosystemBased on Lattice andAlgebraic
Number Theory” proves that high-dimensional RSA is a lattice based on public-key
cryptosystem, of which would be considered as a new number in the family of post-
quantum cryptography. Moreover, the matrix expression of any algebraic number
field is also given,which is a new result even in the sense of classical algebraic number
theory. Chapter “Central BankDigital CurrencyCross-Border PaymentModel Based
on Blockchain Technology” combines the time-series model with fiscal science and
puts forward a model for the fiscal budget variance of China’s national general public
budget. Chapter “LLE Based K-Nearest Neighbor Smoothing for scRNA-Seq Data
Imputation” proposed LLE-based k-nearest neighbor smoothing for scRNA-seq data
imputation where the data is of high dimensionality, sparse and noisy. Chapter “The
Application of Time Series Analysis in the Fiscal Budget Variance of China” is about
the application of time-series analysis in the fiscal budget variance of China.

We would like to take this opportunity to thank all the participants at the second
International Forum on Financial Mathematics and FinTech. We are also pleased to
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thank the support of School of Mathematics, Renmin University of China, and Engi-
neering Research Center of Finance Computation and Digital Engineering, Ministry
of Education.

Beijing, China Zhiyong Zheng
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On the Development of Fintech in Asia

Liu Yong

Abstract There are five models of fintech development in the world: the technol-
ogy promotion model represented by the USA, the rule-driven model represented by
the UK, the market pull model represented by China, the mixed competition model
represented by Japan and Indonesia, and the model of fanning out from point to area
represented by South Korea and Israel. In terms of the layout, the transformation of
traditional financial hubs has been accelerated, China and the USA have outstand-
ing advantages in fintech, and the Asia-Pacific region has great potential for fintech
development. The fintech of China has been promoted to the worlds leading level;
Japan boosts the rapid growth of fintech through advantages of backwardness; Sin-
gapore gathers innovative resources with a relaxed and inclusive atmosphere; South
Korea promotes scale development of fintech industry by fanning out from point to
area; India is gradually exerting its potential for fintech development; Israel builds
the highland of fintech development through guidance plus service; Indonesia has
gradually become a rising star in fintech development in Southeast Asia; Hong Kong
promotes the momentum of sound fintech development with government assistance.

Keywords Fifintech development · Asia · Policy and regulatory measures ·
Digital transformation

1 Overview of Global Fintech Development

In recent years, global fintech has maintained a high speed of development, the adop-
tion rate of fintech has gradually increased, and a large number of fintech unicorn
enterprises have emerged. With the application of big data, blockchain, AI, and other
technologies in the financial field becoming more and more mature, new models and
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2 L. Yong

industry forms of financial service have come into being. Among them, some appli-
cation fields have developed more rapidly including digital currency, open banking,
digital banking, etc.

1.1 Development Dynamics

Fintech enterprises are growing fast. According to the relevant data, there are 1057
unicorn enterprises in the world now as of November 2021, and fintech unicorns play
a decisive role in fintech field with the most amount of enterprises on the list which
is 139 and the total valuation is 4.7 trillion yuan, accounting for 19% of the total
valuation of unicorn enterprises on the list. From a country perspective, the USA has
the largest number of unicorn enterprises in the fintech sector, followed by China.
In 2019 Fintech 100 announced by Klynveld Peat Marwick Goerdeler (KPMG), the
enterprises in Asia-Pacific region (including Australia and New Zealand) performed
brilliantly, with a total of 42 enterprises on the list. As far as payment enterprises
were concerned, 27 companies were on the list, which took the lead. As for other
categories of companies on the list, there were 19 wealth management companies,
17 insurance companies, 15 lending companies, and 13 companies with relatively
comprehensive financial business.

The developing economies represented by Southeast Asia and LatinAmerica have
obvious development characteristics in the field of financial science and technology.
According to the report of the Future of Southeast Asian fintech by the British con-
sultancy Dealroom, European venture capital company FinchCapital and Indonesian
venture capital company MDIVentures, the outbreak of COVID-19 pneumonia has
accelerated the digital transformation of fintech in the region, especially in the field
of digital payment. Indonesia is expected to become the largest financial technology
hub in the region by 2025, with an expected market value of US $130 billion in
related fields. According to the global fintech report for the second quarter of 2021
by CB Insights, fintech financing in Latin America has increased at a compound
annual growth rate of 57% since 2016, reaching US $4.246 billion by the second
quarter of 2021. Among them, the financing amount of fintech companies in Brazil
alone accounts for 70% of the total financing in the region.

More and more central banks have begun to actively study the issuance of CBDC
(Central Bank Digital Currency), and some countries have even begun to build the
underlying infrastructure of CBDC and start the pilot of CBDC technology. As the
first country in theworld to launch a sovereign digital currency, DC/EP has conducted
pilot projects in some domestic cities, commercial banks, and cross-border payments
since April 2020, and completed the country’s first digital RMB insurance policy in
December 2020. In 2020, theBank of France launched a digital currency pilot project.
European andAmerican countries are also unwilling to fall behind. The central banks
of Canada, Sweden, the UK, and other countries jointly set up a CBDC group with
BIS. In May 2020, the United States released a white chapter on the digital dollar
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project (DDP), which introduced in detail the basic architecture, distribution purpose,
and potential application scenarios of CBDC in the United States.

The evolution of digital banking is accelerating. As a banking development model
which has arisen in recent years, digital banking is an important achievement of digi-
tal transformation of banks. Currently, 60%of theworlds banking population is using
digital banking through online services and cashless transactions. According to the
relevant data in the Nets (an European transaction processing center) report, non-
contacting digital wallet transactions increased by more than two-thirds in the first
half of 2020 compared with 2019. With the increase of the users of digital banking,
the number of digital banks has gradually increased. In 2019, Hong Kong Mone-
tary Authority (HKMA) approved the establishment of 8 virtual banks. Monetary
Authority of Singapore (MAS) opened up applications for digital banking licences in
2020. In addition, digital banks in many countries engage in online banking business
with traditional banking license or in traditional authorized business forms, such as
Monzo Bank and N26 Bank in the UK, aiBank, WeBank, and MYbank, in China.

The world has a deeper understanding of the concept of sustainable development,
and the practice scenes of fintech in the field of greenfinance have increased. From the
perspective of application scenarios, the use of fintech tools covers ESG investment
and financing, national carbon market trading, green building, green consumption,
green agriculture, small and micro enterprises, and other fields. Fintech is widely
used in environmental data, ESG data and evaluation, green credit information man-
agement system of financial institutions, and other scenarios.

1.2 The Financing Profile

Global fintech investment and financing grew strongly. In 2020, the number of financ-
ing transactions reached 3443, and the number of financing transactions in the first
three quarters of 2021 was 3549, which has exceeded the total amount of financing
in the whole year of last year. The total financing amount of fintech in 2020 was US
$48.4 billion, and the amount of financing in the first three quarters of 2021 was US
$94.7 billion, nearly twice the total financing amount of last year.

The financing amount of financing projects ismainly concentrated inNorthAmer-
ica, Asia, and Europe, with a quarter on quarter increase of more than 50%. Among
them, North America has the highest amount of total financing, accounting for more
than half of the total global investment, reaching the highest in the second quarter
of this year, with USD 16.56 billion, followed by Asia, which reached the highest
in the third quarter of this year, with $5.9 billion. South America exceeded USD 1
billion for the first time in the second quarter of this year. In Africa and Oceania, the
amount of financing is relatively stable and has little change (Fig. 1).
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Fig. 1 The amount of
financing in fintech in global
continents from 2010 to Q3
of 2021

1.3 Regulatory Environment

In recent years, financial management departments in various economies have
increasingly improved their regulation on fintech activities, and have promoted the
healthy and orderly development of fintech through measures such as continuous
monitoring, the establishment of regulators, and the introduction of regulatory poli-
cies. On the one hand, financial management departments support the entrance of
fintech companies into the market to make up for the current weak links in financial
services; on the other hand, countries have set a high threshold for access to financial
business to reasonably guard against systemic risks.

The legislative process of data protection has been accelerated. In recent years,
with the iterative innovation of new technologies, various business entities are accel-
erating the development of new data resources, andmeanwhile the incurred problems
such as data privacy protection are also increasingly valued by various countries. EU
countries summarize and improve data legislation in practice: since the second half
of 2019, the European Commission (EC) and Council of the European Union have
organized each member countrys regulators to submit a law enforcement summary,
and they have received 19 law enforcement summary reports from different coun-
tries. In September 2020, EuropeanData ProtectionBoard (EDPB) issuedGuidelines
on the Targeting of Social Media Users (the Draft Guidelines), expounding on the
requirements of data protection in social media. At the beginning of 2020, Califor-
nia Consumer Privacy Act (CCPA) of the USA formally came into force and was
formally incorporated into Californias judicial system. On October 21, 2020, the
Peoples Republic of China released (Draft) and solicited public opinions. It is the
first law that specifically stipulates personal information protection. Promulgated, it
will become the basic law in the field of personal information protection, the Personal
Information Protection Law of the Peoples Republic of China, officially came into
force on November 1, 2021.

The innovation of fintech regulation tools has been continuously strengthened.
Firstly, some countries have established fintech innovation mechanism. To cite a few
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examples, France proposed in March 2021 to establish a European exemption mech-
anism in regard to blockchain, relax some legal requirements that cannot meet the
needs of blockchain development, and it suggested that exempted entities should fol-
low the key principles of financial regulation. Secondly, some countries have further
improved the Sandbox Mechanisms. Thirdly, many countries vigorously support the
development of RegTech. To cite a few examples, Central Bank of Brazil (CBB)
announced in April that Pier, an information integration platform for financial regu-
lators based on blockchain technology, began its operation online, which could help
the participating institutions quickly access the latest data of other institutions, thus
shortening the data query operation that might have taken amonth to several seconds.

The fintech policy system has been continuously improved. Nowadays, countries
all over the world gradually realize the potential value of fintech and formulate
relevant development strategies and improve relevant policy systems to support the
development of fintech. At present, apart from the policies related to AI, blockchain,
big data, and other key underlying technologies of fintech, areas such as digital
banking, online payment, and encrypted assets are gradually covered. The regulation
on the application of fintech has basically realized full coverage, and thefintech policy
system is continuously improved.

1.4 The Models of Fintech Development

At present, around the world there are generally five models of fintech development.
The first is the Technology PromotionModel represented by the USA, which is char-
acterized by mutual promotion of finance and technology and a win-win relationship
between industry and culture. The second is the Rule Driven Model represented
by the UK, which is characterized by innovating regulatory methods and boosting
industrial development through rules. The third is theMarket Pull Model represented
by China, which is characterized by accelerated digital transformation and break-
throughs sought in strict regulation. The fourth is the Mixed Competition Model
represented by Japan and Indonesia, which is characterized by accelerating the pace
of reform and continuous stimulation of potential. The fifth is the Model of Fanning
out from Point to Area represented by South Korea and Israel, which is characterized
by locating breakthroughs and focusing on tackling key problems (Fig. 2).

1.5 Spatial Layout

In recent years, the fintech hubs represented by Shanghai, Beijing, Shenzhen,
Hangzhou, San Francisco (Silicon Valley), New York, London, and Chicago are
accelerating their rise based on financial industry and driven by technology. China
and the USA have their distinctive advantages in the development of fintech and have
become leaders in the development of fintech worldwide. The Asia-Pacific region
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Fig. 2 The models of fintech development around the world

has gradually demonstrated its potential for fintech development and has attracted a
large influx of capital, showing its advantage of backwardness.

The transformation of traditional financial hubs has been accelerated and there
is great potential for the development of fintech in the Asia-Pacific region. With the
comprehensive empowerment and transformation of finance by technology, the trans-
formation of traditional financial hubs having been accelerated and newly emerging
financial cities having been upgraded in an all-round way, and a new ecology of
regional economy having been created with a strategic height, in the future finan-
cial hubs will take fintech as the core competitiveness of cities and compete for
the commanding heights of fintech without exception. According to Global Fintech
Hub Report 2021, the 9 cities in the first echelon of the global fintech hubs were
Beijing, San Francisco (Silicon Valley), New York, Shanghai, Shenzhen, London,
Hangzhou, Singapore, and Chicago respectively. These cities are home to the large
financial institutions and the headquarters of financial institutions of the country.
Most of them have a solid foundation for financial industry. They are currently start-
ing the pace of all-round digital transformation of financial industry supported by
technology. From the perspective of fintech experience, developing countries and
Asia continue to maintain an overall leading edge. Not only the top 10 cities all
located in developing countries in Asia, but also developing countries account for
80% among the top 20 cities for two consecutive years and Asian cities account for
65%.
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2 Practice of Fintech Development in Asia

2.1 China—The Fintech Has Been Promoted to the Worlds
Leading Level

2.1.1 Development Features: Accelerated Digital Transformation

According to the development stages of technology application in financial industry,
the development nodes of Chinas fintech industry are relatively clear. The develop-
ment of fintech in China can be divided into four stages, as is shown in Fig. 3. China
has entered the fintech 4.0 era, when finance and technology develop in a highly
integrated way.

The development of fintech industry leap into the front ranks of the world. There
are 139 unicorns in China’s fintech industry, ranking first in the world. The market
scale of China’s fintech enterprises is growing steadily. According to the prediction
and display of relevant data of the Forward Looking Industry Research Institute, the
market scale of China’s fintech enterprises is expected to reach 463.1 billion yuan in
2021, an increase of nearly 17% over the previous year. It is expected that the scale
of China’s fintech market will still achieve stable growth in 2022.

Great progress has been made in technological innovation. From 2015 to the first
half of 2019, a total ofmore than 22,000 enterprises applied for fintech-related patents
in China, with a total number of more than 88,000 patents. Among them, big data
analysis, interconnection technology, and cloud computing accounted for the highest
proportion, while big data, cloud computing, biometric security, and AI maintained
relatively smooth and steady growth; blockchain technology performed brilliantly
with explosive growth, with the proportion of patents increasing from 0.4% in 2015
to 8.5% in 2019 (Fig. 4).

Fig. 3 Development process of Chinas fintech
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Fig. 4 Fintech patents

There is a shortage of fintech talents. At present, fintech talents are in short supply,
and the growth rate is far lower than the development rate of fintech itself. According
to 2018ChinaFintechEmploymentReport released byMichael Page (China), 92%of
the fintech enterprises interviewed found that China is currently confronting a severe
shortage of fintech professional talents, 85% of the employers interviewed said that
they encountered recruitment difficulties, and 45% of the employers interviewed
said that the greatest difficulty they confronted in recruitment was the difficulty in
finding talents that could meet the specific position requirements. According to the
survey, the most popular fintech positions were big data position, AI position, and
risk management position, accounting for 40%, 32%, and 12%, respectively.

2.1.2 Policies and Regulatory Measures: Finding Breakthroughs in
Strict Regulation and Ensuring Steady Development of Data
Protection

The top-down design for fintech development has been continuously improved. In
August 2019, the people’s Bank of China issued the Financial Technology (fintech)
Development Plan (2019–2021). The introduction of this programmatic document
will build the top-level design of “four beams and eight columns” of financial tech-
nology. In December 2021, the central bank issued the Fintech Development Plan
(2022–2025), which is the second round of fintech development plan issued by the
central bank after the release of the plan in 2019. Compared with the first round of
planning, this round of planning will focus on solving the problem of uneven and
insufficient development of financial science and technology, with clearer key tasks,
clearer development direction, and stronger implementation guarantee. At the same
time, the plan puts forward the financial technology development vision of “striving
to achieve the leap forward improvement of the overall level and core competitiveness
by 2025”, which has opened up a broader development space for China’s financial
technology industry.
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The system of fintech supervision rules has been gradually improved. The basic
regulatory rules system of fintech is gradually improving. While improving the rule
system in a single technical field, it enriches the supervision of business links such
as fintech innovative product design, operation mode, and risk control means. In
addition, it further complements and improves the regulatory rules for consumer
rights and interests protection, personal privacy, and financial information data.

The standardization of fintech has been gradually strengthened. The central bank
has issued and implemented technical standards for payment tokenization, payment
information protection, acceptance terminal registration management, mobile ter-
minal trusted execution environment, mobile financial client application software,
incorporated financial science and technology products into the national unified cer-
tification system, and continued to carry out leader activities in the field of point of
sale terminals (POS), self-service terminals (ATM), bar code payment acceptance
terminals and online banking services.

2.1.3 Layout of Key Fintech Cities: The Cities in East China are
Leading, but Each of the Cities has Its Own Characteristics

At present, China is already leading the global fintech. However, there are differences
in the development speed and level of fintech among its cities. The overall strength
of the cities in east China is relatively strong, the optimized layout of Beijings fintech
develops steadily, Shanghai tries to build an international brand of fintech, Shenzhen
strives to be the leading role in the development of Guangdong-Hong Kong-Macao
Greater Bay Areas fintech, and Hangzhou adopts the strategy of policy plus talents to
re-create new vitality for the citys development. Cities such as Chengdu, Chongqing,
Guangzhou, Nanjing, and Qingdao are also actively laying out the development of
fintech.

2.2 Japan—Boosting the Rapid Growth of Fintech Through
Advantages of Backwardness

2.2.1 Development Features: The Advantage of Backwardness in
Fintech has Shown

The comprehensive competitive strength lays the foundation for the development
of fintech. Japan is the third largest developed country in the world, But its fintech
development began relatively late. In 2018, the scale of Japans fintechmarket reached
214.5 billion yen, and it has been going up all the way. It was expected to reach 572.7
billion yen in 2020, with an average annual growth rate of more than 50% (Fig. 5).

Optimizing cultural soft environment and accelerating the shaping of a non-cash
society. According to EY Global Fintech Adoption Index 2019, in terms of the
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Fig. 5 The scale of Japans fintech market (Unit: 100 million yen, %)

global consumer fintech application index, Japan ranked the lowest in 27 markets,
with only 34%. The Japanese government issued Fintech Vision inMay 2017, which
clearly proposed that it should pay attention to the added value of fintech and focus
on improving the adoption rate of electronic payments. After that, the government
issued Future Investment Strategy 2017, explicitly proposing to triple the propor-
tion of non-cash payments to more than 40% by Expo Osaka 2025. Since then, the
Japanese government has been committed to promoting non-cash payment rebate
activities [Consumers would get a rebate of about 2–5% for each non-cash payment],
continuously optimizing the cultural environment and accelerating the shaping of a
non-cash society.

The commercial configuration of various industries has gradually taken shape.
The mobile payment sector has stepped out of the era of barbaric growth and formed
a duopoly pattern of Line pay and PayPay, and has nurtured a number of outstanding
fintech start-ups on this basis. Japan attaches great importance to the development
of blockchain. In 2018, the market size of Japan blockchain reached 8.07 billion
yen, and it reached 33.57 billion yen by 2020. With relatively strong development
momentum, it saw the emergence of a number of blockchain start-ups with certain
strength and characteristics, such as Dobulejump.tokyo and Nayuta Japans regula-
tion on network lending is relatively loose, and network lending and crowdfunding
have become an important part of Japans inclusive finance, hence the much rapid
development of the industry. In 2014, when Japan amended its financial commodity
trading law, crowdfunding suddenly came to the fore. In 2018, the scale of Japans
crowdfunding market reached 204.5 billion yen. During the epidemic, many crowd-
funding platforms also took on the responsibilities of assisting commercial tenants,
etc. Japan is also actively promoting the development of sectors such as personal
loan, Robo advising, and supply chain finance. Although they are still in the initial
stage, they have great potential for future development (Fig. 6).
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Fig. 6 A diagram of the industrial ecology of Japans fintech

2.2.2 Policy and Regulatory Measures: Optimizing the Policy System
and Forging Ahead with Determination

In terms of the development policy and regulatory measures in fintech, Japan adopts
strict regulation and easing measures at the same time. For the development of some
traditional industries, especially in the aspects of digital transformation, the regu-
lation is relatively strict. However, the regulation on sectors such as crowdfunding
and network lending is relatively loose, so these sectors can develop rapidly. Strict
regulation measures can effectively control the risks in fintech innovation. Moreover,
in 2018, JFSA started to implement a sandbox mechanism for financial innovation,
allowingfinancial and insurance products to be put into trial operationwithin a certain
risk range, and steadily promoting healthy and sustainable innovative development.
The loose measures in some sectors can stimulate the development vitality of the
fintech industry for it to reform in development, maintain stability in progress, and
create a safe and controllable development ecology in an all-round way.

2.2.3 Layout of Key Fintech Cities: Tokyo Bay Area Endowed with
Good Resources to Push Traditional Financial Institutions on the
Way of Reform

Fintech got developed in Japan later than in other developed economies, so it has
not yet formed a ubiquitous layout of fintech hubs. Whether according to the fintech
hub report released by Global Fintech Hub Federation or the index and list of fintech
hubs released by institutions such as Deloitte and Z/Yen Group, the fintech hubs of
Japan that may enter the list tend to be Tokyo. Therefore, this chapter focused on
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the relevant situation and policy measures of Tokyo as a fintech hub. Tokyo ranks
among internationally renowned financial centers together with other international
financial centers such as New York financial center and London financial center.
Meanwhile, Tokyo is also the capital of Japan and the financial capital of Japan. Since
the 1960s, the Japanese government has been planning to build the capital circle
of Tokyo, linking Tokyo with several neighboring counties for joint development
and construction. At present, Tokyo Bay Area has become one of the worlds eight
recognized bay areas.

Since the 1990s, the Japanese government has formulated and promulgated a
series of science and technology innovation strategies and policy measures to stim-
ulate the high-speed rise of science and technology innovation level in Tokyo Bay
Area. Relying on internationally first-class universities and research institutions,
innovative enterprise clusters, and the support of the Japanese governments policy
inclination, Tokyo Bay Area has absorbed advanced technology and innovation con-
cepts in its opening to the outside world, vigorously developed advanced scientific
and technological productivity, formed a bay area ecological environment conducive
to scientific and technological innovation, spawned numerous scientific and tech-
nological innovation institutions, and witnessed the emergence of a large number
of scientific and technological innovation achievements, making Tokyo Bay Area
gradually develop into a world center of innovation with international influence.

2.3 Singapore—Gathering Innovative Resources with a
Relaxed and Inclusive Atmosphere

2.3.1 Development Features: An Active Atmosphere for Fintech
Innovation

International innovation elements gather and multiple resources converge. Singa-
pore is an international trade hub, an Asian financial center, and a place of strategic
importance for technological innovation. Its convenient geographical conditions have
facilitated the convergence of financial and technological innovation resources. On
the one hand, as a global financial center, Singapore has financial industry as its ser-
vice industrywith the highest added value, withmore than 1,200 financial institutions
stationed here. On the other hand, Singapores scientific and technological innovation
has developed rapidly. In Global Innovation Index 2018 released by WIPO (WIPO),
Singapore ranked the fifth, overtaking traditional science and technology powers
such as the USA, Germany, Israel, South Korea, and Japan and successfully ranking
among the worlds leading science and technology innovation centers.

There are rich forms of activities and strong vitality in fintech. Since 2016, Sin-
gapore has been hosting Singapore Fintech Festival (SFF) and Singapore Week of
Innovation & Technology (SWITCH). In 2019, SWITCH and SFF merged into SFF
X SWITCH for the first time. On June 8, 2020, on the basis of previous experience
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of holding activities, Singapore held the MAS Global Fintech Innovation Challenge
for the first time by innovating the form of activities. With the theme of Building
Defenses, Seizing Opportunities, and Emerging Stronger, the competition had a total
bonus of S$1.75 million and comprised two parts: MAS FinTech Awards and MAS
Global FinTech Hackcelerator.

Digital banking booms and digital finance accelerates. At present, Singapore is
gradually loosening the restriction on the application for digital full bank license. The
introduction of digital bank license is the largest banking liberalization in Singapore
in the past 20 years. In December 2020,MAS issued a total of 4 digital bank licenses,
ofwhich 2wereDFB licenses and another 2wereDWB licenses. The launch of digital
banks in Singapore will form competition with traditional banks, but meanwhile it
will promote the rapid development of fintech in Singapore.

Actively extending the application scenarios of blockchain technology. Singapore
is the friendliest country to the development of blockchain in Southeast Asia and
even all over the world. At present, a large number of mature blockchain projects are
distributed in sectors such as trading platforms, public blockchains, hosting, cloud
storage, infrastructure, consulting, and insurance. Singapore vigorously promotes
the application of blockchain technology in financial scenarios. On the one hand, it
uses blockchain technology to promote the development of digital payment. On the
other hand, it focuses on SME financing and supply chain finance. In addition, it
adopts blockchain technology to ameliorate the pain points of service of industrial
finance including supply chain finance, etc.

In sound fintech ecology, various subjects jointly pursue interconnected develop-
ment. Singapores rich and diverse international fintech activities and its open and
inclusive innovation environment, etc. have attracted diversified fintech talents to
gather here. In August 2020, Singapore established Asian Institute of Digital Finance
(AIDF), jointly founded by MAS, National Research Foundation (NRF) of Singa-
pore, and National University of Singapore (NUS), to meet the demand for digital
financial services in Asia. The strong community effect has attracted the conver-
gence of talents such as entrepreneurs, domain experts, angel investors, and industry
mentors, and it has provided a platform for exchanges and collaboration among
entrepreneurs, investors, and financial institutions. Meanwhile, it has attracted high-
quality native start-ups of Asian countries such as India and Indonesia to migrate to
Singapore, forming a highly open international fintech ecosystem (Fig. 7).

2.3.2 Policy and Regulatory Measures: The Top-Down Design is
Optimized and Special Policies are Increased

Perfecting the top-down design of fintech. The Singaporean government has autho-
rized MAS to be the policy subject for the innovation and development of fintech
which is fully responsible for the strategic planning, policy framework, and policy
coordination of the development of fintech. In order to further promote the coordi-
nated and efficient development of fintech, MAS has established professional fintech
management institutions. Firstly, FinTech & Innovation Group (FTIG) was set up,
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Fig. 7 Fintech ecosystem

which comprises three offices, respectively for payment and technology solutions,
technology infrastructure, and technology innovation lab. FTIG invested S$ 225
million to promote Financial Sector Technology & Innovation Scheme (FSTI) and
encourage the global financial industry to set up an innovation and research and
development center in Singapore. Secondly, Fintech Office was established, which
is mainly responsible for three tasks: the first one is to review, correspond to and
improve fintech-related subsidy schemes for cross-governmental agencies; the sec-
ond one is to pay attention to industrial infrastructure and the gap between talent
training and manpower demand and put forward target strategies, policies, and pro-
grams to enhance the competitiveness of the industry and enterprise organizations;
the third one is to manage Singapores fintech brand and marketing strategy through
fintech activities and related initiatives and strive to become a global fintech hub.

Formulating special fintech regulatory policies to promote the healthy devel-
opment of enterprises. The Singaporean government has adopted a multi-pronged
approach to promote the development of fintech at home. Some of the measures
are universal, including providing a supportive environment for start-ups, adopting
a collaborative approach, and attracting foreign investment. Apart from common
measures, Singapore has formulated special fintech regulatory policies to guide the
development of various segments of fintech, mainly focusing on AI and data analy-
sis (hereinafter referred to as AIDA), blockchain technology, digital assets, payment
bill, and open banking.
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Promoting the development of RegTech application to reduce risks SGX has
launched a new RegTech scheme that can automatically report market irregularities
and promote fair trading. At present, Singapore has had representative companies
ranking theworlds top 100 inRegTech involving sectors such as compliancemanage-
ment and anti-money laundering. Besides, for local start-ups, the Singaporean gov-
ernment has established a Regulatory Sandbox system to encourage the innovative
development of fintech start-ups and nurture and incubate outstanding enterprises.

2.4 South Korea—Promoting Scale Development of Fintech
Industry by Fanning Out From Point to Area

2.4.1 Development Features: The Foundation for the Development of
Fintech is Solid

The 5G information and communication technology takes the lead. According to
the data from South Koreas Ministry of Science & Information and Communication
Technology (MSICT), South Korea is the first country in the world to start 5G
commercial use. After the official launch of 5G business services on April 3, 2019,
the number of users has increased continuously, reaching nearly 10 million by the
end of October 2020.

Blockchain technology is developing rapidly. According to the data from Korean
Intellectual Property Office (KIPO), a total of 1,301 blockchain patents were regis-
tered in South Korea in 2019, a 50-fold increase from 24 in 2015, and the number of
the patents increased further in 2020 after the Covid-19 pandemic began.

Forming the mechanism design of two kinds of institutions and three modes of
sharing, the big data credit system is refined. South Korea has established a much
refined personal and corporate big data credit system. In this system, Korea Fed-
eration of Banks (KFB) is the pillar of the credit industry. On this basis, there are
three data-sharing modes of credit information service. One is to force financial
institutions to submit credit information to KFB, which will then be provided by
KFB to private credit reporting companies; the second is to share information within
the industry through associations or corporate groups; the third is that credit report-
ing companies collect other information through commercial contracts. Under the
mechanism design of two kinds of institutions and three modes of sharing, the South
Korean credit investigation industry can not only quickly and timely collect nation-
wide credit information, but also ensure that valuable credit information could be
legally and fully shared across the whole society.

P2P loan industry develops rapidly. According to the statistics of the SouthKorean
government, the total investment in P2P loans in South Korea increased from 37.3
billion won at the end of 2015 to 2.34 trillion won at the end of 2017, and then rapidly
increased to 6.2 trillion won by the end of June 2019. In August 2020, the Law on
Financial Industry Related to Online Investment and laws related to user protection
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(P2P laws) were officially implemented, which would strengthen the protection of
investors and formally set a legal framework for P2P development.

2.4.2 Policy and Regulatory Measures: Strengthen Planning and
Launch Fintech Development Strategy

On December 4, 2019, Financial Services Commission (FSC), Republic of Korea
announced that it would vigorously promote the large-scale development of the fin-
tech industry, and introduced 8 measures in different sectors, involving improving
the current Regulatory Sandbox system, carrying out regulatory reform to promote
the development of fintech, loosen the entry restrictions of the financial industry,
establishing a regulatory basis for the digital age, developing new growth engine
for financial innovation, promoting the investment in fintech and establishing a ven-
ture capital ecosystem with private sector investment as the core, assisting fintech
enterprises with overseas expansion expanding public support for fintech enterprises.

Preferential taxation is applied to research and development of blockchain tech-
nology.A report released by the localMinistry of Strategy andFinance announced the
latest tax laws that came into effect in February 2019. And the blockchain has been
added to the research and development list that provides tax credits. This means that
the companies or enterprises that develop blockchain technology can deduct some
taxes from the research and development expenses. The tax reduction depends on
the size of the company.

Implement the Regulatory Sandbox plan and accelerate the digital transformation.
On April 1, 2019, FSC, Republic of Korea officially launched a fintech Regulatory
Sandbox program, thereby hoping to promote competition in South Koreas financial
industry and bring more favorable services to consumers. Up to May 2020, FSC had
held a total of 14 assessment committee meetings. Through various assessments of
business innovation, consumer convenience, and project stability and feasibility, a
total of 102 innovative financial services were eventually selected into the Regulatory
Sandbox, which obtained exemption from licensing and other regulations.

2.4.3 Layout of Key Fintech Cities: Seoul—Taking Various Measures
to Create a Business Environment for Fintech

Seoul is the largest city on the Korean Peninsula and one of the major financial cities
in Asia with advantages in economic, technological, and cultural development. Seoul
ranks the fifth among the top ten Asian cities in terms of economy, only after Tokyo,
Shanghai, Beijing, and Hong Kong. Its economic aggregate accounts for about 23%
of that of South Korea. The population of Seoul is about 10.2 million, accounting for
20% of the total population of South Korea. In addition, Seoul accounts for half of
Korea in terms of personal income tax, corporate income tax, and bank deposits, and
the number of innovative enterprises and graduates from colleges and universities
account for 30% of Koreas total. Seoul is South Koreas political and economic
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center, which has laid a good foundation for fintech development. In recent years,
Seoul has created a good business environment for fintech by holding the fintech
week, establishing fintech labs, setting up innovation funds to increase investment
in fintech industries, etc.

Holding fintech week to create an innovative atmosphere. South Korea launched
the first Korea Fintech Week from May 23 to 25, 2019. The event was held in
Seouls Dongdaemun Design Plaza (DDP). It is the first global fintech fair in South
Korea, and the FSC hopes to develop it into an important annual fintech event in
Asia. In 2019, Korea FintechWeek invited global financial institutions, international
organizations, and global fintech companies to discuss relevant policies to help local
fintech companies expand ties with local and global investors. In addition, the activity
also provided counseling services for college students and young job seekers who
are interested in the fintech industry.

Affected by the epidemic, the 2020 Korea Fintech Week was changed to be held
online. The FSC said it had attracted more than 170,000 page visitors and received
more than 110 million page views. Financial companies and fintech enterprises set
up a total of 150 virtual exhibition halls. A total of 35 enterprises participated in the
online job fair session, with more than 1,000 job seekers competing for about 80 jobs
provided by 21 fintech enterprises.

Launching SEOUL FINTECH LAB. In April 2018, the Seoul municipal govern-
ment launched the first SEOUL FINTECH LAB, which was mainly aimed at early-
stage start-ups. In July 2019, the second fintech lab was launched, which would be
targeted at growth-stage start-ups and accommodate approximately 14 start-ups from
South Korea, the USA, Hong Kong, and Singapore. The fintech lab will become a
key anchor point for South Koreas fintech industry, so as to help South Koreas
promising fintech start-ups develop abroad. The Seoul Innovation Growth Fund was
established. At the end of 2018, Seoul set up an innovation fund of around 130 bil-
lion won (approximately USD 116 million) to be invested exclusively in innovative
industries such as blockchain and fintech. In early 2019, the Seoul municipal govern-
ment announced that the Seoul municipal government would invest 1.2 trillion won
(USD 1.07 billion) in start-up companies in the fintech sector through the investment
fund by 2022.

2.5 KazakhstanCDigital Transformation Speeds Up the
Construction of Central Asian Fintech Hub

2.5.1 Development Features: The Digital Economy is Booming

Central Asia is located between the worlds two largest economies. Proposed by the
Belt and Road Initiative, it can be regarded as a bridge connecting Europe and China.
As a growing potential market, Kazakhstan has played a key role in the process of
Central Asia becoming a global fintech hub.
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Although in the beginning the level was relatively low, the digitization process
in Kazakhstan is developing rapidly, mainly including: (1) The rapid growth of
e-commerce and mobile commerce; (2) The transition from cash payments to non-
contact and digital payments; (3) The growth of innovative digital financial products
and services. Since the outbreak of COVID-19, these structural changes which had
lasted for many years have accelerated, creating a favorable environment for the
further development of fintech.

The fast-growing e-commerce market is one of the driving forces behind the
development of fintech. Compared with other emerging market countries and devel-
oped economies, inKazakhstan, the e-commerce penetration has a significant upward
potential. According to Euromonitors data, the market value of e-commerce in Kaza-
khstan in 2019 was estimated to be KZT 401.3 billion (USD 1.1 billion), equivalent
to 3.4% of the total volume of retail trade, with a CAGR of 33.3% from 2016 to
2019.

Digital payment is developing rapidly. The adoption rates of Internet and mobile
phone have increased significantly. According to Ovum (world mobile information
service), Kazakhstans total number of smartphones increased from 12.7 million in
2016 to 19.2 million in 2019 and is expected to reach 23.4 million by 2024. Banks
are using mobile and Internet banks to provide better financial services to remote and
rural areas. Fintech companies have fewer opportunities to cooperate with standard
financial sector, but with the increase of mobile Internet adoption rate, they have
obtained huge opportunities in areas not covered by traditional financial markets.
In 2019, Kazakhstans digital payment amount more than tripled to about USD 34.8
billion Like e-commerce, this trend has been accelerated by the COVID-19 epidemic.
In 2019, Kaspi.kz accounted for 83% of the growth of the entire payment market in
Kazakhstan and became the largest contributor to Kazakhstans transition to digital
payment.

The digital transformation of banking and insurance industry is at the right time.
The COVID-19 epidemic has enabled most retail banking activities to be carried out
online, which has promoted the development of digital banking. Banking services are
rapidly moving from branch-based, product-centric organizations that use traditional
technologies to more personalized digital solutions that are consumer-centric and
deliver seamlessly. Since January 2019, the citizens of Kazakhstan have been able
to use electronic insurance and choose to submit their applications online. Within
the conceptual framework of the development of the financial sector in the Republic
of Kazakhstan to 2030, it is expected that electronic insurance policy sales will be
introduced into the compulsory courses.

2.5.2 Policy and Regulatory Measures: Being Committed to Promoting
Financial Innovation in a Wider Range of Areas

Astana Financial Services Authority (AFSA), established on January 1, 2018, is
independent from the National Bank of Kazakhstan (NBK) and the financial market
supervision and Development Department of Kazakhstan. It is an independent regu-
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lator of financial and non-financial services activities of AIFC (Astana international
financial center, established on July 5, 2018, is the financial center of Astana, Kaza-
khstan). In its fintech hub department, AIFC assists relevant companies in developing
new products and services in the fintech sector in various ways. Oneway is to provide
acceleration projects where start-ups can work closely with mentors from around the
world to develop the necessary capabilities. Another way is for the fintech depart-
ment of AFSA to provide a legal and regulatory basis for the development of new
financial products and technologies and to test them at the fintech lab (Regulatory
Sandbox). At present, 30 projects are being tested in Regulatory Sandbox. Currently,
more than 125 start-ups work with the fintech department of AIFC. These compa-
nies are distributed in different sectors such as payment and mobile wallet, market,
credit, AI and machine learning, blockchain, digital identification, network security,
and fraud prevention.

The fintech department of AIFC supports venture capital and corporate inno-
vative development with the goal of creating a healthy venture capital ecosystem
and expanding opportunities for start-ups in Central Asia and the countries belong-
ing to Commonwealth of Independent States (CIS) to attract investment and perform
transactions. In this way, AIFC is creating a comprehensive ecosystem, which covers
strengthening regulation, supporting start-ups, helping attract investment, and imple-
menting fintech solutions within enterprises. To address the innovation challenge in
the financial sector, AIFC is taking a series of regulatorymeasures to promote innova-
tion and strengthen the protection of the consumers of financial services/products.,
including setting up a fintech lab to promote fintech development, introducing a
regulatory framework to promote the development of crowdfunding, expanding the
framework for the list of regulated and market activities, implementing a series of
policies to promote the healthy development of digital asset, creating a looser bank-
ing system to strengthen inclusive financing, implementing open API to promote the
innovation of digital currency and payment services, providing corporate income tax
and value-added tax exemptions for fintech companies optimizing e-commerce reg-
ulatory measures, ameliorating the framework to promote venture capital financing,
launching Global Financial Innovation Network (GFIN) to promote cross-border
regulation and innovation.

2.5.3 Layout of Key Fintech Cities: Nur Sultan and Almaty—Leading
the Development of Non-cash Payment

Kazakhstans cities with the most active fintech development are undoubtedly Nur
Sultan (the capital) and Almaty (the countrys largest city). As the most densely
populated and economically developed cities, they have non-cash payments leading
in both quantity and share. Almatys non-cash payments occupied the largest market
share: nearly KZT 7 trillion (about USD 16.5 billion). The city also had the highest
proportion of non-cash payments, which was 76.8%. Nur Sultan ranked the second
with a market share of KZT 2.9 trillion (approximately USD 6.8 billion) in non-cash
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Fig. 8 Market share and proportion of non-cash payment in different cities and regions of Kaza-
khstan

payments, with the proportion of non-cash payments reaching 72.2%, which also
ranked the second (Fig. 8).

Apart from being absolute leaders in the market share of non-cash payments,
Almaty and Nur Sultan are also major hubs for fintech start-ups in the country.
The countrys largest fintech accelerator, science park, and center are located in the
following cities: the AIFC Fintech Hub in Astana, AIFC and Nuris; TechGarden and
Most in Almaty.

2.6 India—Potential for Fintech Development Has Been
Gradually Exerted

2.6.1 Development Features: Digital Technology Promotes the
Innovative Development of Fintech

Indian fintech enterprises as a whole are experiencing the transition from initial stage
to growth stage. According to relevant statistics, as of 2019, the number of fintech
start-ups in Indiawas second only to theUSA, ranking the second in theworld. Taking
the development of fintech enterprises in several major sub-sectors as an example,
there are only dozens of network lending platforms in India at present, which are in
the initial stage, and few Indians have experienced online lending investment. Indias
credit investigation industry is still in the exploratory stage, with a huge long tail
market. Indias crowdfunding industry is in the early stage of development, showing
a slow growth trend since 2014. The crowdfunding industry lacks clear regulation,
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and SEBI(Securities and Exchange Commission of India), the main regulator, has
not yet issued regulatory regulations.

The commercial forms of fintech are constantly improving. Sectors such as
payment, loan, wealth management technology, personal finance, insurance, and
RegTech have blossomed in an all-roundway. Take the sectors of payment and online
lending as an example. In the sector of payment, Internet payment covers enterprises
with various systems, such as telecom, e-commerce, banks, wallet companies, and
other enterprises with different representatives, and some representative payment
companies such as Paytm are popular with capital investment. Indian fintech also
has great potential in payment, online lending, blockchain, robo advising, inclusive
financing, technology-driven integrated banking services, Internet financial security,
biometrics, etc.

Digital payment helps India seize the innovation highland of fintech. Digital pay-
ment industry has become the core field of accelerating digital capacity building in
India and has greatly boosted India to seize the innovative highland of fintech. In
2016, Modi put forward the slogan of Stand Up India, which officially helped the
entrepreneurial trend from the height of national policies, with a view to establish-
ing a new ecosystem in the financial scope, and announced the implementation of
the Digital India program, initiating the banknote scrapping campaign, and mak-
ing clear that digital ID cards should be bound to financial services. The banknote
scrapping campaign directly boosted Indias fintech industry to the mainstream posi-
tion, and Indias unique payment infrastructure with a unified payment interface won
the trust of the people, which solved the problem of cash-based mode of payment
and reduced the financing difficulties of the enterprises. In 2019, India launched the
Digital India program, hoping to digitize every offline transaction by unifying the
payment industry and e-commerce system.Meanwhile,Mastercard has also launched
a project called Team Cashless India in India. This activity would help merchants
accept digital payment and improve the coverage of fintech. In addition, the huge
development potential of Indias fintech market has also attracted more companies
around the world to deploy the Indian fintech market, such as famous Chinese enter-
prises Alibaba, Tencent, and JD.com and investment institutions Sequoia Capital,
Hillhouse Capital, etc. The international influence of the fintech development has
been continuously enhanced.

Population advantage lays the foundation for fintech development. India has the
second largest population in the world. According to the statistics of theWorld Bank,
as of 2018, the population of India was 1.353 billion. In terms of population structure,
the population under 35 years old accounts for 65% of the total, and the population
under 25 years old accounts for 50%. In terms of age and proportion, India has a
larger number of young people, which is an idealized proportion in the population
structure. There are a large number of talents available for fintech development.
In the entrepreneurial development of fintech, more young entrepreneurs have the
opportunity to start businesses, and there are more long-tailed users of fintech. By
2019, the number of Internet users in India was 560 million, accounting for about
41% of the total population. As a country with big Internet demand only second to
China, India has great room for the development and implementation of intelligent
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applications. In terms of the adoption rate of fintech, according to public data, as of
2019, the adoption rate of fintech in India had reached 87%.

2.6.2 Fintech Development Policies and Measures: Two-Pronged
Approach of Regulation and Publicity to Accelerate Fintech
Development

Supervision is the key to the development of fintech. India insists on doing by learn-
ing, learning by doing in fintech regulation. In the aspect of fintech regulation, the
top-down design is gradually improved, fintech is included in the regulation scope,
the Regulatory Sandbox of fintech has been launched, and the popularization rate and
adoption rate of fintech are improved by setting up funds, launching fintech publicity
activities, etc.

2.6.3 Fintech Development Measures in Key Cities: Mumbai—Sound
Financial Foundation and Satisfying Scene Experience

In 2019, Mumbais overall ranking in Global Fintech Hub Index (GFHI) improved
by 6 places and it entered the top 20 in the world for the first time. Mumbais fintech
industry has improved rapidly, and with 6 highly financed unlisted fintech enterprises
such as Freecharge and InCred the number ranked the 16th in the world. Moreover,
Mumbai,with its huge population size and excellent population structure (the average
age was only 27 years old), had 64% fintech users, ranking the 12th in the world.
The advantage of ranking the first in Asia except Chinese cities was glamorous all
over the world, making the fintech experience in Mumbai a major advantage.

Actively building fintech into one of the characteristic industries for urban devel-
opment. Mumbai, as the largest financial center in India, constantly ameliorates its
fintech ecology. At present, it has large financial institutions such as HDFC Bank,
Kotak Mahindra Bank, ICICI Bank, and State Bank of India, ranking the seventh
in the global TOP200 financial institutions by total market value. The digital trans-
formation of traditional finance is accelerated actively, e.g., State Bank of India has
launched YONO, a comprehensive life and financial service platform, HDFC Bank
launched UltraCash, a mobile payment application program, etc. The rate of utiliza-
tion of fintech has been increased in an accelerated manner.



On the Development of Fintech in Asia 23

2.7 Israel—Guidance Plus Service to Create a Highland for
the Development of Fintech

2.7.1 Development Features: Technology and International Resources
are Transformed Into Fintech Development Advantages

Israel is an internationally recognized innovation powerhouse. The proportion of
scientists and engineers engaged in high-tech research and development in Israel is
the highest in the world. Among the high-tech companies listed on Nasdaq in the
United States, the total number of Israeli companies ranks second. Israel has more
than 6,000 technology start-up companies, ranking first in the world. More than
270 multinational companies in the world have set up scientific research centers in
Israel. Israel has strong scientific and technological innovation genes and interna-
tional resources. These resources have laid a solid foundation for fintech innovation
and development of Israel. In general, the development of Israeli fintech presents
three major development features.

First, the underlying technology shows obvious endowment advantages. Israel is
a model of the integration of military and civilian development all over the world. At
the same time, the demand for cutting-edge technology and related innovations in
the military field are smoothly transmitted to the commercial field. Israel has strong
military applications in the fields of security, computer vision, and neuro-language
planning. These technological applications are also applied to the development of
fintech. Currently, it is the country with the highest usage density of fintech applica-
tions. Israel is one of the first countries in the world to adopt blockchain and digital
encryption technology. It has many start-up companies with core technologies in the
field of blockchain and digital encryption, such as QEDit and DAGLabs. From 2013
to 2019, the amount of financing for fintech and related underlying technologies
(artificial intelligence, network security, etc.) was on an upward trend. Especially in
the field of artificial intelligence, the amount of financing doubled from USD 1.463
billion in 2017 to USD 3.182 billion in 2019, and the average amount of a single
financing increased from USD 7.07 million in 2017 to USD 16.41 million in 2019,
increased by more than 100%.

Second, the science and innovation ecology is increasingly perfect. Israel attaches
great importance to the formation of the science and innovation ecology. Its gov-
ernment has taken various measures to ensure that scientific research is one of its
priorities. It provides security through tax and fee reduction, and at the same time it
increases the expenditure in the industry. In the 2020OECDR&DIntensity Index (the
ratio of R&D investment to GDP), Israel continued to maintain its leading position.
It is expected that the total future expenditure will continue to increase. According
to the latest annual global entrepreneurial ecosystem rankings released by the global
entrepreneurial research organization StartupBlink, Israels global ranking has risen
by one over last year, ranking third in the world.

Third, the degree of internationalization of fintech is high. Due to geographical
restrictions and market restrictions, Israels fintech has attracted international invest-
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ment and fintech companies and has exported products and services to the outside
world since its emerging. According to a report released by the Israel Venture Capital
Data Center in 2020, the participation of foreign investors in Israeli equity invest-
ment in the fintech sector increased from 57% in 2018 to 69% in 2019. In the fields
of payment, transaction, and digital currency, more than 90% of fintech companies
provide international services. In 2019, Israels high-tech industry export continued
to grow, reaching a historical record of USD 45.8 billion, accounting for about 46%
of Israels total export, increased by 1.2% than that in 2018. Among them, the export
of related technology products and services such as fintech and artificial intelligence
accounted for a relatively large proportion.

2.7.2 Policies and Regulatory Measures: Guidance but Not Leading,
and Strengthening of Communication Between Government and
Industries

Israel has many policies and regulatory measures. From the establishment of a regu-
latory and innovative fintech hub to the establishment of a fintech assistance center,
from adjusting the fintech license application process to launching the data sandbox
program, the Israeli government basically guides the development of fintech as amar-
ket assistant and industrial development guider. Strengthening the communication
between the government and the industries and being a partner for the development
of fintech are the characteristics of Israeli fintech policies and regulatory measures.

In July 2018, the Israel Securities Authority (hereinafter referred to as ISA)
announced the establishment of a regulatory innovation fintech hub, mainly aiming
at promoting dialogue between regulators and participants in the fintech industry. In
2019, the Capital Market Authority of Israel joined the GFIN and participated in the
global fintech regulatory reform together with international institutions such as the
World Bank and the International Monetary Fund, etc. In July 2020, the Israel Secu-
rities Authority and the Israel Innovation Authority jointly launched a data sandbox
plan for fintech start-ups.

2.7.3 Layout of Key Fintech Cities: Tel Aviv—The Integration of
Internal and External Strategies to Promote the Innovation and
Development of Fintech

Tel Aviv is Israels second largest city. The city cluster centered on Tel Aviv has
become Israels largest metropolitan area and economic hub, and is known as Israels
economic capital and technology center. 77% of Israeli start-ups, 81% of investment
institutions, 72% of incubators, and 85% of R&D centers are located in Tel Aviv.
Tel Aviv owns Israels only stock exchange, Tel Aviv Stock Exchange (TASE), which
has become the international headquarters of venture capital companies, scientific
research institutions, and a gathering place for high-tech companies. At the same
time, Tel Aviv has a relatively complete innovation incubation system and scientific
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talents. Among the top 200 global entrepreneurial ecosystem cities, Tel Aviv of
Israel ranks seventh. The advantage of focusing on financial innovation with leading
technology is obvious. According to the 27th Global Financial Center Index Report
(GFCI 27), Tel Aviv ranks 36th.

Tel Avivs fintech development adopts an international strategy. Taking advan-
tage of its own superior innovation environment and developed international capital
agglomeration, the products of major fintech companies consider Tel Aviv as an
effective test point for product technology, and Tel Aviv will be the first place to
test the effects of products and services before international marketing. Tel Aviv
Global City Office is used to implement targeted marketing for international fintech
customers. While enhancing the citys global media image, various activities are held
to meet fintech services and needs, link start-ups and investment capital, as well as
implement cross-bank and cross-domain cooperation.

2.8 Indonesia—A Rising Star of Fintech Development in
Southeast Asia

2.8.1 Development Features: Fintech is in the Preliminary
Development Stage, and Its Potential Continues to be Highlighted

The development of the Internet has certain advantages. According to the 2019
Southeast Asia Digital Economy Report, Indonesia is the country with the largest
Internet economy in Southeast Asia. It was even more than quadrupled in 2019, with
more than USD 40 billion, and it is expected to reach USD 130 billion in 2025.
Internet users in Indonesia are growing rapidly. According to a report released by
a global social media marketing company We Are Social and Hootsuite, in January
2020, Internet penetration rate of Indonesia was 64%, with an average annual growth
rate of close to 20%. Moreover, Indonesia has crossed the mature development stage
of the Internet and moved directly to the development stage of the mobile Internet. In
January2019, therewere356millionmobile phoneusers in Indonesia, the penetration
rate of mobile phones was 133%, and the number of active mobile Internet users
reached 142 million.

The fintech industry is developing rapidly. According to a market report by Swiss
Global Enterprise, a Swiss export and promotion agency, Indonesias digital financial
services revenue is expected to grow significantly at a compound annual growth rate
(CAGR) of 34%, and will reach USD 8.6 billion in 2025. The research report Future
of Southeast Asia Financial Technology shows that the total valuation of Indonesian
fintech companies reached USD 35 billion in 2020, accounting for 32% of that in
Southeast Asia.

The online lending and payment industry is booming. The cumulative amount of
loans for online lending in Indonesia increased from IDR 2.56 trillion in December
2017 to IDR 102.52 trillion in March 2020, increased by 40 times. According to data
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compiled by the Otoritas Jasa Keuangan (OJK), Indonesias total loans from Fintech
loans in May 2020 increased by 166.03% on a year-on-year basis. OJK estimates
that there are more than 25million borrower accounts andmore than 654,200 entities
providing loans. In terms of fintech payment, the total number of electronic money
transactions at the end of 2019 reached 5.2 billion, an increase of 79.3% from 2.9
billion in last year. In May 2020, BI had issued licenses to 51 electronic money
operators, and the main participants included GoPay, Ovo, Dana, and LinkAja.

2.8.2 Policies and Regulatory Measures: The System Continues to be
Improved and the Supervision Continues to be Upgraded

The fintech policy and supervision system have been continuously improved to
encourage the development of the industry. Indonesias fintech sector is under the
supervision of Bank Indonesia (BI) and the Otoritas Jasa Keuangan (OJK), with the
Ministry of Information andCommunications of Indonesia playing a supporting role.
Bank Indonesia and OJK are responsible for different regulatory fields. Each of them
has a supervisory team, and they learn from each other and complement each other
(Table1).

In October 2017, the Otoritas Jasa Keuangan (OJK) issued the 2017–2022 Devel-
opment Plan, which formulated 10 major policies and implementation plans, and
clearly stated that appropriate supervision should be carried out to optimize the devel-
opment of financial technology. On November 30, 2017, Bank Indonesia issued the
Financial Technology Regulatory Regulation No. 19/12/PBI/2017 for the first time,
which aimed to regulate fintech behaviors to promote innovation, protect consumers
and manage risks so as to maintain a stable currency and financial system and build
an efficient, safe and reliable payment system. In the same year, the Bank Indone-
sia launched a fintech Regulatory Sandbox, allowing fintech companies [Payment
system development (including blockchain and distributed ledgers); aggregate pay-
ment; Internet investment management and risk control; Internet insurance; credit,

Table 1 Fintech regulatory authorities and their responsibilities

Regulatory authorities Specific regulatory responsibilities

Bank Indonesia Electronic wallet, electronic cash, payment
gateway, principal, conversion company, card
issuer and receiver, clearing office, settlement
agent, virtual currency, blockchain, national
payment gateway, payment transaction support

Otoritas Jasa Keuangan (OJK) P2P, crowdfunding. Digital banking, insurtech,
capital market fintech, venture capital, online
financing, data security, consumer protection

Ministry of Information and Communications Telecommunications, information technology,
fintech related to information technology
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financing business, and capital allocation; other financial services (as judged byBank
Indonesia).] in six major sectors to perform a six-month test on their services under
the supervision of the Bank Indonesia. On August 16, 2018, OJK, based on the
experience of the Bank Indonesia in the fintech Regulatory Sandbox and pre-audit
mechanism in the payment field, issued the Digital Financial Innovation Regulation
No. 13/POJK.02/2018, which proposed a package of regulations on fintech supervi-
sion, established a Regulatory Sandbox system, and filled the blank of Indonesian
Bank Regulation No. 19/12/PBI/2017.

Strengthen international fintech cooperation. In October 2018, at the annual meet-
ing of the International Monetary Fund and the World Bank, the Indonesian govern-
ment promoted the adoption of the FinTechAgenda. In the same year, ChinasAlibaba
Cloud announced the establishment of its first data center in Indonesia and officially
put it into operation. Since then, various Chinese fintech companies and investors
have entered the Indonesian market. In September 2020, the Securities Commission
of Malaysia (SC) signed a fintech cooperation agreement with Indonesias Otori-
tas Jasa Keuangan (OJK) in order to establish a cooperation framework to develop
fintech ecosystems in the two markets.

2.8.3 Layout of Key Fintech Cities: Jakarta—The Rapid Development
of Fintech with Inclusive Finance as the Core

Jakarta is the capital, the largest city, and the economic center of Indonesia. The
Greater Jakarta Region surrounding the surrounding towns is the second largest
metropolitan area in the world. Its industry is dominated by finance, accounting for
about one-third of the countrys GDP. It has the largest financial and major industrial
and commercial institutions in the country. Stock exchanges and futures exchanges
are all located in Jakarta. At the same time, Jakarta is also Indonesias fintech hub
city. At present, most fintech companies are located in Jakarta (or Greater Jakarta
Region), and domestic business customers are basically in the same area.

Jakarta has become the birthplace of fintech companies, the first test site, and the
first launch site for products and services. Indonesias first fintech unicorn company
OVO was born in Jakarta, and Akselan, the first equity crowdfunding platform, was
officially established in Jakarta. Among the numerous fintech companies, more than
70% are engaged in digital financial inclusion business, mainly providing financing
and lending services for small and micro enterprises and rural populations.
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2.9 Hong Kong of China—The Government Assists the
Strong Development of Fintech

2.9.1 Development Features: Seek Innovation While Maintaining
Stability to Build a Fintech Hub

The enthusiasm for the development of fintech is booming. Hong Kong has a huge
financial system, relatively complete financial ecology, and favorable conditions for
the development of fintech. The construction and development of the Guangdong-
HongKong-MacaoGreaterBayArea also bringsmore opportunities for development
of fintech in Hong Kong. According to statistics from the Hong Kong Investment
Promotion Agency, there are currently more than 600 fintech companies in Hong
Kong covering multiple business areas. According to relevant KPMG data and its
statistics on global investment and financing, Hong Kong, China ranked ninth in
Asia in terms of investment and financing in 2018. Between 2014 and 2018, the
total investment of fintech companies operating in Hong Kong amounted to USD 1.1
billion. In the first half of 2019, fintech companies in Hong Kong raised a total of
USD 150 million of fund, an increase of 561% on a year-on-year basis. At present,
HongKongs key application areas of fintech involvemobile payment, cross-border e-
commerce payment, securities payment settlement, online financing platform,wealth
technology, commercial insurance, etc.

The internationalization characteristics in various fields of fintech are obvious. In
terms of payment and settlement, with a wide variety of financial products in Hong
Kong, coupled with the opening of Shanghai-Hong Kong Stock Connect, Shenzhen-
Hong Kong Stock Connect, and Bond Connect, post-trade processing platforms have
huge space for fintech. In terms ofwealthmanagement, as an international investment
and asset management center, Hong Kong has already applied a large number of
technologies in the field of asset management, such as computerized transactions
and investments, and still has great potential in automated consulting, big data, and
artificial intelligence. In terms of cross-border e-commerce in trade field, it involves
payment and exchange inmultiple currencies.HongKonghas the obvious advantages
of free currency convertibility and offshore RMB center. Coupled with tax laws and
other conditions, Hong Kong is still preferred cross-border e-commerce. Relying
on the above advantages, a large number of cross-border payment companies have
recently appeared in Hong Kong. In terms of supply chain finance, the blockchain
trade financing platform is the construction focus in Hong Kong.

The fintech talent training system is complete. Currently, the main body of culti-
vating fintech talents in Hong Kong mainly includes two natures, namely, colleges
and universities and social organizations. In terms of colleges and universities, many
colleges and universities have set up fintech majors at the undergraduate, master, and
doctoral levels. The Chinese University of HongKong, the University of HongKong,
City University of Hong Kong, and the Open University of Hong Kong offer fintech
major at the undergraduate level; the Chinese University of Hong Kong, Hong Kong
University of Science and Technology, Hong Kong Baptist University, etc. offer such
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major at the masters level; and the Hong Kong Polytechnic University offers fintech
major. In terms of social organizations, organizations such as the Hong Kong Youth
AssociationContinuing EducationCenter, theVocational TrainingCouncil, the Insti-
tute of Financial Technologists of Asia, and the Hong Kong Institute of Bankers have
attracted or strengthened the training of fintech talents in online and offline methods
by setting up basic fintech courses and issuing certificates.

2.9.2 Fintech Development Policies and Measures: Innovative Support
Measures Contribute to Strong Development of Fintech

The government supervision service system is efficient and perfect. Hong Kong has
successively established and improved relevant government service systems. First,
specialized agencies are established and a Regulatory Sandbox is established. The
government of Hong Kong Special Administrative Region has established an Inno-
vation and Technology Bureau to coordinate the development of fintech. At the same
time, the Hong Kong Monetary Authority, the Securities and Futures Commission,
and the Insurance Regulatory Authority have respectively set up fintech Regulatory
Sandboxes to provide companies with a pilot-based regulatory environment for the
application of innovative technologies. At the same time, the government has also set
up a fast track for Internet insurance sales companies, such asZhongAn Insurance and
other online insurance companies, to apply for licenses. Second, the introduction of
corporate resources is strengthened. The Hong Kong Investment Promotion Agency
has established a fintech task team to successfully attract 19 fintech companies to
settle in Hong Kong and provide assistance to more than 310 fintech companies.

Integrate into the development of theGuangdong-HongKong-MacaoGreater Bay
Area. Hong Kong cooperates with companies such as Tencent, etc., and the Hong
KongMonetaryAuthority has issued the first batch of third-party payment licenses to
them. Through the deployment of WeChat Hong Kong Wallet, Passenger QR Code,
We Remit and other products, Tencent has well integrated with the advantages of
Hong Kong and Macau based on its accumulated mobile payment capabilities for
many years. With the support from all regulatory parties, Tencents E-Pass will give
priority to pilot virtual multi-certificate integration in the Guangdong-Hong Kong-
MacaoGreater BayArea, which canmeet the needs of residents inGuangdong, Hong
Kong, and Macau to use a unified digital identity to enjoy multiple services so as to
realize the interconnection in Guangdong-Hong Kong-Macao Greater Bay Area.
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A Probability Inequality with
Application to Lattice Theory

Tian Kun

Abstract Here we mainly provide a probability inequality about GGH public-key
encryption scheme. Given a constant σ , we first choose a lattice vector v ∈ Z

n , and a
small error vector e is generated satisfying |e| � σ . The ciphertext result c could be
computed by the function fB,σ (v, e) = Bv + e with a public basis B. To extract the
message v, the function f −1

B,σ (c) = B−1[c]R will be used based on the private basis
R. In this work we produce a bound for the error probability of v �= B−1[c]R . We
also illustrate the way choosing σ such that the error probability is arbitrarily small.

Keywords Probability inequality · Encryption scheme · Lattice

1 Introduction

Given a full-rank lattice L ⊂ Z
n , we denote the public basis of L by B and private

basis of L by R. Both B and R are n × n invertible matrices. In the GGH public-key
encryption scheme, for a plaintext vector v ∈ Z

n , the random error vector e is chosen
by setting the absolute value of each entry nomore than a constantσ , whereσ is a pos-
itive real number. The ciphertext c is computed by c = fB,σ (v, e) = Bv + e ∈ R

n .
Using the results of BaBai and some other ones (Ajtai, 1996; Ajtai & Dwork, 1997;
Babai, 1986; Coppersmith&Shamir, 1997;Goldreich et al., 1997;Micciancio, 2001;
Hoffstein et al., 2017, 1998), we can decipher the plaintext v = B−1[c]R given B,
R and ciphertext c. Here the lattice point [c]R is obtained by representing c as a
linear combination on the columns of R and rounding the coefficients in this linear
combination to the nearest integers. The problem is that how σ should be chosen
so that we can get a right plaintext v or guarantee a low error probability. We show
three theorems to solve this problem. A probability inequality is given to estimate
the bound of inversion error probability.
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2 Main Results

Theorem 1 B is the public basis and R is the private basis of lattice L. v ∈ Z
n, e

is the random error vector, |e|∞ � σ , c = fB,σ (v, e) = Bv + e. Then B−1[c]R = v
if and only if [R−1e] = 0, here [R−1e] denotes the vector in Zn which is obtained by
rounding each entry in R−1e to the nearest integer.

Proof Let T = B−1R, then

B−1[c]R = B−1[Bv + e]R = B−1R[R−1(Bv + e)] = T [T−1v + R−1e]

since T = B−1R is a unimodular matrix, T−1 is also a unimodular matrix. v ∈ Z
n ,

so T−1v ∈ Z
n .

B−1[c]R = T [T−1v + R−1e] = v + T [R−1e]

Thus B−1[c]R = v is equivalent to T [R−1e] = 0, and this equality holds if and only
if [R−1e] = 0.

Remark 1 This theorem gives an equivalent condition to check whether the decryp-
tion result is accurate.

Theorem 2 Let R be the private basis of lattice L. e is the random error vector
such that |e|∞ � σ . Suppose the maximum L1 norm of the rows in R−1 is ρ. Then if
σ < 1

2ρ , [R−1e] = 0 holds.

Proof Let R−1 = (ci j )n×n , R−1e = (a1, a2, ..., an)T , i.e., ai = ∑n
j=1 ci j e j , 1 � i �

n.

|ai | = |
n∑

j=1

ci j e j | � |e j ||
n∑

j=1

ci j | � σρ <
1

2

This means that [R−1e] = 0.

Remark 2 Theorem 2 shows how σ can be chosen so that no inversion error occurs.

Theorem 3 Let an n × n matrix R be the private basis used in the inversion of fB,σ ,
and denote the maximum L∞ norm of the rows in R−1 by r√

n
. Then the probability

of inversion errors is bounded by

P{[R−1e] �= 0} � 2n · exp
(

− 1

8σ 2r2

)

,

here e = (e1, e2, ..., en)T and e1, e2, ..., en are n independent random variables such
that |ei | � σ and E(ei ) = 0 for 1 � i � n.
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Lemma 1 For any non-negative random variable X with finite expectation E(X)

and any positive real number μ, we have

P{X � μ} � E(X)

μ
.

Proof Here we treat X as a random variable of continuous type. For the other situ-
ations, the proof is similar. Let f (x) be the probability density function of X . Since
E(X) = ∫ +∞

0 x f (x)dx �
∫ +∞
μ

x f (x)dx �
∫ +∞
μ

μ f (x)dx = μP{X � μ}, then we
have P{X � μ} � E(X)

μ
.

Lemma 2 Given random variable X satisfying −a � X � a with E(X) = 0, here
a > 0. For any real number λ, we have

E(eλX ) � exp

(
λ2a2

2

)

.

Proof For any real number λ, f (x) = eλx is a convex function. Notice that

x = x + a

2a
· a + a − x

2a
· (−a), −a � x � a

then
f (x) � x + a

2a
f (a) + a − x

2a
f (−a)

eλx � x + a

2a
eλa + a − x

2a
e−λa

E(eλX ) � E(
X + a

2a
eλa + a − X

2a
e−λa) = 1

2
(eλa + e−λa)

Let t = λa, next we prove that 1
2 (e

t + e−t ) � exp( t
2

2 ). This inequality is equivalent
to

ln
et + e−t

2
� t2

2

Let g(t) = t2

2 − ln et+e−t

2 , then g′(t) = t − et−e−t

et+e−t and g′(0) = 0. Since g′′(t) � 0, we
get g′(t) � 0 if t � 0 and g′(t) � 0 if t � 0. Then g(t) � g(0) = 0 and we complete
the proof.

Lemma 3 Suppose X1, X2, ..., Xn are n independent random variables. For 1 �
i � n, we have−a � Xi � a and E(Xi ) = 0, here a > 0. Let Sn = ∑n

i=1 Xi , ε > 0,
then

P{|Sn| � ε} � 2exp(− ε2

2na2
).
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Proof For any λ > 0, based on Lemma 1, we can get

P{Sn � ε} = P{eλSn � eλε} � E(eλSn )

eλε

Since X1, X2, ..., Xn are independent random variables, combine with Lemma 2,

E(eλSn ) =
n∏

i=1

E(eλXi ) �
n∏

i=1

e
λ2a2

2 = e
nλ2a2

2

P{Sn � ε} � E(eλSn )

eλε
� e−λε+ nλ2a2

2

Let λ = ε
na2 , therefore, the above inequality becomes to

P{Sn � ε} � exp

(

− ε2

2na2

)

In the same way, we can prove that

P{Sn � −ε} � exp

(

− ε2

2na2

)

Thus

P{|Sn| � ε} � 2exp

(

− ε2

2na2

)

Proof of Theorem3. Nowwe can proveTheorem3 given at first according to Lemma
3.
Let R−1 = (ci j )n×n , e = (e1, e2, ..., en)T , here e1, e2, ..., en are n independent ran-
dom variables such that |ei | � σ and E(ei ) = 0 for 1 � i � n.
We denote R−1e = (a1, a2, ..., an)T , i.e., ai = ∑n

j=1 ci j e j , 1 � i � n.
Since |ci j | � r√

n
and |e j | � σ , then the randomvariable ci j e j is limited to the interval

[− rσ√
n
, rσ√

n
]. Based on Lemma 3,

P{|ai | � 1

2
} = P{|

n∑

j=1

ci j e j | � 1

2
} � 2exp(− ( 12 )

2

2n( rσ√
n
)2

) = 2exp(− 1

8σ 2r2
)

P{[R−1e] �= 0} �
n∑

i=1

P{|ai | >
1

2
} �

n∑

i=1

P{|ai | � 1

2
} � 2n · exp(− 1

8σ 2r2
)

Thus the inequality in Theorem 3 holds.
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Corollary 1 P{[R−1e] �= 0} < ε if σ <

(

2r
√
2 ln 2n

ε

)−1

.

Proof σ <

(

2r
√
2 ln 2n

ε

)−1

⇔ 2n · exp (− 1
8σ 2r2

)
< ε, from Theorem 3,

P{[R−1e] �= 0} � 2n · exp
(

− 1

8σ 2r2

)

< ε

Remark 3 Theorem 3 provides a way to estimate the bound of inversion error prob-
ability, and Corollary 1 gives a detailed bound for σ based on Theorem 3 to get the
error probability no more than a constant ε.

3 Conclusions

In this work we mainly present a probability inequality about GGH public-key
encryption scheme. In this scheme, we first take a lattice vector v ∈ Z

n and gen-
erate a small error vector e such that |e| � σ . Given a public basis B, the function
fB,σ (v, e) = Bv + e computes the ciphertext result c. To decrypt, the private basis
R and the function f −1

B,σ (c) = B−1[c]R will be used to extract the message v. We
give a bound for the error probability of v �= B−1[c]R and explain how to choose σ

in order to obtain the error probability no more than a given constant ε.
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Robust Identification of
Gene-Environment Interactions Under
High-Dimensional Accelerated Failure
Time Models

Qingzhao Zhang, Hao Chai, Weijuan Liang, and Shuangge Ma

Abstract For complex diseases, beyond the main effects of genetic (G) and envi-
ronmental (E) factors, gene-environment (G-E) interactions also play an important
role. Many of the existing G-E interactionmethods conduct marginal analysis, which
may not appropriately describe disease biology. Joint analysis methods have been
developed, with most of the existing loss functions constructed based on likelihood.
In practice, data contamination is not uncommon. Development of robust methods
for interaction analysis that can accommodate data contamination is very limited.
In this study, we consider censored survival data and adopt an accelerated failure
time (AFT) model. An exponential squared loss is adopted to achieve robustness.
A sparse group penalization approach, which respects the “main effects, interac-
tions” hierarchy, is adopted for estimation and identification. Consistency properties
are rigorously established. Simulation shows that the proposed method outperforms
direct competitors. In data analysis, the proposedmethodmakes biologically sensible
findings.

Keywords Robust identification · Gene-environment interactions ·
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1 Introduction

For many complex diseases, it is essential to identify important risk factors that are
associated with prognosis. In the omics era, profiling studies have been extensively
conducted. It has been found that, beyond themain effects of genetic (G) and environ-
mental (E) risk factors, gene-environment (G-E) interactions can also have important
implications.

Denote T and C as the prognosis and censoring times, respectively. Denote X =
(X1, . . . , Xq)

� as the q environmental/clinical variables, and Z = (Z1, . . . , Z p)
�

as the p genetic variables. The existing G-E interaction analysis methods mainly
belong to two families. The first family conducts marginal analysis (Hunter, 2005;
Shi et al., 2014; Thomas, 2010), under which one or a small number of genes
are analyzed at a time. Despite its significant computational simplicity, marginal
analysis contradicts the fact that the prognosis of complex diseases is attributable
to the joint effects of multiple main effects and interactions. The second fam-
ily of methods, which is biologically more sensible, conducts joint analysis (Liu
et al., 2013; Wu et al., 2014; Zhu et al., 2014). Among the existing joint analy-
ses, the regression-based is the most popular and proceeds as follows. Consider
the model T ∼ φ(α0 + ∑q

j=1 X jα j + ∑p
k=1 Zkβk + ∑q

j=1

∑p
k=1 X j Zkγ j,k), where

model φ(·) is known up to the regression coefficients α0, {α j }q1, {βk}p1 , and {γ j,k}q,p
1 .

Conclusions on the importance of interactions are drawn based on {γ j,k}q,p
1 . With the

high data dimensionality and demand for the selection of relevant effects, regularized
estimation is usually needed.

In the dominating majority of the existing studies, estimation is based on the stan-
dard likelihood, which is nonrobust. In practice, data contamination is not uncommon
and can be caused by multiple reasons. Many diseases are heterogeneous, and differ-
ent subtypes behave differently. When the subtype information is accurately avail-
able, subtype-specific analysis can be conducted. However, when such information is
not or partially available, which is often the case in practice (He et al., 2015), subjects
belonging to small subtypesmay be viewed as “contamination” to those of the leading
subtype. Human errors can also happen. It has been well noted that survival infor-
mation extracted from medical records is not always reliable (Bowman, 2015; Fall
et al., 2008), creating contamination in prognosis distributions. In low-dimensional
biomedical studies, it has been well established that even a single contaminated
observation can lead to biased model estimation and so false marker identification
(Huber & Ronchetti, 2009). Our literature review suggests that in the analysis of
G-E interactions, robust methods that can effectively accommodate contamination
in prognosis outcomes have been very rare. For marginal interaction analysis, a few
robust methods, for example, the multifactor dimensionality reduction (MDR), have
been developed. However, they are not directly applicable to joint analysis because
of both methodological and computational challenges. As discussed in (Wu & Ma,
2015), a handful of robustness studies have been conducted under high-dimensional
settings for joint analysis. However, they are mostly on main effects and not directly
applicable to interaction analysis because of the additional complexity caused by the
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“main effects, interactions” hierarchy. Most of them adopt the quantile regression
technique. Studies under low-dimensional settings suggest that no robust technique
can dominate. It is thus desirable to examine alternative robust techniques under
high-dimensional settings. In addition, for quite a few existing methods, statistical
properties have not been well studied, casting doubts on their validity.

Consider data with a prognosis outcome and both G and E measurements. Our
goal is to conduct joint analysis and identify important G-E interactions and main
G and E effects. This study advances from the literature in multiple aspects. Specif-
ically, we consider the scenario with possible contamination in the prognosis out-
come, which is commonly encountered but little addressed. We adopt an exponential
squared loss to achieve robustness. This loss function provides a useful alternative
to the popular quantile regression and other robust approaches but has not been well
investigated under high-dimensional settings, especially not for interaction analysis.
This study also marks a novel extension of the exponential squared loss to accom-
modate censored survival data. For regularized estimation and selection of relevant
effects, we propose adopting a penalization technique, which respects the “main
effects, interactions” hierarchy. Significantly advancing from most of the existing
studies, consistency properties are rigorously established. Theoretical research for
high-dimensional robust methods remains limited. As such, this study may provide
valuable insights.With bothmethodological and theoretical developments, this study
is warranted beyond the existing literature.

2 Methods

2.1 Data and Model Settings

For describing prognosis, we adopt the AFT model, which has been the choice of
multiple studieswith high-dimensional genetic data (Liu et al., 2013; Shi et al., 2014).
Compared to alternatives including the Cox model, advantages of the AFT model
include intuitive interpretations and low computational cost, which are especially
desirable with high-dimensional genetic data. With a slight abuse of notation, still
useT andC to denote the logarithmsof the event and censoring times, and δ = I{T≤C}.
The AFT model specifies that

T = α0 +
q∑

j=1

X jα j +
p∑

k=1

Zkβk +
q∑

j=1

p∑

k=1

X j Zkγ j,k + ε,

where ε is the random error. Following Stute (1993, 1996), we assume that T and
C are independent, and δ is conditionally independent of (X�, Z�)� given T . Let
Wk = (Zk, X1Zk, . . . , Xq Zk)

� and bk = (βk, γ1,k, . . . , γq,k)
�, which represent all

main and interaction effects corresponding to the kth genetic variable.
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With n independent subjects, use subscript “i" to denote the i th subject. For
subject i , let yi = min{Ti ,Ci } and δi = I{Ti≤Ci } be the observed time and event indi-
cator, respectively. Then the i th observation consists of (yi , δi , xi , zi ), with xi =
(xi1, . . . , xiq)�, zi = (zi1, . . . , zip)�, andWk,i = (zik, xi1zik, . . . , xiq zik)� denoting
the i th realizationof X , Z , andWk , respectively.Denoteu�

i, = (1, x�
i ,W�

1,i , . . . ,W
�
p,i ),

U = (u1,, · · · ,un,)
�, and ζ = (α0, . . . , αq , b�

1 , . . . , b�
p )�. Without loss of general-

ity, assume that (yi , δi ,ui,)’s have been sorted according to yi ’s in an ascending
manner.

2.2 Robust Estimation and Identification

Consider the scenario where the distribution of ε is not specified, which significantly
differs from the existing parametric studies and makes the proposed method more
flexible. To motivate the proposed estimation, first consider data without contami-
nation. Stute (1993) developed a weighted least squared estimation approach. Under
low-dimensional settings, Stute’s estimator is defined as the minimizer of the loss
function

n∑

i=1

ωi (yi − u�
i, ζ )2.

Here the weights ω = (ωi )
n
i=1 are computed based on the Kaplan-Meier estimation

and defined as

ω1 = δ1

n
, ωi = δi

n − i + 1

i−1∏

j=1

(
n − j

n − j + 1

)δ j

, i = 2, . . . , n.

It is noted that Stute’s estimator is not necessarily the most efficient. However, under
high-dimensional settings, it can be computationally the most convenient with the
least squared loss. It can be seen that, if ωi �= 0, one contaminated yi can lead to
severely biased model estimation.

Nowconsider the scenariowith possible outliers in the prognosis data.We propose
the objective function

Qθ (ζ ) =
n∑

i=1

ωi exp(−(yi − u�
i, ζ )2/θ). (1)

This function has been motivated by the following considerations. Under low-
dimensional regression analysis without censoring, (Wang et al., 2013) adopted an
exponential squared loss to achieve robustness. The intuition is as follows. For a con-
taminated subject with the observed yi deviating from u�

i, ζ (the “predicted” value
based on the model), (yi − u�

i, ζ )2 has a large value. The exponential function down-
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weighs such a contaminated observation. The degree of down-weighing is adjusted
by θ : when θ gets smaller, the contaminated observations have smaller influence.
While sharing certain similar ground as (Wang et al., 2013) and others, the present
study has three main challenges/advancements. The first is the high dimensionality,
which brings tremendous challenges to theoretical and computational developments.
The second is the need to respect the “main effects, interactions” hierarchy (more
details below). The third is censoring, to accommodatewhichwe introduce theweight
function ωi motivated by Stute’s approach. As the weights are data-dependent, they
bring challenges to the establishment of theoretical properties.

When p � n, regularized estimation is needed. In addition, out of a large number
of profiled G factors and G-E interactions, only a few are expected to be associated
with prognosis. We adopt penalization for regularized estimation and identification,
which has been the choice of a large number of genetic studies, especially recent
interaction analyses (Bien et al., 2013; Liu et al., 2013; Shi et al., 2014). Specifically,
consider the penalized robust objective function

Lλ1,λ2,θ (ζ ) = Qθ (ζ ) −
p∑

k=1

ρ(‖bk‖; λ1, s) −
p∑

k=1

q+1∑

j=2

ρ(|bkj |; λ2, s), (2)

where ‖ · ‖ is the 2 norm, ρ(t; λ, s) = λ
∫ |t |
0

(
1 − x

λs

)
+ dx is the MCP (minimax

concave penalty, (Zhang, 2010)), and bkj is the j th element of bk . λ1 and λ2 are
data-dependent tuning parameters, and s is the regularization parameter, per the
terminologies in Zhang (2010). The robust estimator is defined as the maximizer
of Lλ1,λ2,θ (ζ ). An interaction term (or main effect) is concluded as important if its
estimate is nonzero.

In recent genetic interaction analysis, it has been stressed that the “main effects,
interactions” hierarchy should be respected. That is, if an interaction term is identified
as important, its corresponding main effect(s) should be automatically identified.
G-E interaction analysis has its uniqueness. The E variables usually have a low
dimensionality and are manually chosen. As such, selection is usually not conducted
on the E variables (if desirable, this can be easily achieved). Thus for G-E interaction
analysis, the hierarchy postulates that if an G-E interaction is identified as important,
its corresponding main G effect is automatically identified. In the adopted sparse
group penalty, the first penalty, which is a group MCP, determines which groups are
selected. Here one group corresponds to one genetic variable and its interactions. As
the group MCP does not have within-group sparsity, the second penalty is imposed,
where we penalize the interaction terms and determine which are nonzero. With the
special design that the second penalty is only imposed on interactions, important
interactions correspond to important groups, automatically leading the estimates of
the corresponding main G effects nonzero. As such, the combination of the two
penalties guarantees the hierarchy. We note that although sparse group penalization
has been studied in the literature (Liu et al., 2013), it has been very rarely coupled
with robust loss functions. It is also noted that MCP can be potentially replaced by
other penalties.
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2.3 Computation

In this section, we develop an efficient algorithm to compute the maximizer of
Lλ1,λ2,θ (ζ ). The basic strategy is to iteratively approximate the objective function
by its quadratic minorization. Then a coordinate-wise updating procedure is used to
find the maximizer of each approximated objective function. The maximizer then
serves as the starting point for the next minorization. Overall, this is a coordinate-
descent (CD) algorithm nested in a Minorize-Maximization (MM) algorithm.

LetW(ζ )be adiagonalmatrixwith the i th diagonal elementWi,i = 2ωi exp(−(yi −
u�
i, ζ )2/θ)/θ . Also let v(ζ ) = (v1, · · · , vn)� with vi = yi − u�

i, ζ . Define U,− j as the
sub-matrix of U with the j th column excluded. Define u, j as the j th column of
matrix U, and ui, j as the j th component of vector ui,. Similarly, define ζ− j as the
sub-vector of ζ with the j th element excluded. For the exponential squared objective
function in (1), its first- and second-order derivatives with respect to ζ are

∂Qθ (ζ )

∂ζ j
= 2

n∑

i=1

ωi exp(−(yi − u�
i, ζ )2/θ)ui, j (yi − u�

i, ζ )/θ = u�
, jW(ζ )v(ζ ),

∂2Qθ (ζ )

∂ζ j∂ζk
= 2

n∑

i=1

ωi exp(−(yi − u�
i, ζ )2/θ)ui, j ui,k[2(yi − u�

i, ζ )2/θ − 1]/θ.

If (yi − u�
i, ζ )2/θ > 0.5, ∂2Qθ (ζ )

∂ζ j ∂ζk
≥ 0. On the other hand if (yi − u�

i, ζ )2/θ ≤ 0.5,
∂2Qθ (ζ )

∂ζ j ∂ζk
≤ 0. Hence, to find the maximizer of Qθ (ζ ), the simple Newton-Raphson

approach may lead to infinity if the starting value is too far from the true value.
To tackle this problem, a minorization of Qθ (ζ ) is used to approximate Qθ (ζ ).
Note that ∂2Qθ (ζ )

∂ζ j ∂ζk
≥ −2

∑n
i=1 ωi exp(−(yi − u�

i, ζ )2/θ)ui, j ui,k/θ . Hence aminorized
approximation to Qθ (ζ ) at ζm is

Qθ (ζ
m) + v�(ζm)W(ζm)U(ζ − ζm) − 1

2
(ζ − ζm)�U�W(ζm)U(ζ − ζm).

Note that ζm = (αm
0 , . . . , αm

q , bm1
�, . . . , bmp

�)� with bmk = (βm
k , γ m

1,k, . . . , γ
m
q,k)

�. For
the penalty, we apply a local linear approximation at ζm , which is given by

−
p∑

k=1

ρ̇(‖bmk ‖; λ1, s)
|βm

k |
‖bmk ‖ |βk | −

p∑

k=1

q∑

j=1

{

ρ̇(‖bmk ‖; λ1, s)
|γm

j,k |
‖bmk ‖ + ρ̇(|γm

j,k |; λ2, s)

}

|γ j,k |

if the terms that do not depend on ζ are ignored, where ρ̇(t; λ, s) = sgn(t)
(
λ − |t |

s

)

+ .

If we replace Qθ (ζ ) in (2) with its minorized approximation and plug in the approx-
imation of the penalty, the penalized objective function then has the form
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Lλ1,λ2,θ (ζ |ζm) = Q(ζm) + v�(ζm)W(ζm)U(ζ − ζm)

− 1

2
(ζ − ζm)�U�W(ζm)U(ζ − ζm) −

p∑

k=1

ρ̇(‖bmk ‖; λ1, s)
|βm

k |
‖bmk ‖ |βk |

−
p∑

k=1

q∑

j=1

{

ρ̇(‖bmk ‖; λ1, s)
|γ m

j,k |
‖bmk ‖ + ρ̇(|γ m

j,k |; λ2, s)

}

|γ j,k |. (3)

This function has a “weighted quadratic + penalty” form and can be optimized using
the coordinate-descent approach.

The algorithm starts with m = 0 and ζm = 0, where m is the index of the MM
iteration. At iteration m, the objective function is approximated by its minoriza-
tion Lλ1,λ2,θ (ζ |ζm) given in (3). Then the penalized weighted quadratic function is
maximized using the coordinate-descent algorithm. Denote ζ̄ old as the estimate of ζ

before updating.We update each element of the estimate and denote the new estimate
as ζ̄ new. This is repeated until the distance between ζ̄ old and ζ̄ new is smaller than a
prefixed constant. Then ζm+1 = ζ̄ new serves as the new expansion base point for the
next minorization. The overall procedure is repeated until convergence. Convergence
properties of the MM and CD techniques have been well studied in the literature.
With our problem, the objective function increases at each step and is bounded above,
which leads to convergence. In numerical study, we conclude convergence if the dif-
ference between two estimates after two consecutive MM steps is small enough. We
observe convergence in all numerical examples after a small to moderate number of
MM iterations.

The proposed method involves tuning parameters. For s in MCP, we follow
(Zhang, 2010) and other published studies, which suggest examining a small number
of values or fixing it. In our numerical study, we fix s = 6, which has been adopted in
published studies (Shi et al., 2014; Xu et al., 2018). We have also examined s values
near 6 and observed similar performance (details omitted). In practice, for settings
significantly different from ours, other s values may need to be considered. Under
low-dimensional settings, (Wang et al., 2013) proposed an iterative approach to select
the robust tuning parameter θ . However, their approach is computationally infeasi-
ble for high-dimensional data. Under the present setting, for each combination of
(λ1, λ2, θ), we compute the solution. This way, we can obtain a solution surface over
a three-dimensional tuning parameter grid. This is feasible as the proposed compu-
tational algorithm only involves simple updates and incurs low cost. Then the tuning
parameters can be selected using a prediction-based method which proceeds as fol-
lows: (a) compute the cross-validated sum of prediction errors for each (λ1, λ2, θ)

combination; (b) for each fixed θ , average the sum of prediction errors over λ1, λ2.
Select θ that has the smallest average sum of prediction errors; (c) with the selected
θ , select λ1, λ2 that has the smallest sum of prediction errors. This procedure first
groups all (λ1, λ2) values together and selects the best θ value. Then with the optimal
θ value, the optimal (λ1, λ2) values are selected. Our numerical experiments suggest
that this procedure generates more stable estimates than directly searching over the
three-dimensional (λ1, λ2, θ) grid.



44 Q. Zhang et al.

With a complex robust goodness-of-fit and a penalty that respects the hierarchy,
the proposed method is inevitably computationally more expensive than some sim-
pler alternatives. However, as the proposed computational algorithm is composed
of relatively simple calculations, the overall computational cost is affordable. With
fixed tunings, the analysis of one simulated dataset (described in detail below) takes
about nine minutes on a regular laptop. Tuning parameter selection can be conducted
in a highly parallel manner to save computer time.

2.4 Consistency Properties

In this section,we rigorously prove that the proposedmethod can consistently identify
the important interactions (andmain effects) under ultrahigh-dimensional settings. In
the literature, theoretical development for robust methods under high-dimensional
settings has been limited. It is especially rare for methods other than the quantile
based. With the consistency properties, the proposed method can be preferred over
the alternatives whose statistical properties have not been well established. Our the-
oretical development not only provides a solid ground for the proposed method but
also sheds insights for other robust methods under high-dimensional settings.

For any two subsets S1 and S2 of {1, · · · , p + q + pq + 1} and a matrix H , we
denote by HS1S2 the sub-matrix of H with rows and columns indexed by S1 and S2,
respectively. Let ζ ∗ = (α∗

0 , . . . , α
∗
q , b

∗
1
�, . . . , b∗

p
�)�, where b∗

k = (β∗
k , γ ∗

1,k , . . . , γ
∗
q,k)

�
is the true value of ζ . Here we make the sparsity assumption, under which only a
subset of the components of ζ ∗ is nonzero. Define the three groups of parameters:

A1 = {α∗
0 , . . . , α∗

q }, A2 = {γ ∗
j,k : γ ∗

j,k �= 0, j = 1, . . . , q; k = 1, . . . , p},
A3 = {β∗

k : β∗
k �= 0 or there exsits some 1 ≤ j ≤ q such that γ ∗

j,k �= 0, k = 1, . . . , p}.

Denote A as the set of indices of A1 ∪ A2 ∪ A3 in the vector ζ ∗. Let A c and |A |
denote the complement and cardinality of set A , respectively. We then divide A c

into there sets of indices B1,B2, and B3, which correspond to the following three
sets

B1 = {β∗
k : β∗

k = 0, k = 1, . . . , p},
B2 = {γ ∗

j,k : γ ∗
j,k = 0 but β∗

k �= 0, j = 1, . . . , q; k = 1, . . . , p},
B3 = {γ ∗

j,k : γ ∗
j,k = 0 and β∗

k = 0, j = 1, . . . , q; k = 1, . . . , p},

respectively. Define

Dn(ζ ) =
n∑

i=1

ωi exp(−(yi − u�
i ζ )2/θ)

2(yi − u�
i, ζ )

θ
ui,

and
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In(ζ ) = 2

θ

n∑

i=1

ωi exp(−(yi − u�
i, ζ )2/θ)

(
2(yi − u�

i, ζ )2

θ
− 1

)

ui,u�
i, .

The following conditions are needed to establish the consistency properties.

C1. T and C are independent, and P(T ≤ C |T, X, Z) = P(T ≤ C |T ).
C2. The support of T is dominated by that of C . For example, τT < τC or τT =

τC = ∞, where τT and τC are the right end points of the support of T and C ,
respectively.

C3. E[Dn(ζ
∗)] = 0.

C4. The distributions of Dn, j (ζ
∗)’s are subgaussian, that is, Pr(|Dn, j (ζ

∗)| > t) ≤
2 exp

(−nt2/σ 2
)
. Moreover, In, jk(ζ ) − I jk(ζ )’s are subgaussian for all ζ ∈

Θ = {ζ : ‖ζ − ζ ∗‖2 < δ}, where δ is a positive constant, I (ζ ) = E[In(ζ )],
and I jk(ζ ) is the ( j, k)th component of matrix I (ζ ). Moreover, there exists
a bounded constant κ such that ν�[I (ζ 1) − I (ζ 2)]ν ≤ κ‖ζ 1 − ζ 2‖2 for any
ζ 1, ζ 2 ∈ Θ and ‖ν‖2 = 1.

C5. IA A (ζ ∗) is a |A | × |A | negative-definite matrix. The eigenvalues of IA A (ζ ∗)
are bounded away from zero and infinity.

C6. min j,k{|γ ∗
j,k | : γ ∗

j,k �= 0} � λ1 ∨ λ2. λ1 ∧ λ2 � √|A |/n.
C1 and C2 have been commonly assumed in the literature. See, for example, (Stute,
1993, 1996; Huang et al., 2007). We note that the independent censoring assumption
usually holds in practice, although from a theoretical perspective, quite a few stud-
ies have made the weaker conditional independence assumption. We have explored
relaxing this assumption and found that alternative and less intuitive assumptions
would have to be made. The zero expectations in C3 and C5 ensure the consistency
of estimation. C4 is required for Theorem 1, and a similar assumption has been made
in (Ma & Du, 2012). C6 requires that the smallest signal does not decay too fast,
which is common in studies on high-dimensional inference. The following theorem
establishes consistency of the proposed estimator ζ̂ .

Theorem 1 Suppose that conditions C1-C6 hold.
Let �n = (λ1 ∧ λ2)/{max(Φ1, Φ2, Φ3)}, where Φt = ‖IB tA (ζ ∗)IA A (ζ ∗)−1‖∞,
t = 1, 2, 3. If |A | = o(n), λ1 ∨ λ2 → 0, n� 2

n → ∞, and log p = o(n� 2
n ),

with probability tending to one, we have

(a) ‖̂ζA − ζ ∗
A ‖2 = Op(

√|A |/n); (b) ζ̂A c = 0.

Proof For the proof, see Appendix. �
This theorem establishes that the proposedmethod is able to accommodate pwith

log p = o(n� 2
n ). The penalized robust estimator enjoys the same asymptotic prop-

erties as the oracle estimator with probability approaching one. This property holds
under high dimensions without restrictive conditions on the errors. To the best of our
knowledge, properties of the robust exponential loss, even without censoring, have
not been studied under high-dimensional settings. Thus our theoretical investigation
can have independent value. Proof of the theorem is presented in Appendix.
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3 Simulations

In simulation,we set n = 300, q = 5, and p = 1000. The underlying truemodel con-
tains a total of 35 nonzero effects, including 5 main E effects, 10 main G effects, and
20 interactions. The “positions” of nonzero main G effects are randomly placed. The
nonzero interactions are generated to respect the “main effects, interactions” hierar-
chy. The nonzero regression coefficients are randomly generated from uniform (0.7,
1.3). We consider both continuous and categorical distributions to mimic, for exam-
ple, gene expression and SNP data. Specifically, under the continuous scenario, the
E and G factors are generated from multivariate normal distributions with marginal
means zero, marginal variances one, and the following variance matrix structures:
Independent, AR(0.3), AR(0.8), Band(0.3), Band(0.6), and CS(0.2). Under the inde-
pendent scenario, all factors have zero correlations. Under the AR(ρ) correlation
structure, for the i th and j th factors, corr = ρ|i− j |. Under the Band(ρ) correlation
structure, for the i th and j th factors, corr = ρ · I (|i − j | = 2) + 0.3 · I (|i − j | =
1) + I (|i − j | = 0). Under the CS(ρ) correlation structure, for the i th and j th fac-
tors, the correlation coefficient corr = ρ I (i �= j). Under the categorical scenario, we
first apply the same data generating approach as described above to obtainU. Then for
each ui, j , the categorical measurement is generated as I (ui, j > −0.7). The threshold
value −0.7 is chosen such that the proportion of 1’s for each factor is roughly 75%.
Under each of the above simulation settings, consider the random error distribution
(1 − ξ)N (0, 1) + ξCauchy, with the contamination probability ξ = 0, 0.1, and 0.3.
When ξ = 0, the error distribution has no contamination and favors the nonrobust
approaches, while the latter two values lead to different levels of contamination.
The log event times are generated from the AFT model. The censoring times are
generated independently from Weibull distributions. The censoring parameters are
adjusted so that the censoring rates are about 25%. Beyond the above scenarios, we
also consider a set of parallel scenarios, under which there are 10 main E effects,
20 main G effects, and 40 interactions (that is, the number of important effects is
doubled), and the nonzero coefficients are generated from uniform (0.4, 0.6) (that is,
the signal levels are reduced by about 50%). Other settings remain the same.

The simulated data are analyzed using the proposed method. In addition, we also
consider two alternatives: (a) the nonrobust method that adopts the weighted least
squared loss and the same penalty as the proposed, and (b) the quantile regression-
based method that adopts an L1 robust loss and the same penalty as the proposed.
We note that multiple other methods are potentially applicable. Comparing with
the nonrobust method can directly establish the merit of being robust. The quantile
regression-based approach is the most popular for high-dimensional data (Wu&Ma,
2015). Thus these two alternatives are the most sensible to compare with.

All three methods involve tuning parameters. To eliminate the (possibly differ-
ent) effects of tuning parameter selection on identification accuracy, we consider a
sequence of tuning parameter values, evaluate identification accuracy at each value,
and calculate the AUC (area under the ROC curve) as the overall measure. This
approach has been adopted extensively in published studies (Zhu et al., 2014).
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Summary statistics are computed based on 500 replicates. The AUC results for
interactions and main effects combined are presented in Tables 1 and 2, respectively,
for the scenarios with 35 and 70 important effects. To be thorough, we have also
evaluated identification accuracy for interactions and main effects separately and
present the AUC results in Tables 4, 5, 6 and 7 in Appendix. For all three methods,
the AUC value decreases as the contamination proportion increases, as expected. In
Table 1, the proposed method outperforms the two alternatives under all except one
scenario. InTable 2, it dominates the alternatives.Under some scenarios, the proposed
method leads to a significant improvement in identification accuracy. For example
in Table 1, with the continuous G distribution, 30% contamination, and Band(0.3)
correlation, the proposed method has a mean AUC of 0.901, while the alternatives
have mean AUCs of 0.761 and 0.789. Compared to the nonrobust alternative, the
proposed method also has smaller standard errors (Table3).

We have also experimented with a few other scenarios and made similar observa-
tions. In particular, we have examined the scenarios where the event and censoring
times have weak to moderate correlations and observed similar satisfactory per-
formance (details omitted). The proposed method and two alternatives respect the
hierarchy. We have also looked into simpler alternatives, including MCP and Lasso,
which may violate the hierarchy, and observed inferior performance.

4 Analysis of the TCGA Lung Adenocarcinoma Data

Adenocarcinoma of the lung is the leading cause of cancer deathworldwide. Profiling
studies have been extensively conducted searching for its prognostic factors. Here
we analyze the TCGA (The Cancer Genome Atlas Research Network, 2014) data on
the prognosis of lung adenocarcinoma. The TCGA data were recently collected and
published by NCI and have high quality. The prognosis outcome of interest is overall
survival. The dataset contains measurements on 43 clinical/environmental variables
and 18,897 gene expressions. There are a total of 468 patients, amongwhom117 died
during follow-up. The median follow-up time is 8 months. We select four E factors
for downstream analysis, namely, age, gender, smoking pack years, and smoking
history. These factors have a relatively low missing rate in the TCGA dataset and
have been previously suggested as potentially related to lung cancer prognosis. There
are a total of 436 samples with both E and G measurements available. Among them,
110 died during follow-up, and the median follow-up time is 23 months. For the 326
censored subjects, the median follow-up time is 6 months. In principle, the proposed
method can directly analyze all of the available gene expressions. To improve stability
and reduce the computational cost, we conduct marginal prescreening. Specifically,
genes are screened based on their univariate regression significance (p-value less
than or equal to 0.1) and interquartile range (above the median of all interquartile
ranges). Similar prescreenings have been adopted in the literature. A total of 819
gene expressions are included in the downstream model fitting. Note that with the
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Table 1 Simulation: identification of both G-E interactions and main G effects. In each cell, mean
AUC (se). There are a total of 35 nonzero effects, with coefficients ∼uniform (0.7, 1.3)

ξ Cor Proposed Nonrobust Quantile

Continuous

0 AR(0) 0.891(0.065) 0.842(0.095) 0.806(0.043)

AR(0.3) 0.971(0.050) 0.917(0.096) 0.832(0.025)

AR(0.8) 0.981(0.041) 0.923(0.066) 0.881(0.024)

Band(0.3) 0.972(0.057) 0.908(0.106) 0.828(0.024)

Band(0.6) 0.978(0.044) 0.930(0.078) 0.725(0.024)

CS(0.2) 0.920(0.069) 0.827(0.096) 0.854(0.024)

0.1 AR(0) 0.824(0.077) 0.733(0.114) 0.782(0.042)

AR(0.3) 0.951(0.057) 0.858(0.130) 0.815(0.031)

AR(0.8) 0.970(0.061) 0.841(0.119) 0.873(0.034)

Band(0.3) 0.945(0.093) 0.850(0.143) 0.802(0.021)

Band(0.6) 0.959(0.058) 0.865(0.131) 0.704(0.037)

CS(0.2) 0.898(0.087) 0.779(0.109) 0.846(0.043)

0.3 AR(0) 0.769(0.086) 0.646(0.097) 0.775(0.045)
AR(0.3) 0.889(0.101) 0.742(0.147) 0.788(0.021)

AR(0.8) 0.942(0.077) 0.754(0.124) 0.856(0.025)

Band(0.3) 0.901(0.093) 0.761(0.140) 0.789(0.022)

Band(0.6) 0.924(0.075) 0.785(0.131) 0.691(0.041)

CS(0.2) 0.845(0.092) 0.661(0.117) 0.831(0.045)

Categorical

0 AR(0) 0.890(0.062) 0.838(0.092) 0.778(0.045)

AR(0.3) 0.963(0.054) 0.913(0.093) 0.802(0.028)

AR(0.8) 0.975(0.041) 0.918(0.068) 0.843(0.021)

Band(0.3) 0.971(0.041) 0.932(0.080) 0.787(0.033)

Band(0.6) 0.972(0.039) 0.925(0.079) 0.702(0.042)

CS(0.2) 0.917(0.082) 0.818(0.097) 0.822(0.047)

0.1 AR(0) 0.835(0.085) 0.756(0.115) 0.749(0.043)

AR(0.3) 0.944(0.055) 0.856(0.130) 0.785(0.033)

AR(0.8) 0.970(0.037) 0.867(0.102) 0.831(0.041)

Band(0.3) 0.953(0.052) 0.862(0.119) 0.764(0.025)

Band(0.6) 0.965(0.044) 0.861(0.128) 0.678(0.032)

CS(0.2) 0.895(0.086) 0.752(0.115) 0.803(0.035)

0.3 AR(0) 0.771(0.090) 0.635(0.118) 0.738(0.043)

AR(0.3) 0.895(0.087) 0.722(0.131) 0.771(0.024)

AR(0.8) 0.946(0.057) 0.785(0.119) 0.817(0.028)

Band(0.3) 0.897(0.115) 0.748(0.153) 0.741(0.027)

Band(0.6) 0.921(0.083) 0.751(0.140) 0.649(0.047)

CS(0.2) 0.822(0.110) 0.660(0.113) 0.787(0.031)
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Table 2 Simulation: identification of both G-E interactions and main G effects. There are a total
of 70 nonzero effects, with coefficients ∼uniform (0.4, 0.6)

ξ Cor Proposed Nonrobust Quantile

Continuous

0 AR(0) 0.678(0.043) 0.649(0.042) 0.645(0.051)

AR(0.3) 0.800(0.045) 0.768(0.057) 0.771(0.046)

AR(0.8) 0.916(0.058) 0.828(0.054) 0.812(0.044)

Band(0.3) 0.827(0.057) 0.781(0.067) 0.787(0.039)

Band(0.6) 0.865(0.052) 0.816(0.061) 0.719(0.025)

CS(0.2) 0.717(0.065) 0.645(0.047) 0.668(0.037)

0.1 AR(0) 0.651(0.040) 0.623(0.047) 0.619(0.045)

AR(0.3) 0.737(0.069) 0.668(0.085) 0.672(0.038)

AR(0.8) 0.892(0.050) 0.779(0.081) 0.795(0.047)

Band(0.3) 0.790(0.061) 0.710(0.100) 0.759(0.055)

Band(0.6) 0.827(0.060) 0.767(0.080) 0.754(0.041)

CS(0.2) 0.691(0.061) 0.613(0.053) 0.672(0.042)

0.3 AR(0) 0.605(0.052) 0.551(0.042) 0.561(0.048)

AR(0.3) 0.697(0.064) 0.601(0.058) 0.633(0.037)

AR(0.8) 0.838(0.081) 0.679(0.093) 0.719(0.042)

Band(0.3) 0.713(0.079) 0.608(0.080) 0.668(0.039)

Band(0.6) 0.754(0.085) 0.648(0.102) 0.651(0.035)

CS(0.2) 0.668(0.059) 0.568(0.065) 0.611(0.041)

Categorical

0 AR(0) 0.675(0.045) 0.645(0.040) 0.643(0.038)

AR(0.3) 0.784(0.057) 0.769(0.067) 0.758(0.042)

AR(0.8) 0.909(0.058) 0.826(0.052) 0.799(0.051)

Band(0.3) 0.799(0.058) 0.776(0.065) 0.774(0.034)

Band(0.6) 0.847(0.063) 0.827(0.062) 0.688(0.039)

CS(0.2) 0.719(0.064) 0.634(0.041) 0.677(0.049)

0.1 AR(0) 0.654(0.052) 0.596(0.060) 0.604(0.037)

AR(0.3) 0.748(0.063) 0.683(0.093) 0.695(0.052)

AR(0.8) 0.869(0.085) 0.764(0.086) 0.772(0.041)

Band(0.3) 0.772(0.071) 0.712(0.093) 0.733(0.039)

Band(0.6) 0.806(0.067) 0.736(0.099) 0.729(0.048)

CS(0.2) 0.684(0.058) 0.595(0.051) 0.638(0.034)

0.3 AR(0) 0.614(0.056) 0.557(0.049) 0.571(0.052)

AR(0.3) 0.697(0.065) 0.614(0.068) 0.632(0.047)

AR(0.8) 0.824(0.092) 0.694(0.103) 0.727(0.045)

Band(0.3) 0.720(0.071) 0.639(0.085) 0.655(0.036)

Band(0.6) 0.749(0.087) 0.644(0.090) 0.648(0.045)

CS(0.2) 0.666(0.056) 0.574(0.050) 0.629(0.038)
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main G effects as well as interactions, the number of unknown parameters is much
larger than the sample size.

Detailed estimation results are presented in Table 3 for the proposed method
and Tables 8 and 9 in Appendix for the two alternatives. It is observed that the
three methods lead to quite different findings. Specifically, the proposed and quantile
methods share four common main G effects and four interactions. Otherwise, there
is no overlap in identification. The “signals” in practical data can be weaker than
those in simulated data, leading to the significant differences across methods.

With the proposed method, sixteen genes are identified to have interactions with
either age or smoking status. As for many other cancer types, age has been identified
as a critical factor in lung cancer prognosis. Smoking has been confirmed as the
most important E factor for lung cancer risk and prognosis. In the literature, G-E
interaction analysis for lung cancer prognosis is still very limited. However, there
have been many studies on the functionalities of genes. Searching such studies can
provide a partial support to the validity of our analysis results. Among the identified
genes, many have been implicated in cancer in the literature. Specifically, the AGPAT
family, which includes AGPAT6 as a member, has been found to play a role in
multiple cancer types. For example, AGPAT2 and AGPAT11 have been found to be
upregulated in ovarian, breast, cervical, and colorectal cancers (Agarwal and Garg,
2010). Another gene that is worth attention is ATF6, which acts both as a sensor and
a transcription factor during endoplasmic reticulum stress. ATF6α has been found
to promote hepatocarcinogenesis and cancer cell proliferation through activating
downstream target geneBIP. Its efficiencyof stress recognition and signaling has been
found to decrease with age (Naidoo, 2009). We find that gene COLCA2 (colorectal
cancer associated 2) interacts with smoking pack years. Studies have shown that
COLCA2 may have critical functions in suppressing tumor formation in epithelial
cells (Peltekova et al., 2014). We also identify an interaction between NOS1AP and
age. It has been found that the protein complex of SCRIB, NOS1AP, and VANGL1
regulates cell polarity and migration, and this complex can be associated with cancer
progression (Anastas et al., 2012). An interaction between PPP1R15B and smoking
pack years has also been identified. It has been suggested that PPP1R15B is likely to
be regulated by Nrf2, which has a protective response to smoking induced oxidative
stress in the lung (Taylor et al., 2008). Also, PPP1R15B may promote cancer cell
proliferation.

To complement the identification and estimation analysis, we also evaluate sta-
bility. Specifically, we randomly select 3/4 of the subjects and apply the proposed
method and alternatives. This procedure is repeated 200 times. We then compute the
probability that an interaction is identified. Similar procedures have been extensively
adopted in published studies. The stability results are also provided in Tables 3, 8,
and 9. We see that most of the identified interactions are relatively stable, with many
having the probabilities of being identified close to one.
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Table 3 Analysis of the TCGA lung adenocarcinoma data using the proposed method. The iden-
tified interactions are denoted as “gene * environmental variable”. For the interactions, values in
“()” are the stability results

Effect Estimate ×100

Age 8.817

Smoking pack years –0.358

AGPAT6 55.343

ANKRD46 4.646

ATF6 40.350

C1ORF27 7.708

COLCA2 –1.808

CAND1 32.138

DNAJC21 6.652

DYRK2 –24.595

HERPUD2 –40.358

LCMT2 40.151

NOS1AP –28.707

PIGZ –19.058

PPP1R15B –2.411

TROVE2 –5.979

WIPI2 –18.739

YTHDF3 21.524

AGPAT6 * age 0.202(0.995)

ANKRD46 * age 0.546(0.537)

ATF6 * age 0.493(0.193)

C1ORF27 * age –0.072(0.989)

COLCA2 * smoking pack years 0.315(0.993)

CAND1 * smoking pack years –0.716(0.649)

DNAJC21 * age –0.280(1.000)

DYRK2 * age 0.496(0.330)

HERPUD2 * age –0.393(0.975)

LCMT2 * age –0.222(0.927)

NOS1AP * age 0.140(0.734)

PIGZ * age 0.046(0.397)

PPP1R15B * smoking pack years 0.711(0.998)

TROVE2 * age –0.416(0.890)

WIPI2 * age –0.205(1.000)

YTHDF3 * age –0.201(0.839)
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Table 4 Simulation: identification of main G effects. In each cell, mean AUC (se). There are a
total of 10 nonzero main effects, with coefficients ∼uniform (0.7, 1.3)

ξ Cor Robust Nonrobust Quantile

Continuous

0 AR(0) 0.94(0.055) 0.964(0.052) 0.867(0.041)

AR(0.3) 0.985(0.019) 0.998(0.002) 0.882(0.052)

AR(0.8) 0.987(0.019) 0.994(0.019) 0.912(0.032)

BAND(0.3) 0.985(0.020) 0.999(0.003) 0.841(0.046)

BAND(0.6) 0.985(0.022) 0.998(0.007) 0.792(0.047)

CS(0.2) 0.938(0.047) 0.923(0.061) 0.863(0.039)

0.1 AR(0) 0.883(0.079) 0.834(0.135) 0.852(0.044)

AR(0.3) 0.975(0.028) 0.956(0.108) 0.841(0.053)

AR(0.8) 0.981(0.052) 0.922(0.127) 0.891(0.034)

BAND(0.3) 0.967(0.075) 0.942(0.136) 0.836(0.036)

BAND(0.6) 0.975(0.036) 0.944(0.128) 0.789(0.044)

CS(0.2) 0.921(0.079) 0.851(0.126) 0.855(0.031)

0.3 AR(0) 0.837(0.102) 0.716(0.127) 0.792(0.028)

AR(0.3) 0.942(0.082) 0.829(0.168) 0.814(0.031)

AR(0.8) 0.970(0.070) 0.841(0.135) 0.855(0.042)

BAND(0.3) 0.943(0.079) 0.836(0.158) 0.821(0.028)

BAND(0.6) 0.954(0.067) 0.871(0.144) 0.811(0.053)

CS(0.2) 0.886(0.095) 0.704(0.142) 0.824(0.058)

Categorical

0 AR(0) 0.931(0.047) 0.956(0.050) 0.857(0.044)

AR(0.3) 0.970(0.030) 0.998(0.010) 0.872(0.058)

AR(0.8) 0.976(0.028) 0.992(0.023) 0.883(0.044)

BAND(0.3) 0.974(0.027) 0.999(0.002) 0.832(0.041)

BAND(0.6) 0.974(0.029) 0.999(0.010) 0.824(0.036)

CS(0.2) 0.937(0.051) 0.918(0.065) 0.844(0.051)

0.1 AR(0) 0.894(0.078) 0.868(0.137) 0.853(0.039)

AR(0.3) 0.963(0.036) 0.959(0.104) 0.875(0.056)

AR(0.8) 0.975(0.029) 0.939(0.090) 0.897(0.064)

BAND(0.3) 0.968(0.036) 0.960(0.090) 0.841(0.042)

BAND(0.6) 0.971(0.033) 0.934(0.117) 0.829(0.048)

CS(0.2) 0.923(0.075) 0.824(0.138) 0.846(0.057)

0.3 AR(0) 0.838(0.098) 0.707(0.153) 0.788(0.029)

AR(0.3) 0.932(0.075) 0.808(0.159) 0.818(0.035)

AR(0.8) 0.967(0.041) 0.863(0.143) 0.854(0.048)

BAND(0.3) 0.931(0.101) 0.842(0.173) 0.819(0.035)

BAND(0.6) 0.946(0.065) 0.821(0.155) 0.813(0.044)

CS(0.2) 0.854(0.106) 0.704(0.136) 0.828(0.052)
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Table 5 Simulation: identification of G-E interactions. In each cell, mean AUC (se). There are a
total of 20 nonzero interactions, with coefficients ∼uniform (0.7, 1.3)

ξ Cor Robust Nonrobust Quantile

Continuous

0 AR(0) 0.866(0.088) 0.784(0.137) 0.761(0.047)

AR(0.3) 0.963(0.075) 0.873(0.143) 0.776(0.062)

AR(0.8) 0.976(0.061) 0.888(0.098) 0.862(0.066)

BAND(0.3) 0.964(0.085) 0.861(0.159) 0.803(0.058)

BAND(0.6) 0.973(0.066) 0.895(0.117) 0.659(0.043)

CS(0.2) 0.904(0.092) 0.775(0.134) 0.848(0.039)

0.1 AR(0) 0.792(0.090) 0.684(0.124) 0.734(0.053)

AR(0.3) 0.938(0.082) 0.811(0.158) 0.786(0.048)

AR(0.8) 0.962(0.075) 0.801(0.128) 0.864(0.039)

BAND(0.3) 0.932(0.112) 0.806(0.165) 0.775(0.041)

BAND(0.6) 0.948(0.080) 0.826(0.150) 0.633(0.052)

CS(0.2) 0.881(0.105) 0.740(0.130) 0.829(0.058)

0.3 AR(0) 0.733(0.094) 0.612(0.095) 0.753(0.046)
AR(0.3) 0.862(0.122) 0.701(0.152) 0.749(0.052)

AR(0.8) 0.927(0.089) 0.710(0.128) 0.861(0.057)

BAND(0.3) 0.879(0.110) 0.725(0.146) 0.748(0.033)

BAND(0.6) 0.907(0.089) 0.744(0.139) 0.598(0.062)

CS(0.2) 0.820(0.105) 0.637(0.114) 0.841(0.045)

Categorical

0 AR(0) 0.866(0.086) 0.782(0.130) 0.733(0.064)

AR(0.3) 0.955(0.079) 0.869(0.140) 0.728(0.051)

AR(0.8) 0.971(0.061) 0.881(0.100) 0.802(0.039)

BAND(0.3) 0.967(0.061) 0.898(0.119) 0.749(0.048)

BAND(0.6) 0.969(0.058) 0.888(0.119) 0.609(0.051)

CS(0.2) 0.900(0.109) 0.763(0.134) 0.801(0.039)

0.1 AR(0) 0.801(0.102) 0.702(0.125) 0.667(0.057)

AR(0.3) 0.932(0.077) 0.806(0.159) 0.702(0.048)

AR(0.8) 0.964(0.056) 0.830(0.123) 0.764(0.055)

BAND(0.3) 0.942(0.074) 0.814(0.151) 0.689(0.053)

BAND(0.6) 0.959(0.064) 0.826(0.148) 0.604(0.045)

CS(0.2) 0.875(0.104) 0.713(0.123) 0.751(0.048)

0.3 AR(0) 0.734(0.099) 0.601(0.114) 0.681(0.039)

AR(0.3) 0.873(0.104) 0.681(0.131) 0.687(0.058)

AR(0.8) 0.931(0.075) 0.746(0.120) 0.768(0.048)

BAND(0.3) 0.877(0.132) 0.704(0.157) 0.699(0.059)

BAND(0.6) 0.905(0.101) 0.718(0.146) 0.547(0.067)

CS(0.2) 0.800(0.124) 0.635(0.115) 0.724(0.055)
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Table 6 Simulation: identification of main G effects. In each cell, mean AUC (se). There are a
total of 20 nonzero main effects, with coefficients ∼uniform (0.4, 0.6)

ξ Cor Robust Nonrobust Quantile

Continuous

0 AR(0) 0.735(0.065) 0.738(0.057) 0.684(0.042)

AR(0.3) 0.885(0.049) 0.894(0.046) 0.798(0.038)

AR(0.8) 0.961(0.045) 0.925(0.036) 0.811(0.048)

BAND(0.3) 0.896(0.046) 0.894(0.047) 0.809(0.044)

BAND(0.6) 0.916(0.050) 0.921(0.047) 0.792(0.039)

CS(0.2) 0.769(0.065) 0.710(0.059) 0.753(0.049)

0.1 AR(0) 0.701(0.064) 0.682(0.071) 0.678(0.033)

AR(0.3) 0.806(0.079) 0.754(0.112) 0.794(0.049)

AR(0.8) 0.947(0.046) 0.871(0.088) 0.806(0.053)

BAND(0.3) 0.865(0.071) 0.809(0.132) 0.801(0.036)

BAND(0.6) 0.886(0.064) 0.860(0.086) 0.789(0.055)

CS(0.2) 0.738(0.080) 0.659(0.084) 0.784(0.042)

0.3 AR(0) 0.646(0.073) 0.577(0.067) 0.632(0.044)

AR(0.3) 0.774(0.090) 0.664(0.088) 0.672(0.052)

AR(0.8) 0.896(0.081) 0.743(0.127) 0.755(0.041)

BAND(0.3) 0.782(0.106) 0.664(0.112) 0.711(0.065)

BAND(0.6) 0.823(0.104) 0.719(0.141) 0.705(0.053)

CS(0.2) 0.708(0.078) 0.601(0.093) 0.645(0.051)

Categorical

0 AR(0) 0.736(0.068) 0.729(0.054) 0.679(0.045)

AR(0.3) 0.858(0.066) 0.901(0.059) 0.782(0.052)

AR(0.8) 0.944(0.055) 0.922(0.046) 0.797(0.041)

BAND(0.3) 0.869(0.062) 0.900(0.057) 0.787(0.058)

BAND(0.6) 0.894(0.062) 0.920(0.045) 0.762(0.048)

CS(0.2) 0.768(0.067) 0.696(0.055) 0.763(0.048)

0.1 AR(0) 0.716(0.074) 0.659(0.096) 0.669(0.051)

AR(0.3) 0.826(0.077) 0.777(0.132) 0.752(0.039)

AR(0.8) 0.914(0.089) 0.837(0.103) 0.786(0.054)

BAND(0.3) 0.838(0.079) 0.805(0.120) 0.743(0.062)

BAND(0.6) 0.867(0.069) 0.828(0.118) 0.721(0.039)

CS(0.2) 0.723(0.070) 0.642(0.080) 0.678(0.042)

0.3 AR(0) 0.639(0.074) 0.588(0.074) 0.613(0.045)

AR(0.3) 0.758(0.083) 0.684(0.097) 0.658(0.047)

AR(0.8) 0.877(0.109) 0.764(0.138) 0.743(0.055)

BAND(0.3) 0.789(0.089) 0.703(0.115) 0.688(0.044)

BAND(0.6) 0.806(0.104) 0.702(0.121) 0.671(0.049)

CS(0.2) 0.694(0.074) 0.599(0.070) 0.648(0.037)
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Table 7 Simulation: identification of G-E interactions. In each cell, mean AUC (se). There are a
total of 40 nonzero interactions, with coefficients ∼uniform (0.4, 0.6)

ξ Cor Robust Nonrobust Quantile

Continuous

0 AR(0) 0.647(0.048) 0.605(0.053) 0.606(0.049)

AR(0.3) 0.755(0.059) 0.707(0.079) 0.752(0.058)

AR(0.8) 0.892(0.074) 0.781(0.073) 0.814(0.039)

BAND(0.3) 0.791(0.074) 0.726(0.093) 0.769(0.052)

BAND(0.6) 0.838(0.066) 0.765(0.084) 0.629(0.048)

CS(0.2) 0.686(0.077) 0.609(0.055) 0.602(0.048)

0.1 AR(0) 0.623(0.041) 0.593(0.049) 0.563(0.059)

AR(0.3) 0.701(0.074) 0.625(0.085) 0.602(0.055)

AR(0.8) 0.863(0.060) 0.734(0.088) 0.778(0.041)

BAND(0.3) 0.750(0.070) 0.661(0.099) 0.711(0.058)

BAND(0.6) 0.795(0.069) 0.722(0.089) 0.725(0.061)

CS(0.2) 0.662(0.059) 0.586(0.052) 0.596(0.062)

0.3 AR(0) 0.581(0.050) 0.537(0.037) 0.503(0.055)

AR(0.3) 0.656(0.064) 0.570(0.051) 0.596(0.049)

AR(0.8) 0.807(0.086) 0.647(0.085) 0.679(0.058)

BAND(0.3) 0.677(0.077) 0.580(0.072) 0.618(0.061)

BAND(0.6) 0.718(0.082) 0.612(0.088) 0.604(0.042)

CS(0.2) 0.642(0.060) 0.550(0.055) 0.571(0.046)

Categorical

0 AR(0) 0.640(0.051) 0.604(0.052) 0.611(0.052)

AR(0.3) 0.743(0.067) 0.706(0.089) 0.733(0.041)

AR(0.8) 0.887(0.070) 0.779(0.070) 0.806(0.034)

BAND(0.3) 0.761(0.069) 0.716(0.089) 0.751(0.039)

BAND(0.6) 0.820(0.076) 0.781(0.087) 0.623(0.059)

CS(0.2) 0.688(0.071) 0.598(0.051) 0.601(0.033)

0.1 AR(0) 0.619(0.051) 0.565(0.050) 0.548(0.047)

AR(0.3) 0.706(0.068) 0.637(0.091) 0.647(0.054)

AR(0.8) 0.842(0.092) 0.728(0.089) 0.751(0.061)

BAND(0.3) 0.735(0.077) 0.667(0.092) 0.726(0.041)

BAND(0.6) 0.771(0.078) 0.691(0.102) 0.736(0.034)

CS(0.2) 0.658(0.061) 0.568(0.046) 0.589(0.052)

0.3 AR(0) 0.597(0.053) 0.540(0.043) 0.540(0.062)

AR(0.3) 0.663(0.070) 0.579(0.066) 0.604(0.038)

AR(0.8) 0.794(0.091) 0.658(0.094) 0.704(0.058)

BAND(0.3) 0.682(0.073) 0.606(0.080) 0.626(0.046)

BAND(0.6) 0.717(0.086) 0.615(0.084) 0.614(0.047)

CS(0.2) 0.646(0.060) 0.558(0.048) 0.604(0.055)
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Table 8 Analysis of the TCGA lung adenocarcinoma data using the nonrobust method. The iden-
tified interactions are denoted as “gene * environmental variable”. For the interactions, values in
“()” are the stability results

Effect Estimate ×100

Age 0.868

Gender 6.683

Smoking pack years 0.041

Smoking history –20.163

SPATA33 –7.060

DNAJC21 5.237

EIF4EBP1 8.736

FAM160B1 –0.030

KIAA1586 4.018

LRRC37A4P 3.040

ST6GALNAC1 5.989

TM2D2 10.110

TMEM192 –5.785

TROVE2 –3.019

WIPI2 5.296

SPATA33 * smoking pack years –0.084(0.812)

DNAJC21 * smoking history 5.245(0.986)

EIF4EBP1 * smoking pack years –0.087(0.977)

FAM160B1 * gender 11.844(0.982)

KIAA1586 * age 0.107(0.954)

LRRC37A4P * smoking pack years –0.205(0.998)

LRRC37A4P * smoking history –6.799(0.998)

ST6GALNAC1 * smoking pack years –0.149(0.989)

TM2D2 * smoking pack years –0.176(0.998)

TMEM192 * gender 9.853(0.995)

TROVE2 * gender 7.349(0.929)

WIPI2 * smoking history 13.420(0.995)

5 Discussions

To understand the prognosis of complex diseases, it is essential to study G-E interac-
tions. In “classic” low-dimensional biomedical studies, data contamination is found
to be not rare, and it has been suggested that robust methods are needed to accommo-
date contamination. This study has developed a robust method for high-dimensional
genetic interaction analysis, which is still limited in the literature. The proposed
method consists of a novel robust loss function and a penalized identification strat-
egy that respects the “main effects, interactions” hierarchy, both of which have novel
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Table 9 Analysis of the TCGA lung adenocarcinoma data using the quantilemethod. The identified
interactions are denoted as “gene * environmental variable”. For the interactions, values in “()” are
the stability results

Effect Estimate ×100

Age 0.891

ATP6V1C1 0.252

C1ORF27 7.321

SDE2 0.337

CD46 0.584

DNAJC21 1.272

KLHL7 0.932

PTK2 9.426

PVT1 1.148

RAB3GAP2 0.845

TSPAN3 8.557

TWISTNB 0.872

WDR26 1.265

WIPI2 7.227

YWHAZ 1.883

ATP6V1C1 * age 0.0172(0.724)

C1ORF27 * age 0.295(0.899)

SDE2 * age 0.0153(0.758)

CD46 * age 0.0344(0.862)

DNAJC21 * age 0.327(0.791)

KLHL7 * age 0.372(0.514)

PTK2 * age 1.074(0.927)

PVT1 * age 0.876(0.711)

RAB3GAP2 * age 0.923(0.757)

TSPAN3 * age 1.388(0.942)

TWISTNB * age 0.915(0.812)

WDR26 * age 1.279(0.798)

WIPI2 * age 1.891(0.906)

YWHAZ * age 1.596(0.796)

advancements. Also significantly advancing from the literature, we have rigorously
established the consistency properties. The theoretical results may seem “familiar”,
which is “comforting” in that the consistency properties are not sacrificed with the
additional robustness, high dimensionality, and interactions. It is worth noting that
the consistency results do not demand excessive assumptions on the error distribu-
tion, which are usually needed in the existing literature. In simulation, the proposed
method outperforms the nonrobust alternative. It is interesting to note that it has
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superior performance when there is no contamination. Another important finding
is that it also outperforms the quantile-based robust method. Most of the existing
high-dimensional robust studies have adopted the quantile regression technique. Our
simulation suggests that it is prudent to develop alternative robust methods. In the
analysis of TCGA lung cancer data, the proposedmethod generates results with some
overlappings with the quantile regression method, however, none with the nonrobust
method. The identified genes have important implications, and the identified inter-
actions are stable.

The proposed study can be potentially extended in multiple directions. In survival
analysis, there aremany othermodels beyond theAFT. It can be of interest to develop
robust methods based on other models. We have studied G-E interactions. It can be
of interest to extend to G-G interactions. In theoretical analysis, one problem left is
the breakdown point. Because of the extremely high complexity, this problem has
been left uninvestigated in many other robust studies too. In our simulation, we have
experimented with contamination rate as high as 30%, which is much higher than
many of the existing studies. The superiority of the proposedmethod over the quantile
regression method is observed. The relative efficiency of different robust methods,
although of interest, will be postponed to future studies. In data analysis, the proposed
method identifies a different set ofmain effects and interactions.Mining the literature
and the stability evaluation can support the validity of findings to a certain extent.
More validations need to be pursued in the future.

Appendix

Proof of Theorem 1

Proof Define the oracle estimator ζ̂ with ζ̂A c = 0 and

ζ̂A = argmax
n∑

i=1

ωi exp(−(yi − u�
i,A ζA )2/θ). (4)

Recall that the proposed objective function is

Lλ1,λ2,θ (ζ ) = Qθ (ζ ) −
p∑

k=1

ρ(‖bk‖; λ1, s) −
p∑

k=1

q+1∑

j=2

ρ(|bkj |; λ2, s). (5)

In what follows, we first establish the estimation consistency of ζ̂ in Step 1, and then
show that ζ̂ is a local maximizer of Lλ1,λ2,θ (ζ ) is Step 2.
Step 1. Define the objective function

Rn(ζA ) =
n∑

i=1

ωi exp(−(yi − u�
i,A ζA )2/θ).
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Then ζ̂A = argmaxRn(ζA ). Let rn = √|A |/n. To prove ‖̂ζA − ζ ∗
A ‖2 = Op(rn),

it suffices to show that for any given η > 0, there exists a sufficiently large constant
C > 0,

Pr
(

sup
ζA ∈I

Rn(ζA ) < Rn(ζ
∗
A )

)
≥ 1 − η, (6)

whereI = {
ζA : ‖ζA − ζ ∗

A ‖2 = Crn
}
. This implies that Rn(ζA ) has a local max-

imizer ζ̂A that satisfies ‖ζA − ζ ∗
A ‖2 = Op(rn).

Recall the definitions of Dn(ζ ) and In(ζ ). By Taylor’s expansion, we have

Rn(ζA ) − Rn(ζ
∗
A ) =

n∑

i=1

ωi

{
exp(−(yi − u�

i,A ζA )2/θ) − exp(−(yi − u�
i,A ζ ∗

A )2/θ)
}

=Dn,A (ζ ∗)�(ζA − ζ ∗
A )

+1

2
(ζA − ζ ∗

A )� In,A A (ζ̄ )(ζA − ζ ∗
A )

=̇Q1 + Q2, (7)

where ζ̄ lies between ζ ∗ and ζ . By C3 and C4, we have that for all j ∈ {1, · · · , p +
q + pq + 1} and any given t , Pr(|Dn, j (ζ

∗)| > t) ≤ 2 exp
(−nt2/σ 2

)
. Then

E(|√nDn, j (ζ
∗)|) < K < ∞ for all j . With Markov’s inequality,

Pr(‖Dn,A (ζ ∗)‖2 > t) ≤ E[‖√nDn,A (ζ ∗)‖22]/(nt2) ≤ |A |K/(nt2).

By theCauchy-Schwarz inequality,Q1 ≤ C‖Dn,A (ζ ∗)‖2rn . Let t = Cρ∗rn/3,where
ρ∗ is the smallest eigenvalue of−IAA(ζ ∗

A). FromC5, we have that ρ∗ is bounded away
from zero and infinity. Then we have

Pr(Q1 ≤ 1

3
ρ∗C2r2n ) ≤ 1 − 9K

C2ρ2∗
. (8)

For Q2, we have

2Q2 = (ζA − ζ ∗
A )� IA A (ζ ∗)(ζA − ζ ∗

A )

+ (ζA − ζ ∗
A )�

{
IA A (ζ̄ ) − IA A (ζ ∗)

}
(ζA − ζ ∗

A )

+ (ζA − ζ ∗
A )�

{
In,A A (ζ̄ ) − IA A (ζ̄ )

}
(ζA − ζ ∗

A )

=̇Q21 + Q22 + Q23. (9)

Since λmax(IA A (ζ ∗)) ≤ −ρ∗ by C5, we have

Q21 ≤ −ρ∗C2r2n . (10)

Under C4, we have
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Q22 ≤ κ‖ζ̄ − ζ ∗‖2C2r2n < κC3r3n <
1

6
C2ρ∗r2n . (11)

The second inequality holds since ζ̄ lies between ζ ∗ and ζ , which yields ‖ζ̄ − ζ ∗‖2 <

Crn . When n is sufficiently large, the last inequality holds. With C4 and Bonferroni’s
inequality,

Pr(‖In,A A (ζ̄ ) − IA A (ζ̄ )‖2F ≥ ρ2
∗/9) ≤ 2|A |2 exp (−nρ2

∗/σ
2
)
,

where ‖ · ‖F denotes the Frobenius norm. By the inequality λmax(In,A A (ζ̄ ) −
IA A (ζ̄ )) ≤ ‖In,A A (ζ ∗) − IA A (ζ ∗)‖F , we have

Q23 ≤ 1

3
ρ∗C2r2n with probability at least 1 − 2|A |2 exp (−nρ2

∗/σ
2) . (12)

Combining (9), (10), (11), and (12), we have

Pr(Q2 < −1

2
ρ∗C2r2n ) ≥ 1 − 2|A |2 exp (−nρ2

∗/σ
2
)
. (13)

With (7), (8), and (13), we have

Rn(ζA ) − Rn(ζ
∗
A ) < −1

6
ρ∗C2r2n < 0 (14)

with probability at least

1 − 9K

C2ρ2∗
− 2|A |2 exp (−nρ2

∗/σ
2
)
.

Note that ρ∗ is bounded away from zero and infinity in C5. As n → ∞, the above
probability is bigger than 1 − 16K

C2ρ2∗
. Let C = 4ρ−1∗

√
K/η, then we can conclude (6).

Step 2. Nextwe show that the oracle estimator ζ̂ studied inStep 1 satisfies theKarush-
Kuhn-Tucher (KKT) condition, and then ζ̂ is a local maximizer of Lλ1,λ2,θ (ζ ). Based
on the results in Step 1 and C6, we only need to check the following conditions

∥
∥Dn,B 1 (̂ζ )

∥
∥∞ < λ1,

∥
∥Dn,B 2 (̂ζ )

∥
∥∞ < λ2,

∥
∥Dn,B 3 (̂ζ )

∥
∥∞ < λ1 + λ2 (15)

hold with asymptotic probability one, where ‖ν‖∞ = maxi |νi | for any vector ν =
(ν1, · · · , ν|A c|). Applying Taylor’s expansion,

Dn,B 1 (̂ζ ) = Dn,B 1(ζ
∗) + In,B 1A (̃ζ )(̂ζA − ζ ∗

A ), (16)

where ζ̃ lies between ζ ∗ and ζ̂ . From (4) and the proof of Theorem 1(a), we have

ζ̂A − ζ ∗
A = −In,A A (ζ̄ )−1Dn,A (ζ ∗), (17)
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where ζ̄ lies between ζ ∗ and ζ̂ , which is defined in Step 1. By substituting (17)
into (16),

Dn,B 1 (̂ζ ) = Dn,B 1(ζ
∗) − In,B 1A (̃ζ )In,A A (ζ̄ )−1Dn,A (ζ ∗). (18)

Here we define

Δ∗
n,B 1

= Dn,B 1(ζ
∗) − IB 1A (ζ ∗)IA A (ζ ∗)−1Dn,A (ζ ∗).

Inspired by the deduction of Q2 in Step 1, we can establish that

Pr(‖Dn,B 1 (̂ζ )‖∞ > λ1) � Pr(‖Δ∗
n,B 1

‖∞ > λ1).

That is, we only need to focus on ‖Δ∗
n,B 1

‖∞ in order to evaluate the probability of
{‖Dn,B 1 (̂ζ )‖∞ < λ1} in (15). Note that,

‖Δ∗
n,B 1

‖∞ ≤ ‖Dn,B 1(ζ
∗)‖∞ + ‖IB 1A (ζ ∗)IA A (ζ ∗)−1Dn,A (ζ ∗)‖∞

≤ ‖Dn(ζ
∗)‖∞ + ‖IB 1A (ζ ∗)IA A (ζ ∗)−1‖∞‖Dn(ζ

∗)‖∞. (19)

Recall that Φ1 = ‖IB 1A (ζ ∗)IA A (ζ ∗)−1‖∞. If

‖Dn(ζ
∗)‖∞ <

λ1

1 + Φ1
,

along with (19), we have ‖Δ∗
n,B 1

‖∞ < λ1. Similarly, we also need

‖Dn(ζ
∗)‖∞ <

λ2

1 + Φ2
, and ‖Dn(ζ

∗)‖∞ <
λ1 + λ2

1 + Φ3

to satisfy the other two conditions in (15), where Φ2 = ‖IB 2A (ζ ∗)IA A (ζ ∗)−1‖∞
and Φ3 = ‖IB 3A (ζ ∗)IA A (ζ ∗)−1‖∞. Based on the above discussions, we have

‖Dn(ζ
∗)‖∞ <

λ1 ∧ λ2

1 + max3t=1 Φt
< min{ λ1

1 + Φ1
,

λ2

1 + Φ2
,
λ1 + λ2

1 + Φ3
}.

We now derive the probability bound for the above event. By Bonferroni’s inequality
and C4, we can obtain

Pr

{

‖Dn(ζ
∗)‖∞ <

λ1 ∧ λ2

1 + max3t=1 Φt

}

≥ 1 − 2(pq + p + q + 1) exp

(

− n(λ1 ∧ λ2)
2

(1 + max3t=1 Φt )2σ 2

)

.

Combining the results in Steps 1 and 2, we conclude that ζ̂ is a local maximizer
of Lλ1,λ2,θ (ζ ) with probability at least
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1 − O

(

p exp

(

− n(λ1 ∧ λ2)
2

(1 + max3t=1 Φt )2σ 2

))

,

and satisfies ‖̂ζA − ζ ∗
A ‖2 = Op(

√|A |/n), ζ̂A c = 0. With C6, log p = O(n� 2
n ),

and�n = (λ1 ∧ λ2)/{max(Φ1, Φ2, Φ3)}, this tail probability is exponentially small.
The theorem is thus proved.
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A Novel Approach for Improving
Accuracy for Distributed Storage
Networks

Liu Lu, Ke Yuanyuan, and Yuan Yong

Abstract With the development of storage technology and Internet technology,
cloud storage continues to make its impact. Scalability, reliability, and lowered costs
have made cloud storage widely used with success in businesses and individuals.
The advent of the blockchain has brought some changes. As the incentive layer for
IPFS, Filecoin allows storage resources to become tradable, greatly extending storage
capacity. However, the process of testing the integrity of data still needs constant
improvement. In this chapter, we propose a new data audit proof, in which nodes
continuously upload hashed data that has been added to random numbers, and the
smart contract will compare the result to verify the integrity of the data. Meanwhile,
data owner could calculate and then challenge to verify the data integrity. There are
audit miners responsible for regulating the behavior of miners and the protection of
users’ data, and audit miners in a state of semi-participation. It is demonstrated later
in the chapter that this proof is accurate enough and resistant to attacks.

Keywords Distributed storage networks · Cloud storage · Blockchain

1 Introduction

Storage technology has evolved rapidly over the last few decades, with continuously
decreasing hard disk prices and ever faster data speeds. However, the rapid growth of
the online economy and big data technology has caused the need for data storage to
expand exponentially, leading to the idea of cloud storage, inwhich datawill be stored
on cloud servers provided by third parties, and thus users can access data in a timely
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and more convenient manner. Typically, cloud storage providers use technologies
such as distributed storage (Mattson et al., 1970) to significantly reduce storage costs.
However, the centralized storage makes cloud storage providers vulnerable to single
points of failure and can create risks such as overstepping provider privileges and
causing information leakage. Efficient centralized storage provisioning will remain
mainstream in the future, but there is also an emerging and urgent need to meet users’
needs for information security.

Traditional cloud storage providers, such as Amazon and Google, build cloud
storage architectures with vast resources, using distributed storage technology to
serve billions of users. Distributed storage means that data are spread across mul-
tiple storage servers and these scattered storage resources form a virtual storage
device, effectively storing data in various places across the provider. The benefits
of distributed storage are increased system reliability, availability, and access effi-
ciency, as well as improved scalability. But the disadvantages are also obvious. We
store our data on Google Cloud Drive on the basis that we trust Google to protect our
data from being tampered with or lost, which can also lead to other disadvantages.
The central server is vulnerable to attacks from adversaries, and internal failures
and malpractice can also lead to data loss. As such, the security of cloud storage
has also been a focus of attention in recent years. Traditional symmetric encryption
algorithms put the keys on a central server, which makes it easier for attackers to
get these keys and thus reduces the security of information. Moreover, data integrity
verification whether data are stored efficiently and without deletion is also a crucial
part of cloud storage services. Literature (Priyadharshini, 2012) summarizes the data
integrity verification of traditional cloud storage, which is performed by TPA (Third
Party Auditor) between the user and the CSP (Cloud Service Provider) to validate
the data. The user poses a challenge to verify the integrity of their cloud data, and
the TPA responds by comparing the original data, or the hash value of it according
to literature (Zikratov et al., 2017), to verify the integrity. However, inefficiencies
and tripartite or joint evil behavior can make opaque audit proofs unreliable. The
convenience of centralized services brings with it the corresponding pitfalls. With
the emergence of Bitcoin, decentralized technology continues to be improved, and
decentralized storage brings an important addition to the traditional storage market.

The idea of providing decentralized storage has become popular with the rise
of blockchain technology, and their combination could be considered a perfect fit.
Blockchain enables reaching the consensus among decentralized, untrusted nodes.
Its development has facilitated intensive research in several technologies such as
cryptography, data structures, and consensus algorithms. When data are stored in
multiple copies on the hard drives of different nodes, we cannot guarantee that all
nodes are trustworthy. How to ensure the security and integrity of the data is a very
crucial issue. After ensuring the stability of the storage, we also need to consider how
to motivate people to become nodes and provide their own storage capacity, which
requires a reasonable incentive mechanism.

Much of the current research is focused on issues such as access control,
integrity verification, data retrieval, and traceability. Many platforms that
offer distributed storage have already been launched. For example, the Sia
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(Vorick & Champine, 2023) storage system, which was online earlier, has been
unable to be developed effectively due to its less than optimal incentive design. IPFS
(Benet, 2014), as a relatively complete platform, is a distributed storage system pro-
tocol for distributing and storing resources of various data types. Filecoin (Protocol
Labs, 2023), as its incentive layer, incentivizes storage miners and retrieval miners to
complete their own work by issuing tokens. Taking Filecoin as an example, there are
three roles in Filecoin: client, storage miner, and retrieval miner. Clients pay for the
service of storing and retrieving data. They can choose from a selection of available
service providers. If they want to store private data, they need to encrypt it before
submitting it to the service provider. Storage miners store clients’ data for a reward.
They decide for themselves how much space to provide for storage. After the client
and the storage miner have reached an agreement, the miner is obliged to provide
proof of their stored data on an ongoing basis. Everyone can view this proof and
make sure that the storage miner is reliable. Retrieval miners give data to customers
upon their request. They can retrieve data from clients or storage miners. Retrieval
miners and clients use small payments to exchange data and tokens. The data are
fragmented and the client pays a small amount of tokens for each fragment. Retrieval
miners can also act as storage miners at the same time.

We will now show how a decentralized storage network stores and audits. As
shown in Fig. 1, we demonstrate a cloud service with blockchain participation in two
aspects: storage and audit. Data owners upload their data to miners on the server,
who store the data and record the transactions on the blockchain. The blockchain also
verifies data owner’s information and protects the user’s privacy. In order to ensure
that their data are stored intact on the server, data owner challenges the TPA, which

Fig. 1 Decentralized storage network framework
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sends a request to the system and verifies the data provided by the miner in response
to data owner’s challenge. The verified result is then recorded on the blockchain. So
each block in the blockchain stores information such as the height of the block, the
block header, information about the previous block, a timestamp, storage message,
ID, and Auditing message.

Data integrity verification in distributed storage, i.e., the red lines in Fig. 1, is our
concern. Data integrity verification is the verification that data is stored intact in the
storage space of each untrusted node. This affects the security of the data and is
key to the availability of the storage service. Current data integrity validation can be
divided into two kinds, one for traditional cloud-based data integrity validation and
the other for blockchain-based data integrity validation. In turn, audit solutions using
blockchain technology can be divided into whether or not TPA is involved. Most of
these audit schemes verify against raw data and avoid dishonest behaviors such as
delayed audits, sybil attack, and generation attack through consensus and incentive
mechanisms. Blockchain-based data integrity verification can be used not only for
auditing cloud data in cloud storage networks but also for different data scenarios
to improve the security of the system. However, efficiency and accuracy cannot be
achieved together in the process of decentralized data auditing. This will be described
in Sect. 3.Most of the verification schemes that haveworked better in current research
do not run in public blockchains or require the participation of trusted central nodes.
Instead, in fully decentralized blockchains, most are more efficient in order to ensure
availability. However, the accuracy of verification cannot be fully guaranteed and
the system is vulnerable to dishonest attacks. Our algorithm will improve long-term
efficiency and stability in a fully decentralized blockchain with guaranteed accuracy.

Our work is based on a modification of Filecoin for verifying the integrity of
data in distributed storage. The audit miner in this algorithm is semi-involved and
determines whether the data are kept intact by comparing the hash values of the
data shards. If the result does not meet the desired goal, the audit miner will first
ensure the integrity of the data and then find the storage miner that created the prob-
lem, acting as a reasonable supervisor. In Sect. 2, we will summarize the past work
on distributed audit algorithms and describe the characteristics of each platform.
In Sect. 3, we will present our audit algorithm and analyze its advantages and the
problems it solves. Sect. 4 will analyze the fault tolerance of this audit proof.

2 Related Works

2.1 Audit Research

Ensuring data integrity in cloud computing has always been an important issue,
and it is a guarantee that cloud computing can be widely used. Traditional data
integrity verification can be divided into deterministic and probabilistic types. The
dishonest behavior of TPA is also an important issue for audit algorithms when they
are entrusted to perform audit integrity verification work. Blockchain technology
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with a decentralized architecture no longer relies excessively on the honesty of third
parties and reaching an overall consensus based on a reasonable consensus and
incentive mechanism and then a mutual benefit for all parties is the core element to
be explored at this stage.

Literature (Zikratov et al., 2017) proposes a private blockchain called Zeppar,
which determines the integrity of data by comparing the hash values of files. The
use of cryptographic techniques to verify data integrity by comparing the original
data is a common and applicable method. Such an approach is also used in literature
(Wei et al., 2020), where smart contracts monitor data changes based on the unique
hash value corresponding to the file generated by the Merkle Hash Tree (MHT).
Verifying data integrity by constructingMHT is a relatively convenient method, e.g.,
in literature (Bai et al., 2018; Li et al., 2020). In literature (Li et al., 2020), data owner
(DO) stores the verification tag of the data on the blockchain and verifies the data
integrity by constructingMHT. After the blockchain network receives a request from
the DO, it calculates the MHT root of the specified data, the CSP receives the DO’s
challenge and also calculates the corresponding MHT root, and the DO verifies the
integrity of the data by comparing the two. We can find that neither the method of
comparing file hash values nor the construction of MHT requires the involvement
of TPA. Such an approach can be very efficient for verification but will compromise
on the degree of centralization or be less fault-tolerant. It is relatively suitable for
distributed storage systems where efficiency is required.

In order to ensure the activity of the data, some auditing schemes use the provision
of random numbers to avoid users falsifying the results of data validation in advance.
Literature (Pinheiro et al., 2020) uses the user’s data information to generate random
challenges and uses the smart contract to audit the challenge-response information
sent by the CSP. The audit scheme also assesses the trustworthiness of each CSP.

2.2 Distributed Storage Project

• Sia: A relatively early decentralized storage platform, Sia in literature Vorick and
Champine (2023) enables storage contracts to be formed between peer-to-peer
nodes. The contracts are stored in the blockchain, making them publicly auditable.
Sia divides files into 30 parts, encrypts each part using the Threefish algorithm,
and distributes them to different nodes. Reed-Solomon erasure coding makes it
possible to fully recover a file by requiring only any 10 of the 30 parts.WithMerkle
Tree (Ralph, 1988), nodes are required to upload storage proofs (Maxwell, 2023)
within a certain time frame or be penalized.

• Filecoin: Literature (Benet, 2014) proposes a distributed peer-to-peer web proto-
col: IPFS (InterPlanetary File System). Based on a content addressing protocol,
it makes network transmission faster, content storage easier and nodes protection
safer. Filecoin can be considered the incentive layer of the IPFS system, providing
decentralized cloud storage in the form of tokens distributed in a rational way.
Its audit algorithm Proof-of-Replication shown in literature (Protocol Labs, 2017)
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deferred encoding of data to get a copy of the data and then generates a zero-
knowledge proof to guarantee the correctness of the encoding process. Its other
consensus algorithm, Proof-of-Spacetime, requiresminers to periodically generate
Merkle proofs for the replicas and submit them to the blockchain compressed with
zero-knowledge proofs for tokens reward. Such an incentive encourages miners to
store data correctly and to prove data liveness to obtain proof of work as a reward.

• Arewave: Arweave cloud storage platform is similar to Filecoin in that it features
a service that provides permanent storage. It has designed a new consensus algo-
rithm, Proof of Access, which is based on the concept that new blocks require
random validation of previous blocks. This turns the original blockchain into a
network of blocks, where nodes no longer need to store exponentially growing
amounts of data, but only certain data, allowing the data to be distributed evenly
across the system to achieve distributed storage.

• Storj: Storj Labs (2018) built at Kademlia is not a fully decentralized cloud storage
system and it is dedicated to data storage durability and storage quality. Satellite
nodes act as fully trusted nodes in storj for data management and data integrity
review. The data are sliced after encryption and the data integrity is guaranteed by
Proof of Retrievability (Juels et al., 2007) consensus algorithm. The satellite nodes
are responsible for communication between the user and the storage node, for stor-
ing metadata for the user, as well as auditing and enforcing Proof of Retrievability.
The presence of the satellite nodes makes storj resistant to Byzantine attacks, but
at the expense of the network’s performance, resulting in poor scalability.

Table 1 has given the difference among these four platforms. We can find that
their audit proofs are different and lead to other differences in other natures.

However, there are still some flaws. The current work almost verifies the integrity
of distributed storage data under specific conditions, but none of it has a systematic
analysis of the limitations of auditing. We will analyze the compromise factors that

Table 1 Distributed storage networks comparison

Degree of
decentralization

Storage location Consensus
algorithm

Audit proof

Sia Fully Off chain Proof of work Proof of storage
(Maxwell, 2023)

Filecoin Fully Off chain Expected
consensus
(Protocol Labs,
2017)

Proof of
replication, proof
of spacetime

Arweave Fully On chain Proof of work,
proof of access

Proof of access

Storj Satellite nodes
exist

Off chain Proof of work,
proof of stake

Proof of
retrievability
(Juels et al.,
2007)
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can arise from audit algorithms in distributed storage in the next section. We also
analyze what requirements the Filecoin platform should have for auditing and what
constraints it should have on storage miners. We design an audit proof for distributed
storage and prove that it is sufficiently accurate and fault-tolerant.

3 Audit Algorithm

3.1 An Audit Framework

In this chapter, we will reformulate the audit proof of Filecoin to address the current
problems of Filecoin platform. Our goal is to retain the decentralized nature and
allow the distributed storage network to complete the audit process on its own. Audit
miners will only appear when necessary. This will ensure the accuracy of the audit
and improve the efficiency of all nodes in reaching consensus on the audit results.
We propose the audit impossibility proposition regarding the distributed storage
networks as follows:

Proposition 1 (Audit impossibility): The degree of decentralization, the accu-
racy of audit results, and audit efficiency cannot be reached at the same time.

When integrity checks are performed on an absolutely centralized storage server,
CSP can invest significant resources in a way that increases the efficiency and accu-
racy of the audit, as many cloud storage providers do nowadays. This is the approach
that currently dominates the cloud storage market. However, with decentralization,
we cannot perform fast and efficient integrity checks on untrustworthy storage nodes
based on today’s computing power and the sheer volume of data. How to balance
accuracy and efficiency is currently the key issue for auditing in all distributed stor-
age. For Filecoin, decentralization is its biggest advantage. However, too frequent
data auditing not only affects the accuracy of the data audit results, but also causes
the system to be less stable when the nodes are offline. Therefore, to improve the
efficiency of auditing while ensuring the accuracy of the audit results is the issue
considered in this chapter.

Our design starts by slicing and numbering the data owners encrypted data using
the shard technique and then generates multiple copies (k copies) by replication,
which will be stored randomly on storage miners. When auditing these files, we will
take the last 16 bits of the hash of the previous block as the new random numberN ,
which all miners will add to each of their stored shards for hashing. The result will
need to be uploaded to the hash pool in a certain order with the miners’ signatures.
All the hash values are automatically matched by the smart contract. By determining
whether the corresponding hash value is equal to k, it is concluded that the data are
stored intact in the distributed storage network. This allows a simple comparison of
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Fig. 2 Algorithm overview

the results to determine whether the data owners’ data are completely stored across
the network. The data owner can also, but not necessarily, add his/her own shard
data to the random number N and hash them. The result is then compared across
the hash pool to determine if the data are stored correctly on the miners by finding
the same k values in the network result. If the storage miner is not validly stored, the
audit miner needs to find the problem miner quickly and back up the data in time
(Fig. 2).

There are three roles in our platform, data owners U , storage miners M , and
audit miners A. Data owners upload encrypted data according to their needs and can
challenge the integrity of the data. The storage miner stores the data sequentially as
assigned by the smart contract as well as uploads proof of data integrity every once in
a while. The audit miner is responsible for handling the distribution of data, as well
as reviewing and supervising miners, protecting data integrity, regulating content,
and assuming legal responsibility. The number of audit miners is limited and storage
miners can be audit miners at the same time. Audit miners only appear if there are
problems with the audit.

3.2 Data Uploading

From the moment the user uploads data, the user Ui should divide his/her data D(i)
into several shards by using slicing and encryption technology in order to keep the
data secure. If he/she does not have enough computing power to handle too large
data, he/she can upload them to audit miner A for slicing and encrypting and then
pay some tokens. All the shards are then distributed by the audit miner to storage
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miner M and back to userUi . Data slicing is a common technique used in distributed
storage to protect the data. We use D(i, j) to denote the j th shard of Ui ’s data. The
number of shardsUi has, Ji , will be determined by the size ofUi ’s data. Replication
is also used to replicate k copies of D(i, j): D(i, j, k). Before uploading, the Ui

can add a random number N known only to him/her to calculate the result for all
D(i, j) and encrypt the result as a validation audit option later. Next, the miner Ma

is randomly sent a request to store the corresponding shard or not, with a specific
request (Definition 1). Ma that receives the request has to choose whether to store
the data or not, depending on its storage capacity. The miner who confirms storage
will store the corresponding D(i, j) on his local hard disk. The label (i, j) of the
data D(i, j) will only be stored in the smart contract and will not be transmitted
to the miner who stored it. The miner will not know the exact label (i, j) of the
data he/she stores, but will only number them sequentially according to the order
in which he/she stores D(i, j). If D(i, j) is the sixth data storage of Ma , then the
corresponding D(i, j) is Ma(6). We would use Ma() to express the set of shards
stored by Ma . This allows for better protection of the user’s information and data,
and prevents the exchange of content between miners as much as possible.

We can effectively prevent malicious miners from sybil attacks or other attacks
by slicing and replicating the data and storing them in a decentralized manner. We
also require an appropriate specific request for sending shards to avoid joint attacks
by miners.

Definition 1 (Request of distributing shards): The distribution of the set
{D(i, j, k),∀i, j} to miners is subject to the following principles:

1. The number of Ma storing the data of D(i) cannot be less than half of Ji .
2. No miner Ma will receive two or more storage requests for a single copy of data

D(i, j).
3. No miner Ma will receive storage requests for D(i, j) and D(i, j + 1).
4. Miners Ma and Ma′ will not receive storage requests for D(i, j) and D(i, j

′
)

together.
5. No miner will store more than y copies of D(i).
6. Miners Ma and Ma′ will store no more than z identical shards in the shards pool.

This ensures that the data are stored in a sufficiently decentralized manner, with
enough miners storing the data owner’s data together, so that a single point of failure
does not have a major impact on the overall storage. It also ensures that the user’s
data are not stolen in its entirety, guaranteeing the security of the data. Definition 1
also makes the data stored by the two nodes different, avoiding outsourcing attack.
We will specifically analyze the effectiveness of our algorithm in Sect. 4.

3.3 Self-integrity Verification

Now all data owner’s data has been uploaded to each storage miner. We then need to
continuously interact with all miners to ensure that data liveness is guaranteed and
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the data are being stored intact. This is the core of the work in this chapter. We have
described in Sect. 2, the current auditing methods, both fully decentralized and not
fully decentralized, that are able to do the job but not well in the accuracy of audit
results or audit efficiency. This chapter proposes a solution that does not require the
data owner’s data to be compared and achieves self-auditing through self-comparison
in the blockchain network, which substantially improves the long-term stability of
the system. At the same time, our proof is more efficient and can quickly reach a
consensus on the integrity of all data in a short period of time with responses from
all nodes. We also allow data owners to initiate challenges and quickly check the
integrity of their own data through the hash algorithm.

The blockchain network audits whether the storage miners have correctly stored
the corresponding data within a period T . To ensure timeliness, we use the last 16 bits
of the hash value of the previous block as a random numberN . After gettingN , the
miner has to upload the result of the hash operation of all his shards andN together
with his signature Ma_sign within a specified time T . Now we obtain a new set:
{hash(Ma(),N ), Ma_sign} to express the result of the hash of all Ma’s shards and
its signature. It is important to note that the set is ordered, again according to the order
in which Ma stores the shards. The advantage of this design is that even when faced
with a pile of results, the smart contract can determine the corresponding label (i, j)
based on its position. We will use H(a, b) to denote the hash value corresponding
to the bth shard of the miner a with N , D(i, j)_hash to denote the hash value of
D(i, j) withN (Table2).

After the storage miner Ma has uploaded his/her {hash(Ma(),N ), Ma_sign},
the smart contract will quickly determine if the number of H(a, b) is equal to the
number of shards already stored by Ma , and if it does not match, invalidate this
result and demand Ma to recalculate and upload the new result. If the result matches,
the result is accepted and moves on to the hash pool. Next, the smart contract will
compare the number of occurrences of all the results in the hash pool. If there are
exactly k identical results, i.e., if there are k sets (a, b) s.t. all the results of H(a, b)
are equal, then it will be decided that all the copies of the shard have been stored
correctly. This would be the best result that can be achieved. All the storage miners
need to store their data correctly for their own benefits. If all miners store correctly,
all the nodes can quickly and accurately obtain the result that the data are stored
intact. We will now determine whether the data are stored correctly based on the
occurrences of each hash value.

Definition 2 (strong integrity): The number of occurrences of D(i, j)_hash
is exactly equal to k.

Definition 3 (weak integrity): The number of occurrences of D(i, j)_hash is
greater than or equal to 2 and less than k.
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Table 2 Notations for
operations/implications

Symbol Notations for
operations/implications

U Data owners

M Storage miners

A Audit miners

Ui The j th data owner

D(i) Data owner i’s data

D(i, j) The j th shard of Ui ’s data

k The number of copies

Ji The number of Ui ’s shards

D(i, j, k) All of the Ui ’s shards

Ma The ath storage miner

(i, j) The label of D(i, j)

Ma(6) The sixth shard stored by Ma

Ma() The set of Ma’s storage

T Cycle time for storage
miners uploads

N The random number set by
the user

N The random number from the
previous block

Ma_sign Ma’s digital signature

H(a, b) Ma(b)’s hash value with N

D(i, j)_hash D(i, j)’s hash value with N

If all shards achieve strong integrity, we can assume that the storage network has
stored all data correctly and that all nodes would agree on this. If all shards achieve
weak integrity, we can assume that all data are stored securely on the storage network.
Weak integrity is a lower requirement for data availability in storage networks.During
auditing, it is more of a constraint on theminers, so strong integrity is what is required
by distributed storage networks.

Wewill now discuss what to do if strong integrity is not achieved. If the number of
occurrences of a hash value is greater than k, the possible scenario is that the miners
are jointly misbehaving with each other and copying the same result for output. This
is because when the storage miner receives the shard corresponding to that result, no
other shards are received, and only if the miner has stored other miners’ shards. In
this case, the k + α results are assigned a number (i, j) based on their location, and
the numbers are then compared to find the miner with the incorrect result by audit
miners A. The first step is to find the set of {(i ′, j ′)} corresponding to the wrong
hash value, and then check whether the number of occurrences of hash value is k. If
it is k, the shard has been completely stored in the storage network. Otherwise, this
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number can only be less than k, if so, A needs to find which miners did not upload
the right value and ask them to upload in time. If they upload the wrong results, ask
them to re-store correctly to solve the problem.

In fact, it is more often the case that the number is less than k. In case when the
hash values whose number is less than k, we need the correspondingminers to upload
proofs of the correct storage of the corresponding D(i, j). The following results may
occur:

1. The miner correctly stores D(i, j) and uploads the correct hash result.
2. The miner correctly stores D(i, j) but uploads the wrong hash result.
3. The miner incorrectly stored D(i, j) but uploaded the correct result.
4. The miner incorrectly stored D(i, j) and uploaded the wrong result.

Audit miners A need to immediately copy D(i, j) to ensure that they couldn’t
be lost. After that, A will handle errant storage miners as above. Such handling
effectively avoids errors caused by miners offline. We will also judge storage miners
who make frequent errors as malicious miners. If for the same D(i, j), all the results
of the hash operation are different or it is not possible to distinguish the correctness
of the result, then A can ask all miners storing the D(i, j) to recalculate it with the
random number N and compare it with the result calculated byUi . In time, copy the
data of the miners that output the correct result and askUi to re-add another random
number N to the calculation and keep the result for future use (Fig. 3).

The above is the process by which a blockchain storage network audits of its own.
This process allows for quick consensus to be reached under the condition that all
the data are stored correctly, as well as finding malicious nodes if consensus is not
reached.

3.4 Data Owner’s Integrity Verification

After the data owner getsN , he/she can also get a set of hashvalues H(i, j)generated
by Ui by performing a hash operation on his/her own data shards D(i, j). Smart
contract will look for k occurrences of these values in the hash pool to determine
whether his/her data have been stored completely. If exactly each result occurs k
times, then it is almost certain that Ui ’s data has been stored correctly. If not, then
the storage miner in problem can be found quickly and the data copied by the audit
miner in his/her storage in time. Such an audit approach improves the shortcomings
of self-integrity verification and increases the accuracy of data integrity verification.

3.5 The Game of Miners Versus Storage Networks

Storageminers can only earn if they store the user’s data correctly and upload H(a, b)
correctly. If the miner wants to earn without storing correctly, he needs to join with
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Fig. 3 Audit algorithm

other miners. The miner does not know the number (i, j) of the data he is storing,
so he needs to send a request to all miners in the network. And other miners can
be rewarded by reporting those malicious nodes. The union of storage miners does
not earn a reward, only the individual fulfillment of the storage function makes the
storage network maximize its benefits. For audit miners, audit miners are only given
the appropriate audit access if there is a problemwith the storageminer. Audit miners
are only able to earn more rewards by continuously completing audit tasks and tasks
delegated by data owners. These ensure that all miners are driven by profit to achieve
stability.
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Thus our system satisfies incentive-compatible property and also data integrity,
recoverability, publicly verifiable, and auditability. The satisfaction of the five prop-
erties is obvious. These are the same properties that filecoin satisfies. We can say
that our audit proof is reasonable.

4 Fault-Tolerance Verification

We now describe three attacks that are common in distributed storage networks.

• Sybil Attack (Douceur, 2002): Sybil attack is a type of attack in peer-to-peer
networks in which a node in the network operates multiple identities actively at
the same time and undermines the authority/power in reputation systems. In a
distributed storage network, a malicious miner can create multiple sybil identities
pretending to store many copies in order to be rewarded, but only one copy is
stored in his local.
In our proof, a miner cannot claim to have stored multiple shards, as the number
of shards per share is limited to k. Meanwhile, there is a little additional gain for a
malicious miner to pretend to store multiple copies by creating multiple identities.
Since each miner stores different content and for two storage miners, they have
the number of the same shards less than z. We control the revenue in such a way
that storage miners will not receive enough benefit in creating a witch identity,
making them less likely to take risks for it. Subsequently, we can limit such a
situation even further by monitoring IP address, generating Ma() proofs, etc. Such
a scenario makes sybil attacks much less profitable.

• Outsourcing Attack: By relying on fast access to data from other storage providers,
malicious miners promise to store more data than they can actually store.
If a malicious miner wants to launch an outsourcing attack, the miner cannot
know the shard number and can only determine if there is an overlapping shard by
sharing the miner’s H(a, b) set with each other; if there is an overlapping shard,
the hash result can be quickly retrieved later in the audit. But the benefit to the
provider is weak, and the inclusion of an exposing mechanism keeps miners from
going to extremes for the weak benefit. So we can conclude that the benefits of a
small number of miners cooperating are much less than the risks associated with
incomplete storage.

• GenerationAttack:Maliciousminers claim to havemore storage than they actually
have through a small program to gain a greater advantage in the mining competi-
tion.
With slicing and cryptography, miners cannot effectively generate data with small
program. The generated proof results need to be computed by hash function, and
a small change can lead to a huge difference in results. There are strict penalties
for generation attack in Filecoin, so this attack can be substantially avoided from
an incentive point of view.
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5 Concluding Remarks

In this chapter, we focus on current research on auditing and point out the imper-
fections of current auditing. We also analyze the audit requirements for Filecoin and
redesign an audit algorithm for it. The algorithm determines whether the data have
been stored intact in the storage network by comparing the results in the hash pool
by means of storage miners uploading the hash results. The audit miner is set to a
semi-participating state and will only join in time to gain access if a problem arises.
Such an auditing algorithm is relatively accurate and secure for decentralized storage
networks. Besides, it is obtained that the algorithm is highly fault-tolerant.

Our algorithm is not yet well designed in terms of incentives and needs to prove
that the algorithm can be put into widespread use. Incentives are a key part of getting
the algorithm used, and it is important to play the game between miners and the
storage network so that both sides can get the optimal solution for their interests.
The regulation of the data is also something that needs to be considered in the next
phase. Our algorithm needs to be more complete in the future.

Acknowledgements This work was supported in part by the National Natural Science Foundation
of China (72171230), and the Science and Technology Development Fund, Macau SAR (File No.
0050/2020/A1).

References

Bai, L. H., Xue, J. T., Xu, C. X., et al. (2018). DStore: A distributed cloud storage system based
on smart contracts and blockchain. In International Conference on Algorithms and Architectures
for Parallel Processing. Springer.

Benet, J. (2014). IPFS—Content addressed, versioned. P2P File System.
Douceur, J. R. (2002). The sybil attack. Springer.
Juels, A., Kaliski, B. S., PORs, J. (2007). Proofs of retrievability for large files. InProceedings of the
14th ACM Conference on Computer and Communications Security, CCS (Vol. 07, pp. 584–597).
ACM.

Li, J., Wu, J., Jiang, G., et al. (2020). Blockchain-based public auditing for big data in cloud storage.
Information Processing & Management, 57(6), 102382.

Mattson, R. L., Gecsei, et al. (1970). Evaluation techniques for storage hierarchies. IBM Systems
Journal.

Maxwell, G. Proof of storage to make distributed resource consumption costly. https://bitcointalk.
org/index.php?topic=310323

Pinheiro, A., Canedo, E. D., Sousa, R., et al. (2020). Monitoring file integrity using blockchain and
smart contracts. IEEE Access, 8, 198548–198579.

Priyadharshini, B. (2012). Data integrity in cloud storage. IEEE.
Protocol Labs. Filecoin: A decentralized storage network. https://filecoin.io/filecoin.pdf
Protocol Labs. Technical report: Expected consensus.
Protocol Labs. Technical report: Proof-of-replication.

https://bitcointalk.org/index.php?topic=310323
https://bitcointalk.org/index.php?topic=310323
https://filecoin.io/filecoin.pdf


80 L. Lu et al.

Ralph, C. (1988). Merkle: A digital signature based on a conventional encryption function. In C.
Pomerance (Ed.), Advances in cryptology, CRYPTO (Vol. 87, pp. 369–378). Springer.

Storj Labs. Inc. Storj: A decentralized cloud storage network framework.
Vorick, D., & Champine, L. Sia: Simple decentralized storage. https://blockchainlab.com/pdf/
whitepaper3.pdf

Wei, P. C., Wang, D., Zhao, Y., et al. (2020). Blockchain data-based cloud data integrity protection
mechanism. Future Generation Computer Systems, 102, 902–911.

Zikratov, I., Kuzmin, A., Akimenko, V., et al. (2017). Ensuring data integrity using blockchain
technology. In 2017 20th Conference of Open Innovations Association (FRUCT).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://blockchainlab.com/pdf/whitepaper3.pdf
https://blockchainlab.com/pdf/whitepaper3.pdf
http://creativecommons.org/licenses/by/4.0/


Iterative Learning Control Based on
Random Variance Reduction Gradient
Method

Yihua Gao, Dong Shen, and Jiaxi Qian

Abstract Traditional iterative learning control (ILC) algorithms usually assume
that full system information and operation data can be utilized. However, due to the
uncertainty and complexity of actual systems, it is difficult to access full system
information and operation data accurately and completely. In this chapter, a novel
ILC scheme based on stochastic variance reduced gradient (SVRG) is proposed. This
scheme is not only suitable for resolving the incomplete information problem, but
also converges efficiently under both strongly convex and non-strongly convex con-
trol objectives. To demonstrate the advantages, this chapter studied two scenarios,
i.e., random error data dropout and model-free data-driven approach, and proposed
two SVRG-based ILC algorithms for these two scenarios, respectively. It is theoret-
ically demonstrated and experimentally verified that the proposed SVRG-based ILC
scheme converges faster than both the full gradient and stochastic gradient methods
for the two involved scenarios.
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1 Introduction

1.1 Background

Iterative learning control (ILC) is a control method applicable to systems doing
repeated operations. The basic idea is to use the input and error signals from previ-
ous iteration to improve the input of the next iteration. Arimoto et al. first proposed
iterative learning control for robotic arms in 1984 and clarified the basic idea of
iterative learning control (Arimoto et al., 1984). Subsequently, academia has pub-
lished numerous chapters around ILC. It has gradually become one of the important
branches in the field of control and is widely used in robotics, industrial production
and hard disk manufacturing, and other controlled systems with repeated operation.

To achieve excellent control performance, most ILC assume that full operational
data and system information can be obtained and utilized. However, in real systems,
data delays and dropouts often occur due to various uncertainties. On the other
hand, when the system structure is complex or unstable, it is difficult to obtain the
system information accurately. To solve the incomplete information problems, it is
of great theoretical and practical significance to design ILC algorithms with high
performance.

Information incompleteness can be classified into two categories, objective and
subjective incompleteness. Information incompleteness caused by objective factors
is often related to the uncertainty of the system itself. For example, during the trans-
mission of the signal, the instability of the channel can cause data packet loss. Three
main random packet dropout models have been developed for this problem: the ran-
dom sequence model, the Bernoulli distributionmodel, and theMarkov chain model.
Shen (2018) designed an iterative learning control algorithm based on the stochas-
tic approximation algorithm corresponding to the three models and proved that the
algorithms satisfy mean-square convergence and probabilistic strong convergence.
Information incompleteness due to subjective factors usually artificially assumes that
the system information is unknown, thus avoiding the complexity of system model-
ing and system instability. For example, Oomen et al. (2014) designed a model-free
data-driven iterative learning control algorithm for H∞-parametric estimation of
multi-input multi-output (MIMO) systems, which obtains the full gradient by con-
ducting n0 × n1 experiments on n0 × n1-dimensionalMIMO systems. However, this
algorithm is difficult to be applied to large MIMO systems due to the excessive num-
ber of experiments. Subsequently, Aarnoudse et al. (Owens et al., 2009) designed an
iterative learning control algorithm based on the stochastic approximation method
by constructing a random matrix to estimate the gradient, which effectively reduces
the number of experiments.

It is important to note that the effect of information incompleteness on ILC track-
ing performance is essentially the robustness of ILC. However, this robustness differs
for objective and subjective-type information incompleteness problems. The former
is usually model-based and emphasizes modeling to analyze the causes of informa-
tion deficiency. While the latter is data-based and is generally not concerned with
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the causes of information deficiency but with the inherent limitations of information
deficiency on control performance. Model-based and data-based control methods are
not opposed. To achieve the best control effect, the two control methods can also
be used in combination. Existing studies on ILC for solving the information incom-
pleteness problems are usually based on stochastic approximation method or other
gradient methods. In this chapter, we will use a stochastic variance reduction gradi-
ent (SVRG) method to give a general framework for solving the system information
incompleteness problems.

1.2 Design and Analysis of SVRG-Based ILC

Modeling the control objective as an optimization function, for a deterministic
discrete-time linear system, Owens et al. (Aarnoudse & Oomen, 2020) proposed
a gradient-type ILC algorithm based on optimization ideas and analyzed the sta-
bility, monotonicity, and robustness of the algorithm. For noisy discrete-time linear
systems, Yang and Ruan (2017) proposed an enhanced gradient-based ILC algorithm
that can effectively converge in the presence of perturbations in the system. However,
the above gradient-based ILC algorithm requires full error and system information
for each iteration, and when this information is not fully available, the traditional
gradient-based ILC algorithm is no longer applicable.

Notice that in Machine Learning, Stochastic Gradient Descent (SGD) method
replaces the total gradient by randomly selecting a partial gradient each time. Corre-
sponding to the control problems, the partial gradient can also be obtainedwhen there
is insufficient information about the error or the system. This correlation inspires us
to find suitable stochastic gradient methods to solve errors or system information
insufficient problems.

In order to improve the convergence speed and apply to non-smooth and non-
strongly convex objective functions, recent research in Machine Learning has pro-
duced a large number of improved versions of stochastic gradient descent algorithms,
including momentum method, variance reduction method, and incremental aggre-
gated gradients. Allen-Zhu (2018) divided these algorithms to three types according
to their complexity under strongly convex conditions. The first generation is the
momentum-based gradient algorithm, the second generation includes the variance
reduction-based gradient algorithm and the proximal stochastic variance reduction
gradient algorithm, the third generation includes the Katyusha algorithm and incre-
mental aggregated gradient algorithms. In most cases, the complexity of the algo-
rithms decreases with the growth of generation. Considering specific control prob-
lems, the algorithms in first generation are slow to converge and often fail to meet
the practical needs, while the algorithms in third generation require accurate system
modeling to achieve faster convergence and are difficult to apply to data-driven ILC.
Therefore, the research in this chapter is mainly based on the algorithm in second
generation—Stochastic Variance Reduction Gradient (SVRG) algorithm.
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1.3 Main Work and Organization

The purpose of this chapter is to construct SVRG-based ILC and use this framework
to solve specific information incompleteness problems. As representatives of objec-
tive and subjective information incompleteness, two scenarios, error data random
dropouts and model-free ILC, are selected in this chapter to give the corresponding
SVRG-based ILC algorithms, respectively. The contribution is threefold.

1. Propose a SVRG-based ILC framework for single-input single-output (SISO)
systems. The algorithm is shown to converge linearly under smooth and strongly
convex conditions.

2. Apply the SVRG-based ILC framework to error data random data dropouts and
give the convergence proof of the algorithm.

3. Extend the SVRG-based ILC framework to multi-input multi-output (MIMO)
systems in model-free data-driven scenario and prove the convergence of the
algorithm under smooth and non-strongly convex conditions.

Section2 serves as the basis of the chapter, giving theSVRG-based ILC framework
for SISO systems. Section 3 applies the framework to error data random dropouts
problem. Section 4 extends the framework toMIMO systems in model-free scenario.
Since Sect. 2 only gives the algorithm framework and does not cover the specific
scenario, Sect. 2 does not give numerical simulations and contains only three parts:
system description, algorithm design, and convergence analysis. Both Sects. 3 and 4
include four parts: system description, algorithm design, convergence analysis, and
numerical simulation.

2 SVRG-Based ILC Framework

As the basis of the following sections, this section uses SISO systems to give the
basic framework of SVRG-based ILC algorithm. This section includes three parts:
system description, algorithm design, and convergence analysis.

2.1 System Description

Consider the following single-input single-output (SISO) discrete-time linear system{
xk(t + 1) = Axk(t) + Buk(t),

yk(t) = Cxk(t),
(1)

where t = 0, 1, . . . , N − 1 is time index, and k = 1, 2, 3, . . . denotes the iteration
index. xk (t) ∈ R

n, uk (t) ∈ R, and yk (t) ∈ R represent the system state, input and
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output, respectively. A ∈ R
n×n, B ∈ R

n, and C ∈ R
1×n are the systemmatrices. The

initial condition is the same for each iteration, i.e., xk (0) = x0,∀k ∈ N
∗.

Taking t = 0, 1, . . . , N − 1 in (1) yields

yk(1) = CAxk(0) + CBuk(0) = CBuk(0) + CAx0,

yk(2) = CAxk(1) + CBuk(1) = CABuk(0) + CBuk(1) + CA2x0,

...

yk(N ) = CAxk(N − 1) + CBuk(N − 1)

= CAN−1Buk(0) + CAN−2Buk(1) + · · ·
+ CABuk(N − 2) + CBuk(N − 1) + CAN x0.

Combining the above equations, system (1) can be rewritten in the following equiv-
alent form

yk = Huk + Kx0, (2)

where uk = [uk(0), uk(1), . . . , uk(N − 1)]T ∈ R
n, yk = [yk(1), yk(2), . . . , yk(N )]T ∈ R

n ,

H =

⎡
⎢⎢⎢⎣

h11 0 · · · 0
h21 h22 · · · 0
...

...
. . .

...

hN1 hN2 · · · hNN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

CB 0 · · · 0
CAB CB · · · 0

...
...

. . .
...

CAN−1B CAN−2B · · · CB

⎤
⎥⎥⎥⎦ , K =

⎡
⎢⎢⎢⎣

CA
CA2

...

CAN

⎤
⎥⎥⎥⎦ .

For further analysis, the following assumptions are required.

Assumption 1 The input/output coupling matrix CB �= 0.

Assumption 2 For desired trajectory yd(t), there exists a unique desired input ud(t)
and initial state xd(0) such that

{
xd(t + 1) = Axd(t) + Bud(t),

yd(t) = Cxd(t).
(3)

Also written in the form of (2), we have

yd = Hud + Kxd(0). (4)

Remark 1 Assumptions 1 and 2 describe the realizability of the system for desired
trajectory yd . To be specific, Assumption 1 means that the relative degree of the
system is 1. Assumption 2 describes the existence of an input signal ud that can
precisely trace yd . If the system does not satisfy the Assumption 2, the system output
can only be as close as possible to the desired trajectory yd .



86 Y. Gao et al.

Fig. 1 Block diagram of
ILC

Assumption 3 The initial states of (1) and (3) are identical, i.e., xd(0) = xk(0) =
x0,∀k. Assume that x0 = 0.

Remark 2 Assumption 3 is based on the requirement for system repeatability in
ILC. In order to simplify the algorithm, without loss of generality, take x0 = 0. It is
easy to verify that the result of this chapter is also valid when x0 �= 0.

In this chapter, the above three assumptions will be followed, but in fact, the
SVRG-based ILC can also be established when Assumptions 1 and 2 are appro-
priately relaxed. Section 4 will give specific explanations on how to relax these
assumptions.

Figure 1 illustrates the basic framework of ILC. The plant takes input uk and
generates output yk and gets the error ek = yd − yk between the output and the
desired trajectory yd , which is transmitted to the controller. The controller uses error
ek and input uk to calculate the input signal uk+1 for the next batch and transmits it
to the plant. Our goal is to find a sequence of input {uk}, s.t.

lim
k→∞

‖ek‖ = lim
k→∞

‖yd − yk‖ = 0, (5)

where ‖ · ‖ is the vector 2-norm and its induced matrix norm, and henceforth refers
to this norm if not otherwise specified.

By Assumptions 2 and 3, (5) is equivalent to the optimization problem of function
F :

F (uk) � 1

2N
‖ek‖2 = 1

2N
‖yd − Huk‖2 , lim

k→∞ F (uk) = 0. (6)

2.2 Algorithm Design

The traditional gradient-based ILC updating law (Gu et al., 2019) is
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uk+1 = uk − ηk∇k, (7)

where ηk denotes step length, and ∇k is the gradient of the objective function. From
(6), we have

∇k = ∇F (uk) = − 1

N
HT ek . (8)

In (8), calculating the full gradient requires all the information of conjugate matrix
HT and error ek . To give the gradient under partial information, consider decom-
posing the error ek = [ek(1), ek(2), . . . , ek(N )]T according to the time index. Let
fi (uk) = 1

2 ‖ek(i)‖2 = 1
2

(
yd(i) − hT

i uk
)2
, where hi = [hi1, . . . , hii , 0, . . . , 0]T

denotes the i-th row of the matrix H . Then, equation (6) can be rewritten as

F (uk) = 1

N

n∑
i=1

fi (uk) . (9)

Take the gradient of both sides, we have

∇F (uk) = 1

N

n∑
i=1

∇ fi (uk) = 1

N

n∑
i=1

−hiek(i). (10)

Define random gradient ∇̃k as a discrete random variable that takes value uni-

formly over {∇ fi (uk)}Ni=1, satisfying P
(
∇̃k = ∇ fi (uk)

)
= 1

N . ThereforeE
[
∇̃k

]
=

∇k , i.e., ∇̃k is unbiased estimation of ∇k .
Note that by decomposing (6)–(9), calculating the specific value ∇ fi (uk) of ran-

dom vector ∇̃k only requires one row of the system matrix H and one-dimensional
information of the error ek . Therefore the decomposition can effectively reduce the
information required for each iteration. This technique of gradient decomposition is
the basis for solving the ILC of information incompleteness using SVRG method in
this chapter. In Sects. 3 and 4, two specific decomposition methods are presented for
incompleteness of error and system information, respectively.

Consider the stochastic gradient descent (SGD) method used in Machine Learn-
ing. Replacing the full gradient ∇k with the stochastic gradient ∇̃k in the ILC updat-
ing law (7), we can obtain the SGD-based ILC algorithm. However, the conver-
gence rate of SGD algorithm is O(1/

√
k) even under strongly convex condition

(Allen-Zhu, 2018), which cannot meet the practical requirements. This is because
although the stochastic gradient ∇̃k is unbiased estimate of the full gradient ∇k ,
the variance accumulates as the iteration increases. To reduce the variance, Johnson
and Zhang (2013) proposed a general stochastic variance reducted gradient (SVRG)
descent method. By recording a “snapshot” ũs every few updates to construct an
converging upper bound of the gradient, the rate of convergence of SVRG method
is O

(
ρk

)
under strongly convex condition and O(1/k) under non-strongly convex
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condition. Based on this method, the input updated with “snapshot” ũs is denoted as
us,k , and the SVRG-based ILC updating law is

us,k+1 = us,k − η
(∇ fi

(
us,k

) − ∇ fi
(
ũs

) + ∇F
(
ũs

))
. (11)

For system (2), the SVRG-based ILC algorithm with updating law (11) is shown
in Algorithm 1.

Algorithm 1 SISO SVRG-based ILC framework for SISO systems
Input: η, u0,0;
m ← 2N ; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs , μs ← ∇F (ũs);
for k ← 0 to m − 1 do
wk ← ∇ fi

(
us,k

) − ∇ fi (ũs) + μs ; where i from {1, 2, . . . , N } randomly
us,k+1 ← us,k − ηwk ;

end for
Option I: ũs+1 ← 1

m

∑m−1
k=0 us,k ;

Option II: ũs+1 ← us,m ;
end for

Algorithm 1 has two loops. The outer loop updates the “snapshot” ũs once when
the inner loop iterates m times. The iteration length m is taken as an integer multiple
of N , which is empirically set to 2N . Line 9 and 10 of Algorithm 1 shows twoways of
updating the “snapshot”, Option I andOption II. Option I takes the average of the first
m − 1 inputs as the “snapshot”, without using us,m , so actually the inner loop only
requires m − 1 iterations. The corresponding Option II takes the mth-iteration and
uses us,m as the “snapshot”. The two “snapshot” updating methods do not change the
convergence of Algorithm 1 (Bottou et al., 2018). Due to the limitation of space, we
only prove the convergence of Option I under strongly convex conditions and Option
II under non-strongly convex conditions in this section and Sect. 4, respectively.

2.3 Convergence Analysis

This subsection is divided into two parts, first giving the convex optimization knowl-
edge required for the proof of this chapter and then analyzing the convergence of the
system (2) when the “snapshot” update method of Algorithm 1 is set for Option I.

2.3.1 Preliminaries of Convex Optimization

The basics of convex optimization required for this chapter are given below
(Lyubashevsky, 2005).
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Definition 1 (Smoothness)Suppose S is an nonempty convex subset ofRd , f : S →
R ∈ C1. If ∃L > 0, s.t. ∀x, y ∈ S,

‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖,

then we say that f is L-smooth or ∇ f (x) is L-Lipschitz continuous on S, where L
is the Lipschitz constant.

Definition 2 (Strong convexity) Suppose S is an nonempty convex subset of Rd ,
f : S → R ∈ C1. If ∃σ > 0, s.t. ∀x, y ∈ S,

f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + σ

2
‖x − y‖2,

then we say that f is σ -strongly convex on S. When σ = 0, f (y) ≥ f (x) +
〈∇ f (x), y − x〉, f is convex.
Definition 3 (Conditional number) If f is L-smooth and σ -strongly convex,
κ = L/σ is the conditional number of f .

Theorem 1 For convex function f , the followings are equivalent:
a. ∇ f (x) is L-Lipschitz continuous,
b. f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L

2 ‖y − x‖2,
c. f (y) ≥ f (x) + 〈∇ f (x), y − x〉 + 1

2L ‖∇ f (y) − ∇ f (x)‖2,
d. 1

L ‖∇ f (y) − ∇ f (x)‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉.
Proof a → b : Denote g(t) = f (t (y − x) + x), then f (x) = g(0), f (y) = g(1),
and g′(t) = 〈∇ f (t (y − x) + x), y − x〉. Therefore,

f (y) − f (x) − 〈∇ f (x), y − x〉 = g(1) − g(0) − 〈∇ f (x), y − x〉

=
1∫

0

g′(t)dt − 〈∇ f (x), y − x〉

=
1∫

0

〈∇ f (t (y − x) + x) − ∇ f (x), y − x〉dt

≤
1∫

0

‖∇ f (t (y − x) + x) − ∇ f (x)‖ · ‖y − x‖dt

≤
1∫

0

L‖t (y − x)‖ · ‖y − x‖dt = L

2
‖y − x‖2.

b → c : Denote fx (z) = f (z) − 〈∇ f (x), z〉, for ∀z, z′ ∈ R
d ,
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f
(
z′) − f (z) ≤ 〈∇ f (z), z′ − z

〉 + L

2

∥∥z′ − z
∥∥2 ,

f
(
z′) − f (z) − 〈∇ f (x), z′ − z

〉 ≤ 〈∇ f (z) − ∇ f (x), z′ − z
〉 + L

2

∥∥z′ − z
∥∥2 ,

fx
(
z′) − fx (z) ≤ 〈∇ fx (z), z

′ − z
〉 + L

2

∥∥z′ − z
∥∥2 . (12)

By using the convexity of f , we have

fx
(
z′) − fx (z) = f

(
z′) − f (z) − 〈∇ f (x), z′ − z

〉
≥ 〈∇ f (z), z − z′〉 − 〈∇ f (x), z − z′〉 = 〈∇ fx (z), z − z′〉 .

Therefore fx (z) is also convex, since ∇ fx (z) = ∇ f (z) − ∇ f (x), fx (z) achieves
its minimum at z = x . By (12),

fx (x) = min
z′ fx

(
z′) ≤ min

z′

{
fx (z) + 〈∇ fx (z), z

′ − z
〉 + L

2

∥∥z′ − z
∥∥2}

= fx (z) + min‖y‖=1
min
t≥0

{
t 〈∇ fx (z), y〉 + L

2
t2
}

= fx (z) + min‖y‖=1

{
−〈∇ fx (z), y〉2

2L

}

= fx (z) − 1

2L
‖∇ fx (z)‖2 .

Therefore fx (z) − fx (x) ≥ 1
2L ‖∇ fx (z)‖2, which implies

f (y) − f (x) − 〈∇ f (x), y − x〉 = fx (y) − fx (x)

≥ 1

2L
‖∇ fx (y)‖2 = 1

2L
‖∇ f (y) − ∇ f (x)‖2.

c → d : Swapping x and y in c. , we have

f (x) ≥ f (y) + 〈∇ f (y), x − y〉 + 1

2L
‖∇ f (y) − ∇ f (x)‖2.

Summing the two equations, we have

1

L
‖∇ f (y) − ∇ f (x)‖2 ≤ 〈∇ f (x) − ∇ f (y), x − y〉.

d → a: ‖∇ f (y) − ∇ f (x)‖2 ≤ L〈∇ f (x) − ∇ f (y), x − y〉 ≤ L‖∇ f (x) − ∇ f (y)‖ · ‖x −
y‖ by Cauchy inequality, thus ‖∇ f (x) − ∇ f (y)‖ ≤ L‖x − y‖. �
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Theorem 2 Let f (x) = 1
2 x

T Qx + qT x + c, whereQ is positive definite. Then f (x)
is L-smooth and σ -strongly convex, where L = λM , and σ = λm. λM , and λm are
the maximum and minimum eigenvalues of Q, respectively.

Proof Since ∇ f (x) = Qx + q, we have

‖∇ f (x) − ∇ f (y)‖ ≤ ‖Q(x − y)‖ ≤ ‖Q‖ · ‖x − y‖ = λM‖x − y‖.

Hence f (x) is λM -smooth. It is easy to verify that

f (x) − f (y) − 〈∇ f (y), x − y〉 = 1

2
(x − y)T Q(x − y).

Since Q is positive definite, the orthogonal similarity can be diagonalized as Q =
PT�P , where P is the orthogonal matrix, � is the diagonal matrix of eigenvalues,
and λm > 0. Thus

1

2
(x − y)T Q(x − y) = 1

2
zT�z = 1

2

∑
i

λi z
2
i ≥ 1

2
λm‖z‖2 = 1

2
λm‖x − y‖2.

Thus f (x) is λm-strongly convex. �
For system (2) and objective function (6), we have:

Proposition 1 Each fi is convex and L-smooth.

Proof For f (x) = 1
2

(
qT x + c

)2
, where q = [q1, q2, . . . , qn]T ∈ R

n, x ∈ R
n, c ∈

R. Obviously, f is convex, and ∇ f (x) = qqT x + cq, ‖∇ f (x) − ∇ f (y)‖ =∥∥qqT (x − y)
∥∥ ≤ ∥∥qqT

∥∥ · ‖x− y‖ ≤ ‖q ∥∥2·∥∥ x − y‖. Therefore, for each fi in (9),
let L = maxi {‖hi‖2} > 0, hi = [hi1, . . . , hii , 0, . . . , 0]T , then fi is L-smooth. �
Proposition 2 F is L-smooth and σ -strongly convex.

Proof By (6), we have

F (uk) = 1

2N
(yd − Huk)

T (yd − Huk)

= 1

2N

(
uT
k H

T Huk − yTd Huk − uT
k H

T yd + yTd yd
)
,

where HT H is positive definite. Then by Theorem 2, F (uk) is L-smooth and σ -
strongly convex, where L and σ are the 1

2N of the maximal and minimal eigenvalues
of HT H , respectively. �

2.3.2 Proof of Convergence

In Algorithm 1, set the “snapshot” updating as Option I. Then, under the assumptions
of system (2), the convergence of Algorithm 1 is given by the following theorem.
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Theorem 3 If each fi is convex and L-smooth, and F is σ -strongly convex. We
denote the optimal point u∗ = argminu F(u), and assume that m is large enough
such that

α = 1

ση(1 − 2Lη)m
+ 2Lη

1 − 2Lη
< 1.

Then the convergence of Algorithm 1 satisfies

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

(
F
(
ũ0

) − F
(
u∗)) .

Proof Since fi is convex and L-smooth, for any i , by Theorem 1,

∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2 ≤ 2L

[
fi (u) − fi

(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉] . (13)

Since 1
N

∑n
i=1 ∇ fi (u) = ∇F(u), and∇F (u∗) = 0,we regard∇ fi as randomvectors

which take values from {∇ fi }Ni=1, then

E

[∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2] = 1

N

n∑
i=1

∥∥∇ fi (u) − ∇ fi
(
u∗)∥∥2 ≤ 2L

[
F(u) − F

(
u∗)] .

(14)
For any fixed s, we set wk = ∇ fi

(
us,k

) − ∇ fi (ũs) + ∇F (ũs), then

E
[‖wk‖2

] ≤ 2E
[∥∥∇ fi

(
us,k

) − ∇ fi
(
u∗)∥∥2]

+ 2E
[∥∥∇ fi

(
ũs

) − ∇ fi
(
u∗) − ∇F

(
ũs

)∥∥2]
= 2E

[∥∥∇ fi
(
us,k

) − ∇ fi
(
u∗)∥∥2]

+ 2E
[∥∥[∇ fi

(
ũs

) − ∇ fi
(
u∗)] − E

[∇ fi
(
ũs

) − ∇ fi
(
u∗)]∥∥2]

≤ 2E
[∥∥∇ fi

(
us,k

) − ∇ fi
(
u∗)∥∥2] + 2E

[∥∥∇ fi
(
ũs

) − ∇ fi
(
u∗)∥∥2]

≤ 4L
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)] . (15)

In the above, we have used the inequality ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, and the
property E

[‖ζ − Eζ‖2] = E‖ζ‖2 − ‖Eζ‖2 ≤ E‖ζ‖2, as well as (14). Notice that
E [wk] = ∇F

(
us,k

)
, thus
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E

[∥∥us,k+1 − u∗∥∥2]
= ∥∥us,k − u∗∥∥2 − 2ηE

[〈
wk, us,k − u∗〉] + η2

E
[‖wk‖2

]
≤ ∥∥us,k − u∗∥∥2 − 2η

[〈∇F
(
us,k

)
, us,k − u∗〉]

+ 4Lη2
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)]

≤ ∥∥us,k − u∗∥∥2 − 2η
[
F
(
us,k

) − F
(
u∗)]

+ 4Lη2
[
F
(
us,k

) − F
(
u∗) + F

(
ũs

) − F
(
u∗)]

= ∥∥us,k − u∗∥∥2 − 2η(1 − 2Lη)
[
F
(
us,k

) − F
(
u∗)]

+ 4Lη2
[
F
(
ũs

) − F
(
u∗)] .

In the above, we have used (15) and the convexity of F , i.e.,
〈∇F

(
us,k

)
, us,k − u∗〉 ≥

F
(
us,k

) − F (u∗).
We sum up the expectations of the above equation for k = 0, 1, . . . ,m − 1. Using

the convexity of F and the selection of ũs+1 under Option I, we have F
(
ũs+1

) =
F
(

1
m

∑m−1
k=0 us,k

)
≤ 1

m

∑m−1
k=0 F

(
us,k

)
. Therefore,

E

[∥∥us,m − u∗∥∥2] + 2η(1 − 2Lη)mE
[
F
(
ũs+1

) − F
(
u∗)]

≤ E

[∥∥us,0 − u∗∥∥2] + 4Lη2mE
[
F
(
ũs

) − F
(
u∗)]

≤ 2

σ
E
[
F
(
ũs

) − F
(
u∗)] + 4Lη2mE

[
F
(
ũs

) − F
(
u∗)] .

Thus, we obtain

E
[
F
(
ũs+1

) − F
(
u∗)] ≤

(
1

ση(1 − 2Lη)m
− 2Lη

1 − 2Lη

)
E
[
F
(
ũs

) − F
(
u∗)]

= αE
[
F
(
ũs

) − F
(
u∗)] .

Summing up the above equation for s = 0, 1, . . . , S − 1, we have

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

E
[
F
(
ũ0

) − F
(
u∗)] . �

Remark 3 Theorem3 indicates thatAlgorithm1has the rate of convergenceO
(
αS

)
.

And this convergence rate is related to the value of α. If the information of the system
H is known, to make α as small as possible, we generally take η = 0.1

L ,m = 
(n),
so that the value of α is close to 1

2 . If the system information is unknown, we need
to find the appropriate η and m by experiment.
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3 SVRG-Based ILC Under Random Data Dropouts

This section follows the SISO system in Sect. 2, but assumes that random data
dropouts occur in the error signal transmission. This section consists of four parts:
system description, algorithm design, performance analysis, and numerical simula-
tion.

3.1 System Description

In SISO system (2), we still hold Assumptions 1–3, but assuming that data dropouts
occur in the transmission of the error signal, as shown in Fig. 2. We further assume
that the dropouts satisfy the Bernoulli distribution model (Shen, 2018). Therefore,
the ILC updating law (7) becomes

uk+1 = uk + η
1

N
HT�kek, (16)

where �k = diag {γk(1), γk(2), . . . , γk(N )}. {γk(i)}Ni=1 is i.i.d following Bernoulli
distribution. Let γ � E

[
γk(i)

]
be the successful transmission rate, where γk(i) = 0

means data dropout occurs in the i-th time of k-th batch, and otherwise, data dropout
does not occur.

Fig. 2 ILC with random
data dropouts
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3.2 Algorithm Design

Based on gradient descent method, there are two main approaches to solve the data
dropouts problem:

(1) Obtain the full gradient by retransmissing. For each transmission, the controller
stores the successfully transmitted data and asks the lost data to be retransmitted
until all data are received. This method eliminates the effect of data dropouts by
retransmissing.

(2) Use successfully transmitted data to construct random gradient. The data is
updated directly using successfully transmitted data each iteration, as shown in
the update law (16).

The first method requires a lot of wasted time when data retransmission is slow.
Although the secondmethod saves the time of data retransmission, the actual running
time may be larger than first method when data retransmission.

Based on the framework of Algorithm 1, the SVRG-based ILC under error data
dropouts can be constructed by utilizing the second method for each iteration, but
calculating the full gradient every several iterations using the first method. This
algorithm does not require data retransmission in most cases compared to the first
method and has a significant improvement in convergence speed compared to the
second method. Thus it can achieve a good balance between convergence rate and
data retransmission speed, and it is more suitable for general data dropout cases.

The formal construction of the algorithm is given below.
Firstly, we take the random gradient ∇̃k � − 1

γ N HT�kek , and we note that

E

[
∇̃k

]
= − 1

N HT ek = ∇k . For the convenience of proof, we present ∇̃k as

∇ F̃k (uk) = 1

γ N

∑
{i |γk (i)=1}

∇ fi (uk) , (17)

where ∇ fi is defined in the same way as (10). Notice that if there is no dropout,
γ = 1, and therefore (17) is equivalent to (10).

Remark 4 Equation (17) is similar to the Batch Gradient Descent (BGD) method
in Machine Learning, but they are fundamentally different. In (17), the number of
∇ fi in each summation

∑
i ∇ fi varies according to the value of the random vector

{γk(i)}Ni=1. But in BGD, the number of ∇ fi is fixed. Therefore, the algorithm based
on gradient ∇ F̃k cannot be directly applied to BGD.

Secondly, similar to (11), ILC updating law under random data dropouts is con-
structed:

us,k+1 = us,k − η
(
∇ F̃k

(
us,k

) − ∇ F̃k
(
ũs

) + ∇F
(
ũs

))
. (18)
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Finally, change the iteration lengthm in Algorithm 1 from 2N to �2γ N�. Because
the number of summation in each batch isE

[∑N
i=1 γk(i)

]
= γ N in the desired sense,

∇ F̃k is equivalent to γ N sum of ∇ fi .
In conclusion, SVRG-based ILC under random data dropouts is shown in Algo-

rithm 2.

Algorithm 2 Data dropout SISO SVRG-based ILC
Input: η, u0,0;
m ← 2γ N ; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs , μs ← ∇F (ũs);
for k ← 0 to m − 1 do
wk ← ∇ fi

(
us,k

) − ∇ fi (ũs) + μs ;
us,k+1 ← us,k − ηwk ;

end for
ũs+1 ← 1

m

∑m−1
k=0 us,k ;

end for

For the “snapshot” of Algorithm 2, the update method is taken as Option I in
Algorithm 1, and the recommended iteration length is set to �2γ N�. When γ is
unknown, we need to find the appropriate m by experiments.

3.3 Convergence Analysis

By Proposition 1, every fi is convex and L-smooth, and the following proposition
holds:

Proposition 3 Each value of ∇ F̃k (uk) is convex and L ′-smooth, where L ′ = L/γ ,
and L is the Lipschitz constant corresponding to the smoothness of fi in Proposition
1.

Proof Since every fi is convex and L-smooth, 1
γ N

∑N
i=1 ∇ fi (uk) is L ′-Lipschitz

continuous, where L ′ = L/γ . Because each value of ∇ F̃k (uk) is a linear combina-
tion of ∇ fi , the summation number does not exceed 1

γ N

∑N
i=1 ∇ fi (uk). Therefore

∇ fi (uk); as a result, ∇ F̃k (uk) is convex and L ′-smooth. �

For the convergence of Algorithm 2, we have the following theorem.

Theorem 4 If each value of ∇ F̃k (uk) is convex and L ′-smooth, F is L-smooth and
σ -strongly convex, and for the optimal point u∗ = argminu F(u), assuming that m
is large enough s.t.

α = 1

ση (1 − 2L ′η)m
+ 2L ′η

1 − 2L ′η
< 1.



Iterative Learning Control Based on Random Variance … 97

Then the convergence of Algorithm 2 satisfies

E
[
F
(
ũS

) − F
(
u∗)] ≤ αS

(
F
(
ũ0

) − F
(
u∗)) .

Proof By Proposition 3, replacing fi in the proof of Theorem 3 with ∇ F̃k , equation
(13) is rewritten as:

∥∥∥∇ F̃k(u) − ∇ F̃k
(
u∗)∥∥∥2 ≤ 1

γ N

∑
{i |γk (i)=1}

2L ′ [ fi (u) − fi
(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉] .

The corresponding Eq. (14) is

E

[∥∥∥∇ F̃k(u) − ∇ F̃k
(
u∗)∥∥∥2]

≤ 1

γ N
E

⎡
⎣ ∑

{i |γk (i)=1}
2L ′ [ fi (u) − fi

(
u∗) − 〈∇ fi

(
u∗) , u − u∗〉]

⎤
⎦

= 1

γ N
γE

[
2L ′ [F(u) − F

(
u∗) − 〈∇F

(
u∗) , u − u∗〉]]

= 2L ′
E
[
F(u) − F

(
u∗)] .

The rest of the proof repeats the proof of Theorem 3. �

Remark 5 Theorem 4 shows that Algorithm 2 also converges linearly, and the speed
of convergence is related to α. For the choice of m, note that Theorem 4 differs
from Theorem 3 in the Lipschitz constant corresponding to the smoothness of the
condition. By Proposition 3, with L ′ = L/γ , for

α = 1

ση (1 − 2L ′η)m
+ 2L ′η

1 − 2L ′η
.

We can consider multipling m by γ times, i.e., changing m from 2N to �2γ N�, to
approximately keep the convergence of Algorithm 2.

3.4 Numerical Simulation

In SISO system (1), take the system matrix (A, B,C) as

A =
⎡
⎣ 0.50 −0.25 1.00

0.15 0.30 −0.50
−0.75 0.25 −0.25

⎤
⎦ , B =

⎡
⎣0
0
1

⎤
⎦ , C = [

0 0 1.0
]
.
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Take desired trajectory yd(t) = sin(2π t/50), time length N = 50, initial state x0 =
0, and initial input u0 = 0.When γ = 0.9 and γ = 0.6, the ILCbased on full gradient
(GD), stochastic gradient (SGD) and stochastic variance reduced gradient (SVRG)
is shown in Fig. 3.

When calculating the full gradient, each data retransmission increases 1 to the
iteration number, which means that the controller skips one round of computation
until all error information is completely transmitted. Take the optimal step that the
three methods can converge.

When γ = 0.9, Fig. 3a shows that the SVRG-based ILC converges slightly faster
than the GD- and SGD-based ILC. When γ = 0.6, Fig. 3b illustrates a significant
difference in the convergence speed of the three types ILC, from fast to slow for
SVRG-, SGD-, and GD-based ILC. In summary, the SVRG-based ILC under error
data dropouts, i.e., Algorithm 2, outperforms the GD- and SGD-based ILC under
different successful transmission rates, and the difference becomes more significant
as the γ decreases.

4 Model-Free SVRG-Based ILC for MIMO Systems

This section extends theAlgorithm1 in Sect. 2 fromSISO systems toMIMOsystems.
Firstly, a system description of the discrete linear MIMO system is given. Secondly,
the existing model-free data-driven methods are introduced, and a new model-free
data-driven ILC based on SVRG method is constructed. Thirdly, the convergence
of the algorithm under non-strongly convex conditions is proved. Finally, numerical
simulations are established to verify the convergence performance of SVRG-based
ILC in deterministic and noisy systems.

4.1 System Description

Consider the following discrete linear multi-input multi-ouput (MIMO) systemJ ,
which has q inputs u1k, u

2
k, . . . , u

q
k , and p outputs y1k , y

2
k , . . . , y

p
k . Rewrite the system

in the form of (2),
yk = J uk, (19)

where

J =

⎡
⎢⎢⎢⎣

J11 J12 · · · J1q
J21 J22 · · · J2q
...

...
. . .

...

Jp1 Jp2 · · · Jpq

⎤
⎥⎥⎥⎦ , uk =

⎡
⎢⎢⎢⎣
u1k
u2k
...

uqk

⎤
⎥⎥⎥⎦ , yk =

⎡
⎢⎢⎢⎣
y1k
y2k
...

y p
k

⎤
⎥⎥⎥⎦ .
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Fig. 3 Comparison of three
gradient-based ILC under
error data dropouts

Each Ji j ∈ R
N×N has the sameproperties asmatrixH in (2). yik =

[
yik(1), . . . , y

i
k(N )

]T
,

u j
k =

[
u j
k (0), . . . , u

j
k (N − 1)

]T
, N is the length of time, and the desired trajectory

is

yd =
[(
y1d
)T

,
(
y2d
)T

, . . . ,
(
y p
d

)T ]T
.

For this system, consider the following assumptions:

Assumption 4 System matrixJ �= 0.

Assumption 5 The dimension of input signal does not exceed the dimension of
output signal, i.e., p ≥ q.
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Remark 6 If p = q = 1, the system (19) degenerates to SISO system (2). Unlike
Assumptions 1 and 4 can no longer guarantee that the system matrix J is of full
rank. Assumption 4 is themost fundamental, since ifJ = 0, any input signal cannot
track yd . Assumption 2 is also relaxed from the system, the reasons will be given
in the proof of the convergence. In addition, Assumption 5 is added for the MIMO
system, because if the input dimension is larger than the output dimension, it means
that there is a redundant information.

For desired trajectory yd , consider control objective similar to (6), i.e., to find a
sequence {uk}, s.t.

G (uk) = 1

2p
‖ek‖2 = 1

2p

∥∥ yd − J uk

∥∥2 , lim
k→∞ G (uk) = G

(
u∗) , (20)

where u∗ is the input when G takes the minimum value, and the error signal ek is

ek = yd − yk =

⎡
⎢⎢⎢⎣

y1k − y1d
y2k − y2d

...

y p
k − y p

d

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
e1k
e2k
...

epk

⎤
⎥⎥⎥⎦ .

4.2 Algorithm Design

The full gradient ofG in (20) is∇k = ∇G (uk) = − 1
pJ

T
(
yd − J uk

)
.Weneed the

information of J T to calculate the full gradient. However, in model-free learning,
we want to obtain the gradient by conducting experiments on system J only. For
this purpose, Oomen et al. (2014) gives the following method to estimate J T .

Lemma 1 For SISO systemJ = J11, its transposeJ T can be obtained by matrix
multiplication

(J11)
T = TN J11TN ,

where T is the N-order permutation matrix whose anti-diagonal is 1, i.e.,

TN =

⎡
⎢⎢⎢⎣
0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0

⎤
⎥⎥⎥⎦ .

Therefore the full gradient of SISO system − 1
p (J11)

T ek = − 1
pTN J11TN ek can be

obtained by a single experiment.

Lemma 2 For MIMO systemJ , whose transpose J T is
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J T =

⎡
⎢⎢⎣

(J11)
T · · · (Jp1)T

...
. . .

...(
J1q

)T · · · (Jpq)T

⎤
⎥⎥⎦ =

⎡
⎢⎣
TN · · · 0
...

. . .
...

0 · · · TN

⎤
⎥⎦

︸ ︷︷ ︸
T qN

⎡
⎢⎣
J11 · · · Jp1
...

. . .
...

J1q · · · Jpq

⎤
⎥⎦

︸ ︷︷ ︸
˜J

⎡
⎢⎣
TN · · · 0
...

. . .
...

0 · · · TN

⎤
⎥⎦

︸ ︷︷ ︸
T pN

.

For symmetric MIMO systems, −J̃ �= J , so the full gradient − 1
pJ

T ek of
MIMO system cannot be obtained from a single experiment on system J . The
method proposed by Oomen et al. (2014) estimates J T from pq experiments:

J T = J qN

⎛
⎝ q∑

i=1

p∑
j=1

Li jJLi j

⎞
⎠J pN , (21)

whereLi j is a matrix consisting of q × p blocks. InLi j , the (i, j) block is unit matrix
of order N , and the remaining blocks are all 0:

Li j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · IN · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
qN×pN .

In (21), the left multiplication matrix Li j takes the i-th row of J , and the right
multiplication matrix Li j takes out the j-th column of J . The two multiplications
lead to a great loss of system information. We would like to improve the above
method by extracting as much system information as possible. Therefore, consider
the following decomposition as (9).

Set gi (uk) = 1
2

∥∥eik∥∥2 = 1
2

∥∥∥yid − ∑q
j=1 Ji j u

j
k

∥∥∥2, then (20) can be written as

G (uk) = 1

p

n∑
i=1

gi (uk) . (22)

Taking gradient on the both sides, we have

∇G (uk) = 1

p

n∑
i=1

∇gi (uk) , (23)

where
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∇gi (uk) = −

⎡
⎢⎢⎢⎣
J T
i1e

i
k

J T
i2e

i
k

...

J T
iqe

i
k

⎤
⎥⎥⎥⎦ ∈ R

qN .

Note that the∇gi (uk) canbe calculate byone line of the systemmatrix. The following
lemma can help us design a controller to take out this information.

Lemma 3 Calculating ∇gi (uk) only needs a single experiment.

Proof First, we note that

[
0, . . . , 0,JN , 0, . . . , 0

]
︸ ︷︷ ︸

T qN
i

⎡
⎢⎢⎢⎣

J11 J12 · · · J1q
J21 J22 · · · J2q
.
.
.

.

.

.
. . .

.

.

.

Jp1 Jp2 · · · Jpq

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣
TN · · · 0
.
.
.

. . .
.
.
.

0 · · · TN

⎤
⎥⎥⎦

︸ ︷︷ ︸
T qN

=
[
J Ti1, . . . , J

T
iq

]
∈ R

N×qN ,

where T pN
i ∈ R

N×pN is the matrix whose i-th block is TN and the rest blocks are 0.
For eik ∈ R

N ,
eik = [0, . . . , 0, IN , 0, . . . , 0]︸ ︷︷ ︸

L i

ek,

where Li ∈ R
N×qN is the matrix whose i-th block is an identity matrix of order N

and the rest blocks are 0.
The matrix multiplication method can retrieve a row of information of the system,

but it cannot directly obtain thematrix for further computation. Therefore, simple and
easy-to-implement linear mappings are considered to change the matrix to suitable
dimension.

Set Ei
k ∈ R

qN×q and define a linear mapping �:

�eik = Ei
k =

⎡
⎢⎣
eik · · · 0
...

. . .
...

0 · · · eik

⎤
⎥⎦ ,

where Ei
k is the matrix blocked by N × 1, with eik on the diagonal and 0 in the rest

of the blocks.
Since

T pN
i J T qN Ei

k = [
J T
i1e

i
k, . . . , J

T
iqe

i
k

] ∈ R
N×q ,

we can define the linear map �: RN×q → R
qN . It maps matrix in R

N×q to R
qN by

arranging each column of the matrix in order to a vector, i.e.,
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Fig. 4 Controller for
model-free MIMO systems

�
[
J T
i1e

i
k, . . . , J

T
iqe

i
k

] =

⎡
⎢⎢⎢⎣
J T
i1e

i
k

J T
i2e

i
k

...

J T
iqe

i
k

⎤
⎥⎥⎥⎦ .

Combining above, we have

∇gi (uk) = −�J pN
i J T qN Li ek .

Thus, ∇gi (uk) can be calculated in a single experiment. �

Based on Lemma 3, a controller can be designed as shown in Fig. 4.
This controller can reduce the calculation of the full gradient in (21) from pq

experiments to p experiments. However, when the system is noisy, there is no guar-
antee that the partial gradient estimated for each experiment ∇gi (uk) all correspond
to the same full gradient ∇G (uk). In nosiy systems, we can use the random gradient

∇̃k , which takes values uniformly {∇gi (uk)}Ni=1 s.t. P
(
∇̃k = ∇gi (uk)

)
= 1

N . How-

ever, the SGD method converges slowly. Combining the convergence speed and the
effect of noise in the system, we consider to design a SVRG-based ILC algorithm
similar to Algorithm 1, as shown in Algorithm 3.

Algorithm 3 Data-driven MIMO SVRG-based ILC
Input: η, u0,0;
m ← 2p; ũ0 ← u0,0;
for s ← 0 to S − 1 do
us,0 ← ũs,µs ← ∇G

(
ũs

)
;

for k ← 0 to m − 1 do
wk ← ∇gi

(
us,k − ũs

) + µs ; where i from {1, 2, . . . , p} randomly
us,k+1 ← us,k − ηwk;

end for
ũs+1 ← us,m;

end for

Algorithm 3 uses Option II in Algorithm 1 to update the “snapshot”. Ifm is twice
as many as p, a total of 2p experiments are required for each internal iteration.
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p experiments are required to compute the full gradient, so a total of 3p system
experiments are required for each iteration. Compared with the SGD-based ILC,
Algorithm 3 requires pmore systematic experiments perm iterations to compute the
full gradient in order to accelerate the convergence.

4.3 Convergence Analysis

From the following two propositions, we will see that G is not necessarily strongly
convex.

Proposition 4 G and gi are convex and L-smooth.

Proof We note that

∇gi (x) = −

⎡
⎢⎢⎢⎣
J T
i1
J T
i2
...

J T
iq

⎤
⎥⎥⎥⎦
⎛
⎝yid −

q∑
j=1

Ji j x
j

⎞
⎠ = −J T

i

(
yid − Ji x

)
,

where Ji = [
Ji1 Ji2 . . . Jiq

]
, x ∈ R

qN .gi is convex, and

‖∇gi (x) − ∇gi ( y)‖ =
∥∥∥Ji J Ti (x − y)

∥∥∥
≤

∥∥∥Ji J Ti ∥∥∥ · ‖x − y‖ ≤
q∑
j=1

∥∥Ji j∥∥2 · ‖x − y‖.

Let L = maxi
{∑q

j=1 λi j

}
, where λi j is the maximum eigenvalue of J T

i j Ji j . Since

J T
i j Ji j is always semipositive definite, λi j = 0 if and only if Ji j = 0. Hence by

Assumption 4, L > 0, gi is convex and L-smooth.
Since G is a convex combination of gi , G is convex and L-smooth. �

When p = q = 1,J = J11 = diag{1, 0, . . . , 0}, G is not strong convex. The
following proposition gives a sufficient condition for G to be strongly convex.

Proposition 5 If the system matrix J is of full column rank, then G is σ -strongly
convex.

Proof By Assumption 5, p ≥ q, and

G (uk) = 1

2p

(
uT
k J

TJ uk − yTd J uk − uT
k J

T yd + yTd yd
)
.
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Since J TJ is positive definite if and only if J has full column rank. Therefore
by Theorem 2.2, G (uk) is σ -strongly convex whenJ has full column rank, and the
strong convexity factor is 1

2p of the minimum eigenvalue of matrix J TJ . �

When G is strongly convex, we can prove that Algorithm 3 converges linearly
similar to Algorithm 1 (Bottou et al., 2018). The convergence proof of Algorithm 3
under the strongly convex condition is omitted because of limited space. We only
give the convergence proof under non-strongly convex.

First we have the following lemma (Reddi et al., 2016).

Lemma 4 Assume that ck, ck+1, β > 0,

ck = ck+1
(
1 + ηβ + 2η2L2

) + η2L3.

If η, β and ck+1 are chosen such that

Tk =
(

η − ck+1η

β
− η2L − 2ck+1η

2

)
> 0,

then each iteration of Algorithm 3 has an upper bound

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,k − Rs,k+1

Tk
,

where Rs,k � E

[
G

(
us,k

) + ct
∥∥us,k − ũs

∥∥2].
Proof Since gi is L-smooth,

gi
(
us,k+1

) ≤ gi
(
us,k

) + 〈∇gi
(
us,k

)
, us,k+1 − us,k

〉 + L

2

∥∥us,k+1 − us,k

∥∥2 .

For fixed s, let wk = ∇gi
(
us,k

) − ∇gi
(
ũs) + µs , then E [wk] = ∇G

(
us,k

)
.

Since us,k+1 − us,k = −ηwk , we use the above equation and take the expectation on
both sides to obtain

E
[
G

(
us,k+1

)] ≤ E

[
G

(
us,k

) − η
∥∥∇G

(
us,k

)∥∥2] + Lη2

2
E
[‖wk‖2

]
. (24)

In addition, for
∥∥us,k+1 − ũs

∥∥2 , we have
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E

[∥∥us,k+1 − ũs
∥∥2]

= E

[∥∥us,k+1 − us,k

∥∥2 + ∥∥us,k − ũs
∥∥2 + 2

〈
us,k+1 − us,k, us,k − ũs 〉]

= E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2] − 2ηE
[〈∇G

(
us,k

)
, us,k − ũs 〉]

≤ E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2]
− 2ηE

[
1

2β

∥∥∇G
(
us,k

)∥∥2 + β

2

∥∥us,k − ũs
∥∥2] . (25)

In the above, we have used Young’s inequality 〈x, y〉 ≤ 1
2β ‖x‖2 + β

2 ‖y‖2.
For E

[‖wk‖2
]
, we have the following estimation:

E
[‖wk‖2

] = E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) + ∇G

(
ũs)∥∥2]

= E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) + ∇G

(
ũs) − ∇G

(
us,k

) + ∇G
(
us,k

)∥∥2]
≤ 2E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs) − (∇G

(
us,k

) − ∇G
(
ũs))∥∥2]

+ 2E
[∥∥∇G

(
us,k

)∥∥2]
≤ 2E

[∥∥∇gi
(
us,k

) − ∇gi
(
ũs)∥∥2] + 2E

[∥∥∇G
(
us,k

)∥∥2]
≤ 2L2

E

[∥∥us,k − ũs
∥∥2] + 2E

[∥∥∇G
(
us,k

)∥∥2] , (26)

where the inequality is given by ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, E [‖ζ − Eζ‖2] =
E‖ζ‖2 − ‖Eζ‖2 ≤ E‖ζ‖2 and the smoothness of gi , i.e., ‖∇gi

(
us,k

)− ∇gi
(
ũs) ‖ ≤

‖us,k − ũs‖2.
Denoting Rs,k � E

[
G

(
us,k

) + ck
∥∥us,k − ũs

∥∥2], by (24) and (25), we have

Rs,k+1 ≤ E

[
G

(
us,k

) − η
∥∥∇G

(
us,k

)∥∥2] + Lη2

2
E
[‖wk‖2

]
+ ck+1E

[
η2 ‖wk‖2 + ∥∥us,k − ũs

∥∥2]
− 2ck+1ηE

[
1

2β

∥∥∇G
(
us,k

)∥∥2 + β

2

∥∥us,k − ũs
∥∥2]

≤ E

[
G

(
us,k

) − η

(
1 − ck+1

β

)∥∥∇G
(
us,k

)∥∥2]

+ η2

(
L

2
+ ck+1

)
E
[‖wk‖2

]
+ ct+1(1 + ηβ)E

[∥∥us,k − ũs
∥∥2]
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From (26), we have

Rs,k+1 ≤ E
[
G

(
us,k

)] + (
ck+1

(
1 + ηβ + 2η2L3

) + η2L3
)
E

[∥∥us,k − ũs
∥∥2]

−
(

η − ck+1η

β
− Lη2 − 2ck+1η

2

)
E

[∥∥∇G
(
us,k

)∥∥2]

= Rs,k −
(

η − ct+1η

β
− Lη2 − 2ck+1η

2

)
E

[∥∥∇G
(
us,k

)∥∥2] .

Let Tk �
(
η − ck+1η

β
− η2L − 2ck+1η

2
)

,Tk > 0, then

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,k − Rs,k+1

Tk
. �

Because of the complexity of non-strongly convex problem, we do not consider
convergence criteria in Theorems 3 and 4 such asE [G(u) − G (u∗)] ≤ ε, but instead
proving E

[‖∇G(u)‖2] ≤ ε for Algorithm 3. Note that if G is σ -strongly convex, it
is easy to verify that

G(u) − G
(
u∗) ≤ 1

2σ
‖∇G(u)‖2.

Thus by E
[‖∇G(u)‖2] ≤ ε, we have E [G(u) − G (u∗)] ≤ ε. However, this rela-

tionship does not always hold under non-strongly convex case (Ghadimi & Lan,
2013). The following theorem gives the proof of the convergenceE

[‖∇G(u)‖2] ≤ ε

of Algorithm 3.

Theorem 5 Suppose each gi is convex and L-smooth, and G is convex. For 0 ≤ k ≤
m − 1, ck, ck+1, β > 0, cm = 0 satisfying

ck = ck+1
(
1 + ηβ + 2η2L2

) + η2L3.

and η, β, ck+1 are chosen such that

Tk =
(

η − ck+1η

β
− η2L − 2ck+1η

2

)
> 0.

Let τm = mink Tk, ua be a uniformly distributed random vector with values {us,k |
0 ≤ s ≤ S − 1, 0 ≤ k ≤ m − 1}. Denote that u∗ = argminu G(u), then Algorithm 3
satisfies

E
[‖∇G (ua)‖2

] ≤
E

[
G

(
ũ0

)
− G (u∗)

]
Smτm

.

Proof We take k = 0, 1, . . . ,m − 1 in Lemma 1 and sum up to obtain
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m−1∑
k=0

E

[∥∥∇G
(
us,k

)∥∥2] ≤ Rs,0 − Rs,m

τm
=

E

[
G

(
ũs) − G

(
ũs+1

)]
τm

.

By the definition of Rs,k , we choose us,0 = ũs
, us,m = ũs+1 in ũs . We take s =

0, 1, . . . , S − 1 in the above and sum up to get

E
[‖∇G (ua)‖2

] = 1

Sm

S−1∑
s=0

m−1∑
k=0

E

[∥∥∇G
(
us,k

)∥∥2]

≤
E

[
G

(
ũ0

)
− G

(
ũs)]

Smτm
≤

E

[
G

(
ũ0

)
− G (u∗)

]
Smτm

.

In the above, use the definition of ua and G
(
ũs) ≥ G (u∗). �

Remark 7 Theorem 5 shows that the convergence of Algorithm 3 is O(1/Sm)

under non-strongly convex conditions. The convergence of the corresponding SGD-
based ILC under non-strongly convex conditions is O(1/

√
Sm) ((Johnson & Zhang,

2013)). Moreover, the theorem states that the convergence of Algorithm 3 is only
related to the step size η but not to the choice of the number of iterations m. Since
the system information is unknown, η needs to be estimated by experiment.

Remark 8 Theorem 5 indicates that G (uk) can approach the optimal value
G (u∗) = (1/2p)‖ yd− J u∗‖2, i.e., uk can converge to the optimal input u∗. Simi-
larly, the Assumption 2 can also be changed to limk→∞ F (uk) = F (u∗) without
affecting the convergence of Algorithm 1 and Algorithm 2. If F (u∗) = 0, then
limk→∞ F (uk) = 0.

Remark 9 System (21) degenerates to SISO system when both input and out-
put are one dimension. At this point, the theorem indicates that when system (2)
satisfies Assumption 4 (Assumption 1 need not to be satisfied), Algorithm 1 and
Algorithm 2 still converge with updating the “snapshot” as Option II. But the con-
vergence rate becomes O(1/Sm)when the objective function is not strongly convex.

4.4 Numerical Simulation

We take MIMO systems with 21 × 21 input-output dimensions randomly generated
by the Matlab drss function (Aarnoudse & Oomen, 2021) and set the time length to
N = 42. The desired trajectory yd is 0.025 in each dimension.Model-free ILC based
on full gradient (GD), stochastic gradient (SGD), and stochastic variance reduced
gradient (SVRG) are performed in Fig. 5. We take the optimal step of each algorithm
after multiple experiments.

As shown in Fig. 5a, the GD- and SVRG-based ILC converge similarly for deter-
ministic systems, and both are faster than the SGD-based ILC algorithm.
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Fig. 5 Comparison of three
data-driven gradient-based
ILC under MIMO systems

For randomly generatedMIMO systems with input-output dimensions of 21 × 21
and N = 42, we add Gaussian white noise to the system.

From Fig. 5b, we can see that both GD- and SGD-based ILC converge worse than
SVRG type ILC when the system is noisy, and SVRG-based ILC can still maintain
excellent convergence when the system is noisy.
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5 Conclusions

This chapter focuses on exploring ILC based on the SVRG method. Firstly, Sect. 2
gives the basic framework of SVRG-based ILC and proves that the algorithm con-
verges at a rate of O(αk) under smooth and strongly convex condition. Secondly,
Sect. 3 designs a SVRG-based ILC algorithm to solve random error data dropouts
and proves that the algorithm converges linearly. Finally, Sect. 4 constructs a model-
free SVRG-based ILC by improving the existing model-free algorithm for MIMO
systems and proves that the convergence rate is O(1/k) under smooth and convex
condition. Compared to the GD- and SGD-based ILC, two numerical simulations in
Sects. 3 and 4 verify that the SVRG-based ILC has superior convergence rate in both
the random error dropouts and model-free contexts, respectively.

It should be noted that the SVRG-based ILC framework given in this chapter is
not only applicable to the random error dropouts and model-free problems but can
also be utilized to solve other error or system information deficient problems by
properly decomposing the control objectives. Future research includes comparing
its advantages and disadvantages with the stochastic approximation (SA) method,
extending the framework to other information deficient problems, and attempting to
develop algorithms with faster convergence based on this framework.
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A Generalization of NTRUEncrypt

Zheng Zhiyong, Liu Fengxia, Huang Wenlin, Xu Jie, and Tian Kun

Abstract The main purpose of this chapter is to give a more general construction
of NTRU based on ideal matrices and q-ary lattice theory. To understand our con-
struction, first we discuss a more general form of the ordinary cyclic code, namely
φ-cyclic code, which firstly appeared in (Lopez-Permouth et al., 2009; Shi et al.,
2020); thus, we give a more generalized NTRUEncrypt from replacing finite field
by real number field R.

Keywords φ-cyclic code · Ideal matrices · Convolutional modular Lattice ·
NTRU

1 φ-Cyclic Code

Let Fq be a finite field with q elements and q be a power of a prime number, Fq [x]
be the polynomial ring of Fq with variable x . Let Fn

q be the n-dimensional linear
space over Fq , and a = (a0, a1, ..., an−1) ∈ Fn

q be a fixed vector in Fn
q with a0 �= 0,

the associated polynomial of a given by

φ(x) = φa(x) = xn − an−1x
n−1 − · · · − a1x − a0 ∈ Fq [x], a0 �= 0. (1)
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Let < φ(x) > be the principal ideal generated by φ(x) in Fq [x]. There is a one to
one correspondence between Fn

q and the quotient ring R = Fq [x]/ < φ(x) >, given
by

c = (c0, c1, ..., cn−1) ∈ Fn
q � c(x) = c0 + c1x + · · · + cn−1x

n−1 ∈ R. (2)

In fact, this correspondence is also an isomorphism of Abel groups. One may extend
this correspondence to subsets of Fn

q and R by

C ⊂ Fn
q � C(x) = {c(x)|c ∈ C} ⊂ R. (3)

IfC ⊂ Fn
q is a linear subspace of Fn

q of dimension k, thenC is called a linear code in
coding theory andwritten byC = [n, k] as usual. Each vector c = (c0, c1, ..., cn−1) ∈
C is called a codeword of length n. Obviously, C = [n, 0] and C = [n, n] are two
trivial codes. Another one is called constant codes, of which is almost trivial given
by

C = {(b, b, ..., b)|b ∈ Fq}, and C = [n, 1].

According to the given polynomial φ(x) = φa(x), we may define a linear transfor-
mation τφ in Fn

q ,

τφ(c) = τφ((c0, c1, ..., cn−1))

= (a0cn−1, c0 + a1cn−1, c1 + a2cn−1, ..., cn−2 + an−1cn−1). (4)

It is easily seen that τφ : Fn
q → Fn

q is a linear transformation.

Definition 1 Let C ⊂ Fn
q be a linear code. It is called a φ-cyclic code, if

∀c ∈ C ⇒ τφ(c) ∈ C. (5)

In other words, a linear code C is a φ-cyclic code, if and only if C is closed under
linear transformation τφ . Clearly, if a = (1, 0, ..., 0), andφa(x) = xn − 1, then theφ-
cyclic code is precisely the ordinary cyclic code (see this chapter of Lopez-Permouth
et al. (2009)).

Remark 1 The φ-cyclic code we give here is polycyclic code in fact, which firstly
appeared in (Lopez-Permouth et al., 2009; Shi et al., 2020), but we mainly concern
for its application to McEliece and Niederriter’s cryptosystems. We first show that
there is a one to one correspondence between φ-cyclic codes in Fn

q and ideals in
R = Fq [x]/ < φ(x) >.

Theorem 1 Let C ⊂ Fn
q be a subset, then C is a φ-cyclic code, if and only if C(x)

is an ideal of R.
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Proof We use column notation for vector in Fn
q , then linear transformation τφ may

be written as

τφ

⎛
⎜⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a0cn−1

c0 + a1cn−1
...

cn−2 + an−1cn−1

⎞
⎟⎟⎟⎠ ,∀c =

⎛
⎜⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎠ ∈ Fn

q .

Let Tφ be a n × n square matrix over Fq ,

Tφ =

⎛
⎜⎜⎜⎝

0 · · · 0 a0
a1

In−1
...

an−1

⎞
⎟⎟⎟⎠ ∈ Fn×n

q , (6)

where In−1 is the (n − 1) × (n − 1) unit matrix. The matrix expression of τφ is as
follows:

τφ

⎛
⎜⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎠ = Tφ

⎛
⎜⎜⎜⎝

c0
c1
...

cn−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a0cn−1

c0 + a1cn−1
...

cn−2 + an−1cn−1.

⎞
⎟⎟⎟⎠ . (7)

Suppose C ⊂ Fn
q and C(x) is an ideal of R, it is clear that C is a linear code of Fn

q .
To prove C is a φ-cyclic code, we note that for any polynomial c(x) ∈ C(x), then
xc(x) ∈ C(x) if and only if τφ(c) ∈ C , namely, if c(x) ∈ C(x), then

xc(x) ∈ C(x) ⇔ τφ(c) ∈ C ⇔ Tφc ∈ C. (8)

Therefore, if C(x) is an ideal of R, then we have immediately that C is a φ-cyclic
code of Fn

q .
Conversely, if C ⊂ Fn

q is a φ-cyclic code, then for all k � 1, we have

∀c ∈ C ⇒ T k
φ c ∈ C, k � 1.

It follows that

∀c(x) ∈ C(x) ⇒ xkc(x) ∈ C(x), 0 � k � n − 1,

which implies C(x) is an ideal of R. This is the proof of Theorem 1. �

By Theorem 1, to find a φ-cyclic code, it is enough to find an ideal of R. There
are two trivial ideals C(x) = 0 and C(x) = R, the corresponding φ-cyclic codes
are C = [n, 0] and C = Fn

q , respectively, which are called trivial φ-cyclic code. To
find non-trivial φ-cyclic codes, we make use of homomorphic theorems, which is a
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standard technique in Algebra. Let π be the natural homomorphism from Fq [x] to
its quotient ring R = Fq [x]/ < φ(x) >, kerπ =< φ(x) >,

< φ(x) >⊂ N ⊂ Fq [x] π−−−→ R = Fq [x]/ < φ(x) >, (9)

where N is an ideal of Fq [x], of which is containing kerπ =< φ(x) >. Since Fq [x]
is a principal ideal domain, then N =< g(x) > is a principal ideal generated by a
monic polynomial g(x) ∈ Fq [x]. It is easy to see that

< φ(x) >⊂< g(x) >⇔ g(x)|φ(x).

It follows that all ideals N satisfying (1.9) are given by

{< g(x) > | g(x) ∈ Fq [x] is monic and g(x)|φ(x)}.

Wewrite by< g(x) >mod φ(x), the image of< g(x) > under π , it is easy to check

< g(x) > mod φ(x) = {h(x)g(x) | h(x) ∈ Fq [x] and degh(x) + degg(x) < n},
(10)

more precisely, which is a representative elements set of < g(x) > mod φ(x), by
homomorphism theorem in ring theory, all ideals of R given by

{< g(x) > mod φ(x) | g(x) ∈ Fq [x] is monic and g(x)|φ(x)}. (11)

Let d be the number of monic divisors of φ(x) in Fq [x], it follows immediately that

Corollary 1 The number of φ-cyclic code in Fn
q is d.

To compare the φ-cyclic code and ordinary cyclic code, we see a simple example.

Example 1 Constant codeC is always a cyclic code for 1 + x + · · · + xn−1|xn − 1,
and its generated polynomial is just 1 + x + · · · + xn−1. But constant code C in Fn

q
is not always a φ-cyclic code, it is a φ-cyclic code if and only if 1 + x + · · · +
xn−1|φ(x), an equivalent condition for 1 + x + · · · + xn−1|φ(x) is

an−1 = an−2 = · · · = a1 = b, and a0 = 1 + b.

Definition 2 Let C be a φ-cyclic code and C(x) = g(x) mod φ(x). We call g(x) as
the generated polynomial of C , where g(x) is monic and g(x)|φ(x).

Lemma 1 Let g(x) = g0 + g1x + · · · + gn−k−1xn−k−1 + xn−k be the generated
polynomial of a φ-cyclic code C, where 1 � k � n − 1, and g(x)|φ(x), then
C = [n, k], and a generated matrix for C is the following block matrix:
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G =

⎛
⎜⎜⎜⎜⎜⎝

g
τφ(g)
τ 2
φ (g)
...

τ k−1
φ (g)

⎞
⎟⎟⎟⎟⎟⎠

k×n

, (12)

where g = (g0, g1, ..., gn−k−1, 1, 0, ..., 0) ∈ C is the corresponding codeword of
g(x), and τ i

φ(g) = τ i−1
φ (τφ(g)) for 1 � i � n − 1.

Proof By assumption, C(x) =< g(x) > mod φ(x), then {g, τφ(g), ..., τ k−1
φ (g)} ⊂

C , we are to prove it is a basis of C . First, these vectors are linearly independent.
Otherwise, we have

k−1∑
i=0

biτ
i
φ(g) = 0, for some bi ∈ Fq , (13)

and the corresponding polynomial is zero, namely

(
k−1∑
i=0

bi x
i

)
g(x) = 0.

It follows that

k−1∑
i=0

bi x
i = 0 ⇒ bi = 0 for all i, 0 � i � k − 1.

Next, if c ∈ C , and c(x) ∈ C(x), by (1.10), there is a polynomial b(x) = b0 + b1x +
· · · + bk−2xk−2 + xk−1 such that

c(x) = b(x)g(x) =
(

k−1∑
i=0

bi x
i

)
g(x), where bk−1 = 1.

Thus, we have the corresponding codeword of C(x)

c =
k−1∑
i=0

biτ
i
φ(g).

This shows that {g, τφ(g), ..., τ k−1
φ (g)} is a basis of C , and a generated matrix for C

is
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G =

⎛
⎜⎜⎜⎜⎜⎝

g
τφ(g)
τ 2
φ (g)
...

τ k−1
φ (g)

⎞
⎟⎟⎟⎟⎟⎠

k×n

.

We have Lemma 1 at once. �

To describe a parity check matrix for a φ-cyclic code, for any c = (c0, c1, ...,
cn−1) ∈ Fn

q , we write

c = (cn−1, cn−2, ..., c1, c0) ∈ Fn
q .

Lemma 2 Suppose C is a φ-cyclic code with generated polynomial g(x), where
g(x)|φ(x) and degg(x) = n − k. Let h(x)g(x) = φ(x), where h(x) = h0 + h1x +
· · · + hk−1xk−1 + xk. Then a parity check matrix for C is

H =

⎛
⎜⎜⎜⎝

h
τφ(h)

...

τ n−k−1
φ (h)

⎞
⎟⎟⎟⎠

(n−k)×n

. (14)

Proof Sinceh(x)g(x) = φ(x), itmeans thath(x)g(x) = 0 in R = Fq [x]/ < φ(x) >,
thus we have

g0hi + g1hi−1 + · · · + gn−khi−n+k = 0,∀0 � i � n − 1.

It follows that GH ′ = 0, where G is a generated matrix for C given by (1.12).
Therefore, H is a parity check matrix for C . �

A separable polynomial in Algebra means that it has no multiple roots in its
splitting field. The following lemma shows that there is an unit element in any non-
zero ideal of R, when φ(x) is a separable polynomial.

Lemma 3 Suppose φ(x) is a separable polynomial of Fq , and C(x) = g(x) mod
φ(x) is an ideal of R with degg(x) � n − 1, then there exists an element d(x) ∈ C(x)
such that

c(x)d(x) = c(x), for all c(x) ∈ C(x).

Proof Let h(x)g(x) = φ(x). Since φ(x) is a separable polynomial, then gcd(g(x),
h(x)) = 1, and there are two polynomials a(x) and b(x) in Fq [x] such that

a(x)g(x) + b(x)h(x) = 1.

Let
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d(x) = a(x)g(x) = 1 − b(x)h(x) ∈ C(x).

If c(x) ∈ C(x), by (1.10), we write c(x) = g(x)g1(x), it follows that

c(x)d(x) ≡ a(x)g(x)g(x)g1(x) ≡ (1 − b(x)h(x))g(x)g1(x)

≡ g(x)g1(x) ≡ c(x)(mod φ(x)).

Thus, we have c(x)d(x) = c(x) in R. �
Next, we discuss maximal φ-cyclic code. Let C(x) = g(x) mod φ(x), and g(x)

be an irreducible polynomial in Fq [x], we call the corresponding φ-cyclic code C a
maximal φ-cyclic code, because < g(x) > is a maximal ideal in Fq [x].
Lemma 4 Let C be a maximal φ-cyclic code with generated polynomial g(x), β be
a root of g(x) in some extensions of Fq , then

C(x) = {a(x) | a(x) ∈ R and a(β) = 0}. (15)

Proof If a(x) ∈ C(x), by (1.10) we have a(β) = 0 immediately. Conversely, if
a(x) ∈ Fq [x] and a(β) = 0, since g(x) is irreducible, thus we have g(x)|a(x), and
(1.15) follows at once. �

An important application of maximal φ-cyclic code is to construct an error-
correcting code, so that we may obtain modified McEliece-Niederriter’s cryptosys-
tem. To do this, let 1 � m <

√
n, and Fqm be an extension field of Fq of degree m.

Suppose Fqm = Fq(θ), where θ is a primitive element of Fqm and Fq(θ) is the simple
extension containing Fq and θ . Let g(x) ∈ Fq [x] be the minimum polynomial of θ ,
then g(x) is an irreducible polynomial of degree m of Fq [x]. It is well-known that
Fqm is a Galois extension of Fq , so that all roots of g(x) are in Fqm . Let β1, β2, ..., βm

be all roots of g(x), the Vandermonde matrix V (β1, β2, ..., βm) defined by

H = V (β1, β2, ..., βm) =

⎛
⎜⎜⎜⎝

1 β1 β2
1 · · · βn−1

1
1 β2 β2

2 · · · βn−1
2

...
...

...
...

1 βm β2
m · · · βn−1

m

⎞
⎟⎟⎟⎠

m×n

, (16)

where β1 = θ and each βi is a vector of (Fq)m . For arbitrary monic polynomial
h(x) ∈ Fq [x], degh(x) = n − m, let φ(x) = h(x)g(x) andC be a maximal φ-cyclic
code generated by g(x). It is easy to verify that

c ∈ C ⇔ cH ′ = 0.

Therefore, H is a parity check matrix for C . If we choose the primitive element θ , so
that any d − 1 columns in H are linearly independent, then the minimum distance
of C is greater than d, and C is a t-error-correcting code, where t = [ d2 ].



120 Z. Zhiyong et al.

The public key cryptosystems based on algebraic coding theory were created by
Lyubashevsky and Micciancio (2006) and Micciancio and Regev (2009), a suitable
t-error-correcting code plays a key role in their construction. The error-correcting
code C should satisfy the following requirements:

(i) C should have a relatively large error-correcting capability so that a reasonable
number of message vectors can be used;

(ii) C should allow an efficient decoding algorithm so that the decryption can be
carried out within a short time.

Our results supply a different way to choose an error-correcting code by selecting
arbitrary irreducible polynomials g(x) ∈ Fq [x] of degree m and roots of g(x) rather
than an irreducible factor of xn − 1 and the roots of unit such as ordinary BCH code
and Gappa code.

In fact, for any positive integer m, there is at least an irreducible polynomial
g(x) ∈ Fq [x] with degree m. Let Nq(m) be the number of irreducible polynomials
of degree m in Fq [x], then we have (see Theorem 3.25 of Lidl and Niederreiter
(1983))

Nq(m) = 1

m

∑
d|m

u
(m
d

)
qd = 1

m

∑
d|m

u(d)q
m
d ,

where u(d) is Mobiüs function.
Assuming one has selected two monic and irreducible polynomials g(x) and

h(x) with degg(x) = m and degh(x) = n − m, let φ(x) = g(x)h(x), then one may
obtain φ-cyclic code C generated by g(x) or h(x), which is more convenient and
more flexible than the ordinary methods.

2 A Generalization of NTRUEncrypt

The public key cryptosystem NTRU proposed in 1996 by Hoffstein, Pipher, and Sil-
verman is the fastest known lattice-based encryption scheme, although its description
relies on arithmetic over polynomial quotient ring Z [x]/ < xn − 1 >, it was easily
observed that it could be expressed as a lattice-based cryptosystem (see IEEE Com-
puter Society (2000)). For the background materials, we refer to (Coppersmith &
Shamir, 1997; Hoffstein et al., 1998, 2017; Lint, 1999; McEliece, 1978; Micciancio,
2001). Our strategy in this section is to replace Z [x]/ < xn − 1 > by a more gen-
eral polynomial ring Z [x]/ < φ(x) > and obtain a generalization of NTRUEncrypt,
where φ(x) is a monic polynomial of degree n with integer coefficients.

In this section, we denote φ(x) and R by

φ(x) =xn − an−1x
n−1 − · · · − a1x − a0 ∈ Z [x],

R =Z [x]/ < φ(x) >, a0 �= 0. (17)
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Let Hφ ∈ Zn×n be a square matrix given by

H = Hφ =

⎛
⎜⎜⎜⎝

0 · · · 0 a0
a1

In−1
...

an−1

⎞
⎟⎟⎟⎠

n×n

, (18)

where In−1 is (n − 1) × (n − 1) unit matrix. Obviously, φ(x) is the characteristic
polynomial of H , and H defines a linear transformation of Rn → R

n by x → Hx ,
where R is real number field and x is a column vector of Rn . We may extend this
transformation to R2n and denote σ by

σ

(
α

β

)
=

(
Hα

Hβ

)
, where

(
α

β

)
∈ R

2n. (19)

Of course, σ is again a linear transformation of R2n → R
2n .

According to Micciancio (2001), a q-ary lattice is a lattice L such that qZn ⊂
L ⊂ Zn , where q is a positive integer.

Definition 3 A q-ary lattice L is called convolutional modular lattice, if L is in even
dimension 2n satisfying

∀
(

α

β

)
∈ L ⇒ σ

(
α

β

)
=

(
Hα

Hβ

)
∈ L . (20)

In other words, a convolutional modular lattice is a q-ary lattice in even dimension
and is closed under the linear transformation σ .

Recalling the secret key

(
f
g

)
ofNTRUis apair of polynomials of degreen − 1,we

may regard f and g as columnvectors in Zn . To obtain a convolutionalmodular lattice

containing

(
f
g

)
, we need some help of ideal matrices. An ideal matrix generated by

a vector f is defined by

H∗( f ) = H∗
φ ( f ) = [ f, H f, H 2 f, ..., Hn−1 f ]n×n, (21)

which is a block matrix in terms of each column Hk f (0 � k � n − 1). It is easily
seen that H∗( f ) is a generalization of the classical circulant matrices (see Davis
(1994)), in fact, letφ(x) = xn − 1, and f (x) = f0 + f1x + · · · + fn−1xn−1 ∈ Z [x],
the ideal matrix H∗

φ ( f ) generated by f is given by
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H∗( f ) = H∗
φ ( f ) =

⎛
⎜⎜⎜⎝

f0 fn−1 · · · f1
f1 f0 · · · f2
...

...
...

fn−1 fn−2 · · · f0

⎞
⎟⎟⎟⎠ , φ(x) = xn − 1,

which is known as a circulant matrix. On the other hand, ideal matrix and ideal lattice
play an important role in Ajtai’s construction of a collision resistant Hash function,
the related materials we refer to (Ajtai, 1996; Ajtai & Dwork, 1997; Lint, 1999;
Niederreiter, 1986; Plantard & Schneider, 2013; Pradhan et al., 2019).

First, we have to establish some basic properties for an ideal matrix H∗( f ), most
of them are known when H∗( f ) is a circulant matrix.

Lemma 5 Suppose H and H∗( f ) are given by (2.2) and (2.5), respectively, then
for any f ∈ R

n, we have

H · H∗( f ) = H∗( f ) · H, ∀ f ∈ R
n .

Proof Since φ(x) = xn − an−1xn−1 − · · · − a1x − a0 is the characteristic polyno-
mial of H , by the Hamilton-Cayley theorem, we have

Hn = a0 In + a1H + · · · + an−1H
n−1. (22)

Let

b =

⎛
⎜⎜⎜⎝

a1
a2
...

an−1

⎞
⎟⎟⎟⎠ , and H =

(
0 a0

In−1 b

)
.

By (2.5) we have

H∗( f )H = [ f, H f, ..., Hn−1 f ]
(

0 a0
In−1 b

)

= [H f, H 2 f, ..., Hn−1 f, a0 f + a1H f + · · · + an−1H
n−1 f ]

= [H f, H 2 f, ..., Hn−1 f, Hn f ]

= H [ f, H f, ..., Hn−1 f ] = H · H∗( f ).

The lemma follows. �

Lemma 6 For any f =

⎛
⎜⎜⎜⎝

f0
f1
...

fn−1

⎞
⎟⎟⎟⎠ ∈ R

n we have
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H∗( f ) = f0 In + f1H + · · · + fn−1H
n−1. (23)

Proof We use induction on n to show this conclusion. If n = 1, it is trivial. Suppose
it is true for n, we consider the case of n + 1. For this purpose, we write H = Hn ,
e1, e2, ..., en the n column vectors of unit in Rn , namely

e1 =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎝

0
1
...

0

⎞
⎟⎟⎟⎠ · · · en =

⎛
⎜⎜⎜⎝

0
0
...

1

⎞
⎟⎟⎟⎠ ,

and

Hn+1 =
(
0 A0

e1 Hn

)
,

where A0 = (0, 0, ..., a0) ∈ R
n is a row vector. For any k, 1 � k � n − 1, it is easy

to check that

Hnek = ek+1, H
k
n e1 = ek+1 and Hk

n+1 =
(
0 A0Hk−1

n
ek Hk

n

)
.

Let f =

⎛
⎜⎜⎜⎜⎜⎝

f0
f1
...

fn−1

fn

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n+1, we denote f ′ by

f ′ =

⎛
⎜⎜⎜⎝

f1
f2
...

fn

⎞
⎟⎟⎟⎠ ∈ R

n, and f =
(
f0
f ′

)
.

By the assumption of induction, we have

H∗
n ( f ′) = [ f ′, Hn f

′, ..., Hn−1
n f ′] = f1 In + f2Hn + · · · + fn H

n−1
n .

It follows that

H∗
n+1( f ) =

[(
f0
f ′

)
, Hn+1

(
f0
f ′

)
, · · · , Hn

n+1

(
f0
f ′

)]

= f0 In + f1Hn+1 + · · · + fn H
n
n+1.

We complete the proof of Lemma 2. �
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We always suppose that φ(x) ∈ Z [x] is a separable polynomial andw1,w2, ...,wn

are complex number roots of φ(x), of which are different from each other. The
Vandermonde matrix Vφ generated by {w1,w2, ...,wn} is

Vφ =

⎛
⎜⎜⎜⎝

1 1 · · · 1
w1 w2 · · · wn
...

...
...

wn−1
1 wn−1

2 · · · wn−1
n

⎞
⎟⎟⎟⎠ , and det(Vφ) �= 0.

Lemma 7 Let f (x) = f0 + f1x + · · · + fn−1xn−1 ∈ R[x], then we have

H∗( f ) = V−1
φ diag { f (w1), f (w2), ..., f (wn)}Vφ, (24)

where diag { f (w1), f (w2), ..., f (wn)} is the diagonal matrix.
Proof By Theorem 3.2.5 of Davis (1994), for H , we have

H = V−1
φ diag {w1,w2, ...,wn}Vφ. (25)

By Lemma 2, it follows that

H∗( f ) = V−1
φ diag { f (w1), f (w2), ..., f (wn)}Vφ.

�

Now, we summarize some basic properties for ideal matrix as follows.

Theorem 2 Let f ∈ R
n, g ∈ R

n be two column vectors and H ∗( f ) be the ideal
matrix generated by f , then we have the following:

(i) H∗( f )H∗(g) = H∗(g)H∗( f ).
(ii) H∗( f )H∗(g) = H∗(H∗( f )g).
(iii) det (H∗( f )) = 	n

i=1 f (wi ).
(iv) H ∗( f ) is an invertible matrix if and only if φ(x) and f (x) are coprime, i.e.

gcd (φ(x), f (x)) = 1.

Proof (i) and (ii) follow from Lemma 2 immediately, (iii) and (iv) follow from
Lemma 3. Here we only give an equivalent form of (ii). Let

f ∗ g = H∗( f )g. (26)

Then by (ii) we have
H∗( f ∗ g) = H∗( f )H∗(g). (27)

�
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To construct a convolutional modular lattice containing vector

(
f
g

)
, let

(
f
g

)
∈

Z2n , (H∗( f ))′ be the transpose of H∗( f ), and

A = [(H∗( f ))′, (H∗(g))′] =

⎛
⎜⎜⎜⎜⎜⎝

f ′ g′
f ′H ′ g′H ′

f ′(H ′)2 g′(H ′)2
...

...

f ′(H ′)n−1 g′(H ′)n−1

⎞
⎟⎟⎟⎟⎟⎠

n×2n

, (28)

A′ =
(
H∗( f )
H∗(g)

)
=

(
f H f · · · Hn−1 f
g Hg · · · Hn−1g

)

2n×n

. (29)

We consider A and A′ as matrices over Zq , i.e. A ∈ Zn×2n
q , A′ ∈ Z2n×n

q , a q-ary
lattice ∧q(A) is defined by (see Micciancio (2001))

∧q(A) = {y ∈ Z2n | there exists x ∈ Zn ⇒ y ≡ A′x(mod q)}. (30)

Under the above notations, we have the following.

Theorem 3 For any column vectors f ∈ Zn and g ∈ Zn, then ∧q(A) is a convolu-

tional modular lattice, and

(
f
g

)
∈ ∧q(A).

Proof It is known that ∧q(A) is a q-ary lattice, i.e.

qZ2n ⊂ ∧q(A) ⊂ Z2n.

We only prove that ∧q(A) is fixed under the linear transformation σ given by (2.4).
If y ∈ ∧q(A), then y ≡ A′x(mod q) for some x ∈ Zn , by Lemma 2, we have

σ(y) ≡
(
HH∗( f )x
HH∗(g)x

)
=

(
H∗( f )Hx
H∗(g)Hx

)

≡ A′Hx(mod q).

It means that σ(y) ∈ ∧q(A) whenever y ∈ ∧q(A). Let

e =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ ∈ Zn ⇒ H∗( f )e = f, and H∗(g)e = g.
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We have

(
f
g

)
∈ ∧q(A), and Theorem 3 follows. �

Since ∧q(A) ⊂ Z2n , then there is a unique Hermite Normal Form of basis N ,
which is a upper triangular matrix given by

N =
(
In H∗(h)

0 q In

)
, where h ≡ (H∗( f ))−1g(mod q). (31)

Next, we consider parameters system of NTRU. To choose the parameters of
NTRU, let d f be a positive integer and {p, 0,−p}n ⊂ Zn be a subset of Zn , of which
has exactly d f + 1 positive entries and d f negative ones, the remaining n − 2d f − 1
entrieswill be zero.We take some assumption conditions for the choice of parameters
as follows:

(i) φ(x) = xn − an−1xn−1 − · · · − a1x − a0 ∈ Z [x] with a0 �= 0, and φ(x) is sep-
arable polynomial, n, p, q, d f are positive integers with n prime, 1 < p < q and
gcd (p, q) = 1.

(ii) f (x) and g(x) are two polynomials in Z [x] of degree n − 1, the constant term
of f (x) is 1, and

f (x) − 1 ∈ {p, 0,−p}n, g ∈ {p, 0,−p}n .

(iii) H∗( f ) is invertible modulo q.
(iv) d f < (

q
2 − 1)/4p − 1

2 .

Under the above conditions, by Lemma 2, we have

H∗( f ) ≡ In(mod p), and H∗(g) ≡ 0(mod p). (32)

Now, we state a generalization of NTRU as follows.

• Private key. The private key in generalizedNTRU is a short vector

(
f
g

)
∈ Z2n . The

lattice associated with a private key is ∧q(A), which is a convolutional modular
lattice containing a private key.

• Public key. The public key of the generalized NTRU is the HNF basis N of∧q(A),
which is given by (2.15).

• Encryption. An input message is encoded as a vectorm ∈ {1, 0,−1}n with exactly
d f + 1 positive entries and d f negative ones. The vector m is concatenated with a
randomly chosen vector r ∈ {1, 0,−1}n also with exactly d f + 1 positive entries

and d f negative ones, to obtain a short error vector

(
m
r

)
∈ {1, 0,−1}2n . Let

(
c
0

)
= N

(
m
r

)
≡

(
m + H∗(h)r

0

)
(mod q), (33)
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where h is given by (2.15). Then, the n-dimensional vector c

c ≡ m + H∗(h)r(mod q)

is the ciphertext.
• Decryption. Suppose the entries of n-dimensional vector c belong to interval

[− q
2 ,

q
2 ], then ciphertext c is decrypted by multiplying it by the secret matrix

H∗( f ) mod q, it follows that

H∗( f )c ≡ H∗( f )m + H∗( f )H∗(h)r ≡ H∗( f )m + H∗(g)r(mod q). (34)

Here, we use the identity (ii) of Theorem 2, namely

H∗( f )H∗(g) = H∗(H∗( f )g).

If the above conditions (iv) are satisfied, it is easily seen that the coordinates
of vector H∗( f )m + H∗(g)r are all bounded by q

2 in absolute value, or, with high
probability, even for larger value of d f . The decryption process is completed by
reducing (2.18) modulo p, to obtain

H∗( f )m + H∗(g)r ≡ mIn(mod p).

Thus, one gets plaintext m from ciphertext c.
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Cyclic Lattices, Ideal Lattices,
and Bounds for the Smoothing Parameter

Zheng Zhiyong, Liu Fengxia, Lu Yunfan, and Tian Kun

Abstract Cyclic lattices and ideal lattices were introduced by Micciancio (2002),
Lyubashevsky and Micciancio (2006), respectively, which play an efficient role in
Ajtai’s construction of a collision resistant Hash function (see Ajtai (1996), Ajtai and
Dwork (1997)) and in Gentry’s construction of fully homomorphic encryption (see
Gentry (2009)). Let R = Z [x]/〈φ(x)〉 be a quotient ring of the integer coefficients
polynomials ring, Lyubashevsky and Micciancio regarded an ideal lattice as the
correspondence of an ideal of R, but they neither explain how to extend this definition
to whole Euclidean space R

n , nor exhibit the relationship of cyclic lattices and
ideal lattices. In this chapter, we regard the cyclic lattices and ideal lattices as the
correspondences of finitely generated R-modules, so that we may show that ideal
lattices are actually a special subclass of cyclic lattices, namely, cyclic integer lattices.
In fact, there is a one to one correspondence between cyclic lattices inRn and finitely
generated R-modules (see Theorem 4). On the other hand, since R is a Noether ring,
each ideal of R is a finitely generated R-module, so it is natural and reasonable to
regard ideal lattices as a special subclass of cyclic lattices (seeCorollary 7). It is worth
noting that we use a more general rotation matrix here, so our definition and results
on cyclic lattices and ideal lattices are more general forms. As an application, we
provide a cyclic lattice with an explicit and countable upper bound for the smoothing
parameter (see Theorem 5). It is an open problem that is the shortest vector problem
on cyclic lattice NP-hard (see Micciancio (2002)). Our results may be viewed as a
substantial progress in this direction.
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1 Discrete Subgroup in R
n

LetR be the real numbers field, Z be the integers ring, andRn be Euclidean space of
which is an n-dimensional linear space over R with the Euclidean norm |x | given by

|x | =
(

n∑
i=1

x2i

) 1
2

, where x ′ = (x1, x1, · · · , xn) ∈ R
n.

We use column vector notation for Rn through out this chapter, and x ′ = (x1, x2,
. . . , xn) is transpose of x , which is called row vector of Rn .

Definition 1 Let L ⊂ R
n be a non-trivial additive subgroup, it is called a discrete

subgroup if there is a positive real number λ > 0 such that

min
x∈L ,x �=0

|x | � λ > 0. (1)

As usual, a ball of center x0 with radius δ is defined by

b(x0, δ) = {x ∈ R
n

∣∣∣ |x − x0| � δ}.

If L is a discrete subgroup of Rn , then there are only finitely many vectors of L lie
in every ball b(0, δ), thus we always find a vector α ∈ L such that

|α| = min
x∈L ,x �=0

|x | = λ > 0, α ∈ L . (2)

α is called one of shortest vector of L and λ is called the minimum distance of L .

Let B = [β1, β2, . . . , βm] ∈ R
n×m be an × m dimensionalmatrixwith rank(B) =

m � n, it means that β1, β2, . . . , βm are m linearly independent vectors in R
n . The

lattice L(B) generated by B is defined by

L(B) =
m∑
i=1

xiβi = {Bx | x ∈ Z
m}, ∀xi ∈ Z, (3)

which is all linear combinations of β1, β2, . . . , βm over Z. If m = n, L(B) is called
a full-rank lattice.
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It is awell-known conclusion that a discrete subgroup L inRn is just a lattice L(B).
Firstly, we give a detailed proof here by making use of the simultaneous Diophantine
approximation theory in real number fieldR (see Cassels (1971) and Cassels (1963)).

Lemma 1 Let L ⊂ R
n be a discrete subgroup, α1, α2, . . . , αm ∈ L be m vectors of

L. Then α1, α2, . . . , αm are linearly independent over R, if and only if which are
linearly independent over Z.

Proof If α1, α2, . . . , αm are linearly independent overR, trivially which are linearly
independent over Z. Suppose that α1, α2, . . . , αm are linearly independent over Z,
we consider arbitrary linear combination over R. Let

a1α1 + a2α2 + · · · + amαm = 0, ∀ai ∈ R. (4)

We should prove (1.4) is equivalent to a1 = a2 = · · · = am = 0, which implies that
α1, α2, . . . , αm are linearly independent over R.

By Minkowski’s Third Theorem (see Theorem VII of Cassels (1963)), for any
sufficiently large N > 1, there are a positive integerq � 1and integers p1, p2, . . . , pm ∈
Z such that

max
1�i�m

|qai − pi | < N− 1
m , and 1 � q � N . (5)

By (1.4), we have

|p1α1 + p2α2 + · · · + pmαm | = |(qa1 − p1)α1 + (qa2 − p2)α2 + · · · + (qam − pm)αm |

� mN− 1
m max

1�i�m
|αi |. (6)

Let λ be the minimum distance of L , ε > 0 be any positive real number. We select
N such that

N > max{(m
ε

)m, (
m

λ
)m max

1�i�m
|αi |m}.

It follows that mN− 1
m < ε and

mN− 1
m max

1�i�m
|αi | < λ.

By (1.6) we have
|p1α1 + p2α2 + · · · + pmαm | < λ.

Since p1α1 + p2α2 + · · · + pmαm ∈ L , thuswe have p1α1 + p2α2 + · · · + pmαm =
0, and p1 = p2 = · · · = pm = 0. By (1.5) we have q|ai | < 1

m ε for all i , 1 � i � m.
Since ε is a sufficiently small positive number, we must have a1 = a2 = · · · = am =
0. We complete the proof of lemma.
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Suppose that B ∈ R
n×m is an n × m-dimensional matrix and rank(B) = m, B ′ is

the transpose of B. It is easy to verify

rank(B ′B) = rank(B) = m ⇒ det(B ′B) �= 0,

which implies that B ′B is an invertible squarematrix ofm × m dimension. Since B ′B
is a positive defined symmetric matrix, then there is an orthogonal matrix P ∈ R

m×m

such that
P ′B ′BP = diag{δ1, δ2, . . . , δm}, (7)

where δi > 0 are the characteristic value of B ′B, and diag{δ1, δ2, . . . , δm} is the diag-
onal matrix of m × m dimension.

Lemma 2 Suppose that B ∈ R
n×m with rank(B) = m, δ1, δ2, . . . , δm are m char-

acteristic values of B ′B, and λ(L(B)) is the minimum distance of lattice L(B), then
we have

λ(L(B)) = min
x∈Zm , x �=0

|Bx | �
√

δ, (8)

where δ = min{δ1, δ2, . . . , δm}.
Proof Let A = B ′B, by (1.7), there exists an orthogonal matrix P ∈ R

m×m such that

P ′AP = diag{δ1, δ2, . . . , δm}.

If x ∈ Z
m , x �= 0, we have

|Bx |2 = x ′Ax = x ′P(P ′AP)P ′x

= (P ′x)′ diag{δ1, δ2, . . . , δm}P ′x

� δ|P ′x |2 = δ|x |2.

Since x ∈ Z
m and x �= 0, we have |x |2 � 1, it follows that

min
x∈Zm , x �=0

|Bx | �
√

δ|x | �
√

δ.

We have Lemma 2 immediately.

Another application of Lemma 2 is to give a countable upper bound for smooth-
ing parameter (see Theorem 5). Combining Lemmas 1 and 2, we show the following
assertion.

Theorem 1 Let L ⊂ R
n be a subset, then L is a discrete subgroup if and only if

there is an n × m dimensional matrix B ∈ R
n×m with rank(B) = m such that
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L = L(B) = {Bx | x ∈ Z
m}. (9)

Proof If L ⊂ R
n is a discrete subgroup, then L is a free Z-module. By Lemma 1,

we have rankZ(L) = m � n. Let β1, β2, . . . , βm be a Z-basis of L , then

L =
{

m∑
i=1

aiβi | ai ∈ Z

}
.

Writing B = [β1, β2, . . . , βm]n×m , then the rank of matrix B is m, and

L = {Bx | x ∈ Z
m} = L(B).

Conversely, let L(B) be arbitrary lattice generated by B, obviously, L(B) is an
additive subgroup of Rn , by Lemma 2, L(B) is also a discrete subgroup, we have
Theorem 1 at once.

Corollary 1 Let L ⊂ R
n be a lattice and G ⊂ L be an additive subgroup of L, then

G is a lattice of Rn.

Corollary 2 Let L ⊂ Z
n be an additive subgroup, then L is a lattice of Rn. These

lattices are called integer lattices.

According to above Theorem 1, a lattice L(B) is equivalent to a discrete subgroup of
R

n . Suppose L = L(B) is a lattice with generated matrix B ∈ R
n×m , and rank(B) =

m, we write rank(L) =rank(B), and

d(L) = √
det(B ′B). (10)

In particular, if rank(L) = n is a full-rank lattice, then d(L) = |det(B)| as usual. A
sublattice N of L means a discrete additive subgroup of L , the quotient group is
written by L/N , and the cardinality of L/N is denoted by |L/N |.

Lemma 3 Let L ⊂ R
n be a lattice and N ⊂ L be a sublattice. If rank(N ) =rank(L),

then the quotient group L/N is a finite group.

Proof Let rank(L) = m, and L = L(B), where B ∈ R
n×m with rank(B) = m. We

define a mapping σ from L to Z
m by σ(Bx) = x . Clearly, σ is an additive group

isomorphism, σ(N ) ⊂ Z
m is a full-rank lattice of Zm , and L/N ∼= Z

m/σ(N ). It is a
well-known result that

|Zm/σ(N )| = d(σ (N )).

It follows that
|L/N | = |Zm/σ(N )| = d(σ (N )).

Lemma 3 follows.
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Suppose that L1 ⊂ R
n , L2 ⊂ R

n are two lattices of Rn , we define L1 + L2 =
{a + b|a ∈ L1, b ∈ L2}. Obviously, L1 + L2 is an additive subgroup ofRn , but gen-
erally speaking, L1 + L2 is not a lattice of Rn again.

Lemma 4 Let L1 ⊂ R
n, L2 ⊂ R

n be two lattices ofRn. If rank(L1 ∩ L2) =rank(L1)

or rank(L1 ∩ L2) =rank(L2), then L1 + L2 is again a lattice of Rn.

Proof To prove L1 + L2 is a lattice of Rn , by Theorem 1, it is sufficient to prove
L1 + L2 is a discrete subgroup of Rn . Suppose that rank(L1 ∩ L2) =rank(L1), for
any x ∈ L1, we define a distance function ρ(x) by

ρ(x) = inf{|x − y|
∣∣∣ y �= x, y ∈ L2}.

Since there are only finitely many vectors in L2 ∩ b(x, δ), where b(x, δ) is any a ball
of center x with radius δ. Therefore, we have

ρ(x) = min{|x − y|
∣∣∣ y �= x, y ∈ L2} = λx > 0. (11)

On the other hand, if x1 ∈ L1, x2 ∈ L1, and x1 − x2 ∈ L2, then there is y0 ∈ L2 such
that x1 = x2 + y0, and we have ρ(x1) = ρ(x2). It means that ρ(x) is defined over
the quotient group L1 + L2/L2. Because we have the following group isomorphic
theorem

L1 + L2/L2
∼= L1/L1 ∩ L2.

By Lemma 3, it follows that

|L1 + L2/L2| = |L1/L1 ∩ L2| < ∞.

In other words, L1 + L2/L2 is also a finite group. Let x1, x2, . . . , xk be the repre-
sentative elements of L1 + L2/L2, we have

min
x∈L1,y∈L2,x �=y

|x − y| = min
1�i�k

ρ(xi ) � min{λx1 , λx2 , . . . , λxk } > 0.

Therefore, L1 + L2 is a discrete subgroup of R
n , thus it is a lattice of R

n by
Theorem 1.

Remark 1 The condition rank(L1 ∩ L2) =rank(L1) or rank(L1 ∩ L2) =rank(L2)

in Lemma 4 seems to be necessary. As a counterexample, we see the real line R, let
L1 = Z and L2 = √

2Z, then L1 + L2 is not a discrete subgroup of R, thus L1 + L2

is not a lattice in R. Because L1 + L2 = {n + √
2m

∣∣n ∈ Z,m ∈ Z} is dense in R by
Dirichlet’s Theorem (see Theorem I of Cassels (1963)).

As a direct consequence, we have the following generalized form of Lemma 4.
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Corollary 3 Let L1, L2, . . . , Lm be m lattices of Rn and

rank(L1 ∩ L2 ∩ · · · ∩ Lm) = rank(L j ) for some 1 � j � m.

Then L1 + L2 + · · · + Lm is a lattice of Rn.

Proof Without loss of generality, we assume that

rank(L1 ∩ L2 ∩ · · · ∩ Lm) = rank(Lm).

Let L1 + L2 + · · · + Lm−1 = L ′, then

L ′ + Lm/L ′ ∼= Lm/L ′ ∩ Lm .

Since rank(L ′ ∩ Lm) =rank(Lm), by Lemma 4, we have L ′ + Lm = L1 + L2 +
· · · + Lm is a lattice of Rn and the corollary follows.

2 Ideal Matrices

LetR[x] andZ[x]be the polynomials rings overR andZwith variable x , respectively.
Suppose that

φ(x) = xn − φn−1x
n−1 − · · · − φ1x − φ0 ∈ Z[x], φ0 �= 0, (12)

is a polynomial with integer coefficients of which has no multiple roots in com-
plex numbers field C. Let w1,w2, . . . ,wn be the n different roots of φ(x) in C, the
Vandermonde matrix Vφ is defined by

Vφ =

⎛
⎜⎜⎜⎝

1 1 · · · 1
w1 w2 · · · wn
...

...
...

wn−1
1 wn−1

2 · · · wn−1
n

⎞
⎟⎟⎟⎠ , and det(Vφ) �= 0. (13)

According to the given polynomial φ(x), we define a rotation matrix H = Hφ by

H = Hφ =

⎛
⎜⎜⎜⎝
0 · · · 0 φ0

φ1

In−1
...

φn−1

⎞
⎟⎟⎟⎠

n×n

∈ Z
n×n, (14)

where In−1 is the (n − 1) × (n − 1) unit matrix. Obviously, the characteristic poly-
nomial of H is just φ(x).
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We use column notation for vectors in R
n , for any f =

⎛
⎜⎜⎜⎝

f0
f1
...

fn−1

⎞
⎟⎟⎟⎠ ∈ R

n , the ideal

matrix generated by vector f is defined by

H∗( f ) = [ f, H f, H 2 f, . . . , Hn−1 f ]n×n ∈ R
n×n, (15)

which is a block matrix in terms of each column Hk f (0 � k � n − 1). Sometimes,
f is called an input vector. It is easily seen that H∗( f ) is a more general form of the
classical circulant matrix (see Davis (1994)) and r -circulant matrix (see Shi (2018),
Yasin and Taskara (2013)). In fact, if φ(x) = xn − 1, then H∗( f ) is the ordinary
circulant matrix generated by f . If φ(x) = xn − r , then H∗( f ) is the r -circulant
matrix.

By (2.4), it follows immediately that

H∗( f + g) = H∗( f ) + H∗(g), and H∗(λ f ) = λH∗( f ), ∀λ ∈ R. (16)

Moreover, H∗( f ) = 0 is a zero matrix if and only if f = 0 is a zero vector, thus one
has H∗( f ) = H∗(g) if and only if f = g. Let M∗ be the set of all ideal matrices,
namely

M∗ = {H∗( f ) | f ∈ R
n}. (17)

We may regard H∗ as a mapping from R
n to M∗ of which is a one to one correspon-

dence.
In Zheng et al. (2023), we have shown some basic properties of ideal matrix, most

of them may be summarized as the following theorem.

Theorem 2 Suppose that φ(x) ∈ Z[x] is a fixed polynomial with no multiple roots
in C, then for any two column vectors f and g in R

n, we have

(i) H∗( f ) = f0 In + f1H + · · · + fn−1Hn−1;
(ii) H∗( f )H∗(g) = H∗(H∗( f )g) and H∗( f )H∗(g) = H∗(g)H∗( f );
(iii) H∗( f ) = V−1

φ diag{ f (w1), f (w2), . . . , f (wn)}Vφ;
(iv) det (H∗( f )) = 
n

i=1 f (wi );
(v) H∗( f ) is an invertible matrix if and only if ( f (x), φ(x)) = 1 in R[x],

where Vφ is the Vandermonde matrix given by (2.2), wi (1 � i � n) are all roots of
φ(x) in C, and diag{ f (w1), f (w2), . . . , f (wn)} is the diagonal matrix.
Proof See Theorem 2 of Zheng et al. (2023).

Let e1, e2, . . . , en be unit vectors of Rn , that is
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e1 =

⎛
⎜⎜⎜⎝
1
0
...

0

⎞
⎟⎟⎟⎠ , e2 =

⎛
⎜⎜⎜⎝
0
1
...

0

⎞
⎟⎟⎟⎠ , · · · , en =

⎛
⎜⎜⎜⎝
0
0
...

1

⎞
⎟⎟⎟⎠ .

It is easy to verify that

H∗(e1) = In, and H∗(ek) = Hk−1, 1 � k � n. (18)

This means that the unit matrix In and rotation matrices Hk (1 � k � n − 1) are all
the ideal matrices.

Let φ(x)R[x] and φ(x)Z[x] be the principal ideals generated by φ(x) in R[x]
and Z[x], respectively, we denote the quotient rings R and R by

R = Z[x]/φ(x)Z[x], and R = R[x]/φ(x)R[x]. (19)

There is a one to one correspondence between R and R
n given by

f (x) = f0 + f1x + · · · + fn−1x
n−1 ∈ R

t−−−→ f =

⎛
⎜⎜⎜⎝

f0
f1
...

fn−1

⎞
⎟⎟⎟⎠ ∈ R

n.

We denote this correspondence by t , that is

t ( f (x)) = f and t−1( f ) = f (x), ∀ f (x) ∈ R, and f ∈ R
n. (20)

If we restrict t in the quotient ring R, then which gives a one to one correspondence
between R and Z

n . First, we show that t is also a ring isomorphism.

Definition 2 For any twocolumnvectors f and g inRn ,wedefine theφ-convolutional
product f ∗ g by f ∗ g = H∗( f )g.

By Theorem 2, it is easy to see that

f ∗ g = g ∗ f, and H∗( f ∗ g) = H∗( f )H∗(g). (21)

Lemma 5 For any two polynomials f (x) and g(x) in R, we have

t ( f (x)g(x)) = H∗( f )g = f ∗ g.

Proof Let g(x) = g0 + g1x + · · · + gn−1xn−1 ∈ R, then

xg(x) = φ0gn−1 + (g0 + φ1gn−1)x + · · · + (gn−2 + φn−1gn−1)x
n−1.
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It follows that
t (xg(x)) = Ht (g(x)) = Hg. (22)

Hence, for any 0 � k � n − 1, we have

t (xkg(x)) = Hkt (g(x)) = Hkg, 0 � k � n − 1. (23)

Let f (x) = f0 + f1x + · · · + fn−1xn−1 ∈ R, by (i) of Theorem 2, we have

t ( f (x)g(x)) =
n−1∑
i=0

fi t (x
i g(x)) =

n−1∑
i=0

fi H
i g = H∗( f )g.

The lemma follows.

Theorem 3 Under φ-convolutional product, Rn is a commutative ring with iden-
tity element e1 and Z

n ⊂ R
n is its subring. Moreover, we have the following ring

isomorphisms:
R ∼= R

n ∼= M∗, and R ∼= Z
n ∼= M∗

Z
,

where M∗ is the set of all ideal matrices given by (2.6), and M∗
Z
is the set of all

integer ideal matrices.

Proof Let f (x) ∈ R and g(x) ∈ R, then

t ( f (x) + g(x)) = f + g = t ( f (x)) + t (g(x)),

and
t ( f (x)g(x)) = H∗( f )g = f ∗ g = t ( f (x)) ∗ t (g(x)).

Thismeans that t is a ring isomorphism. Since f ∗ g = g ∗ f and e1 ∗ g = H∗(e1)g =
Ing = g, thenRn is a commutative ringwith e1 as the identity elements.Noting H∗( f )
is an integer matrix if and only if f ∈ Z

n is an integer vector, the isomorphism of
subrings follows immediately.

According to property (v) of Theorem 2, H∗( f ) is an invertible matrix whenever
( f (x), φ(x)) = 1 in R[x], we show that the inverse of an ideal matrix is again an
ideal matrix.

Lemma 6 Let f (x) ∈ R and ( f (x), φ(x)) = 1 in R[x], then

(H∗( f ))−1 = H∗(u),

where u(x) ∈ R is the unique polynomial such that u(x) f (x) ≡ 1 (mod φ(x)).

Proof By Lemma 5, we have u ∗ f = e1, it follows that
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H∗(u)H∗( f ) = H∗(e1) = In.

Thus we have (H∗( f ))−1 = H∗(u). It is worth to note that if H∗( f ) is an invertible
integer matrix, then (H∗( f ))−1 is not an integer matrix in general.

Sometimes, the following lemma may be useful, especially, when we consider an
integer matrix.

Lemma 7 Let f (x) ∈ Z[x] and ( f (x), φ(x)) = 1 in Z[x], then we have
( f (x), φ(x)) = 1 in R[x].
Proof Let Q be the rational number field. Since ( f (x), φ(x)) = 1 in Z[x], then
( f (x), φ(x)) = 1 inQ[x]. We know thatQ[x] is a principal ideal domain, thus there
are two polynomials a(x) and b(x) in Q[x] such that

a(x) f (x) + b(x)φ(x) = 1.

This means that ( f (x), φ(x)) = 1 in R[x].

3 Cyclic Lattices and Ideal Lattices

As we know that cyclic code plays a central role in the algebraic coding theorem (see
Chap. 6 of Lint (1999)). In Zheng et al. (2023), we extended ordinary cyclic code
to more general forms, namely φ-cyclic codes. To obtain an analogous concept of
φ-cyclic code in R

n , we note that every rotation matrix H defines a linear transfor-
mation of Rn by x → Hx .

Definition 3 A linear subspace C ⊂ R
n is called a φ-cyclic subspace if ∀α ∈ C ⇒

Hα ∈ C . A lattice L ⊂ R
n is called a φ-cyclic lattice if ∀α ∈ L ⇒ Hα ∈ L .

In other words, a φ-cyclic subspace C is a linear subspace of Rn , of which is
closed under linear transformation H . A φ-cyclic lattice L is a lattice ofRn of which
is closed under H . If φ(x) = xn − 1, then H is the classical circulant matrix and
the corresponding cyclic lattice first appeared in Micciancio (2002), but he does not
discuss the further property for these lattices. To obtain the explicit algebraic con-
struction of φ-cyclic lattice, we first show that there is a one to one correspondence
between φ-cyclic subspaces of Rn and the ideals of R.

Lemma 8 Let t be the correspondence between R and R
n given by (2.9), then a

subset C ⊂ R
n is a φ-cyclic subspace of Rn, if and only if t−1(C) ⊂ R is an ideal.
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Proof We extend the correspondence t to subsets of R and R
n by

C(x) ⊂ R
t−−−→ C = {c|c(x) ∈ C(x)} ⊂ R

n. (24)

Let C(x) ⊂ R be an ideal, it is clear that C ⊂ t (C(x)) is a linear subspace of Rn . To
prove C is a φ-cyclic subspace, we note that if c(x) ∈ C(x), then by (2.11)

xc(x) ∈ C(x) ⇔ Ht (c(x)) = Hc ∈ C.

Therefore, if C(x) is an ideal of R, then t (C(x)) = C is a φ-cyclic subspace of Rn .
Conversely, if C ⊂ R

n is a φ-cyclic subspace, then for any k � 1, we have Hkc ∈ C
whenever c ∈ C , it implies

∀c(x) ∈ C(x) ⇒ xkc(x) ∈ C(x), 0 � k � n − 1,

which means that C(x) is an ideal of R. We complete the proof.

By the above lemma, to find a φ-cyclic subspace in R
n , it is enough to find an

ideal of R. There are two trivial ideals C(x) = 0 and C(x) = R, the corresponding
φ-cyclic subspace areC = 0 andC = R

n . To find non-trivial φ-cyclic subspaces, we
make use of the homomorphism theorems, which is a standard technique in algebra.
Let π be the natural homomorphism from R[x] to R, kerπ = φ(x)R[x]. We write
φ(x)R[x] by < φ(x) >. Let N be an ideal of R[x] satisfying

< φ(x) >⊂ N ⊂ R[x] π−−−→ R = R[x]/ < φ(x) > . (25)

Since R[x] is a principal ideal domain, then N =< g(x) > is a principal ideal gen-
erated by a monic polynomial g(x) ∈ R[x]. It is easy to see that

< φ(x) >⊂< g(x) >⇔ g(x)|φ(x) in R[x].

It follows that all ideals N satisfying (2) are given by

{< g(x) >

∣∣∣ g(x) ∈ R[x] is monic and g(x)|φ(x)}.

We write by < g(x) > mod φ(x), the image of < g(x) > under π , i.e.

< g(x) > mod φ(x) = π(< g(x) >).

It is easy to check

< g(x) > mod φ(x) = {a(x)g(x) | a(x) ∈ R[x] and dega(x) + degg(x) < n},
(26)
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more precisely, which is a representative elements set of < g(x) > mod φ(x). By
homomorphism theorem in ring theory, all ideals of R are given by

{< g(x) > mod φ(x)
∣∣∣ g(x) ∈ R[x] is monic and g(x)|φ(x)}. (27)

Let d be the number of monic divisors of φ(x) in R[x], we have the following.

Corollary 4 The number of φ-cyclic subspace of Rn is d.

Next, we discuss φ-cyclic lattice, which is the geometric analogy of cyclic code.
The φ-cyclic subspace of Rn may be regarded as the algebraic analogy of cyclic
code. Let the quotient rings R and R be given by (2.8). A R-module is an Abel group
∧ such that there is an operator λα ∈ ∧ for all λ ∈ R and α ∈ ∧, satisfying 1 · α = α

and (λ1λ2)α = λ1(λ2α). It is easy to see that R is a R-module, if ∧ ⊂ R and ∧ is a
R-module, then ∧ is called a R-submodule of R. All R-modules we discuss here are
R-submodule of R. On the other hand, if I ⊂ R, then I is an ideal of R, if and only
if I is a R-module. Let α ∈ R, the cyclic R-module generated by α be defined by

Rα = {λα | λ ∈ R}. (28)

If there are finitely many polynomials α1, α2, . . . , αk in R such that ∧ = Rα1 +
Rα2 + · · · + Rαk , then ∧ is called a finitely generated R-module, which is a R-
submodule of R.

Now, if L ⊂ R
n is a φ-cyclic lattice, g ∈ R

n , H∗(g) is the ideal matrix generated
by vector g, and L(H∗(g)) is the lattice generated by H∗(g). It is easy to show that
any L(H∗(g)) is a φ-cyclic lattice and

L(H∗(g)) ⊂ L , whenever g ∈ L , (29)

which implies that L(H∗(g)) is the smallest φ-cyclic lattice of which contains vector
g. Therefore, we call L(H∗(g)) is a minimal φ-cyclic lattice in Rn .

Lemma 9 There is a one to one correspondence between theminimalφ-cyclic lattice
in Rn and the cyclic R-submodule in R, namely,

t (Rg(x)) = L(H∗(g)), for all g(x) ∈ R

and
t−1(L(H∗(g))) = Rg(x), for all g ∈ R

n.

Proof Let b(x) ∈ R, by Lemma 5, we have

t (b(x)g(x)) = H∗(b)g = H∗(g)b ∈ L(H∗(g)),
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and t (Rg(x)) ⊂ L(H∗(g)). Conversely, ifα ∈ L(H∗(g)), andα = H∗(g)b for some
integer vector b, by Lemma 5 again, we have b(x)g(x) ∈ Rg(x), and t (b(x)g(x)) =
α. This implies that L(H∗(g)) ⊂ t (Rg(x)), and

t (Rg(x)) = L(H∗(g)).

The lemma follows immediately.

Suppose L = L(β1, β2, . . . , βm) is arbitrary φ-cyclic lattice, where B = [β1, β2,

. . . , βm]n×m is the generated matrix of L . L may be expressed as the sum of finitely
many minimal φ-cyclic lattices, in fact, we have

L = L(H∗(β1)) + L(H∗(β2)) + · · · + L(H∗(βm)). (30)

To state and prove our main results, first, we give a definition of prime spot inRn .

Definition 4 Let g ∈ R
n , and g(x) = t−1(g) ∈ R. If (g(x), φ(x)) = 1 in R[x], we

call g is a prime spot of Rn .

By (v) of Theorem 2, g ∈ R
n is a prime spot if and only if H∗(g) is an invertible

matrix, thus the minimal φ-cyclic lattice L(H∗(g)) generated by a prime spot is a
full-rank lattice.

Lemma 10 Let g and f be two prime spots of Rn, then L(H∗(g)) + L(H∗( f )) is
a full-rank φ-cyclic lattice.

Proof According to Lemma 4, it is sufficient to show that

rank
(
L(H∗(g)) ∩ L(H∗( f ))

) = rank
(
L(H∗(g))

) = n. (31)

In fact, we should prove in general

L(H∗(g) · H∗( f )) ⊂ L(H∗(g)) ∩ L(H∗( f )). (32)

Since H∗(g) · H∗( f ) is an invertiblematrix, then rank
(
L(H∗(g) · H∗( f ))

) = n, and
(8) follows immediately.

To prove (9), we note that

L(H∗(g) · H∗( f )) = L(H∗(g ∗ f )).

It follows that
t−1

(
L(H∗(g) · H∗( f ))

) = Rg(x) f (x).
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It is easy to see that
Rg(x) f (x) ⊂ Rg(x) ∩ R f (x).

Therefore, we have

L(H∗(g) · H∗( f )) = t (Rg(x) f (x)) ⊂ L(H∗(g)) ∩ L(H∗( f )).

This is the proof of Lemma 10.

It is worth to note that (9) is true for the more general case and does not need the
condition of prime spot.

Corollary 5 Let β1, β2, . . . , βm be arbitrary m vectors in R
n, then we have

L(H∗(β1)H
∗(β2) · · · H∗(βm)) ⊂ L(H∗(β1)) ∩ L(H∗(β2)) ∩ · · · ∩ L(H∗(βm)).

(33)

Proof If β1, β2, . . . , βm are integer vectors, then (10) is trivial. For the general case,
we write

L(H∗(β1) · H∗(β2) · · · H∗(βm)) = L(H∗(β1 ∗ β2 ∗ · · · ∗ βm)),

where β1 ∗ β2 ∗ · · · ∗ βm is the φ-convolutional product, then

t−1
(
L(H∗(β1) · · · H∗(βm))

) = Rβ1(x)β2(x) · · · βm(x).

Since
Rβ1(x)β2(x) · · · βm(x) ⊂ Rβ1(x) ∩ Rβ2(x) ∩ · · · ∩ Rβm(x).

It follows that

L(H∗(β1)H
∗(β2) · · · H∗(βm)) ⊂ L(H∗(β1)) ∩ L(H∗(β2)) ∩ · · · ∩ L(H∗(βm)).

We have this corollary.

By Lemma 10, we also have the following assertion.

Corollary 6 Let β1, β2, . . . , βm bem prime spots ofRn, then L(H∗(β1)) + L(H∗(β2)) +
· · · + L(H∗(βm)) is a full-rank φ-cyclic lattice.

Proof It follows immediately from Corollary 3.

Our main result in this chapter is to establish the following one to one correspon-
dence between φ-cyclic lattices in Rn and finitely generated R-modules in R.
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Theorem 4 Let ∧ = Rα1(x) + Rα2(x) + · · · + Rαm(x) be a finitely generated R-
module in R, then t (∧) is a φ-cyclic lattice inRn. Conversely, if L ⊂ R

n is a φ-cyclic
lattice in Rn, then t−1(L) is a finitely generated R-module in R, that is a one to one
correspondence.

Proof If ∧ is a finitely generated R-module, by Lemma 9, we have

t (∧) = t (Rα1(x) + · · · + Rαm(x)) = L(H∗(α1))

+ L(H∗(α2)) + · · · + L(H∗(αm)).

Themaindifficulty is to show that t (∧) is a lattice ofRn ,we require a surgery to embed
t (∧) into a full-rank lattice. To do this, let (αi (x), φ(x)) = di (x), di (x) ∈ Z[x], and
βi (x) = αi (x)/di (x), 1 � i � m. Since φ(x) has no multiple roots by assumption,
then (βi (x), φ(x)) = 1 in R[x]. In other words, each t (βi (x)) = βi is a prime spot.
It is easy to verify Rαi (x) ⊂ Rβi (x) (1 � i � m), thus we have

t (∧) ⊂ L(H∗(β1)) + L(H∗(β2)) + · · · + L(H∗(βm)).

By Corollaries 6 and 1, we have t (∧) is φ-cyclic lattice. Conversely, if L ⊂ R
n is a

φ-cyclic lattice of Rn , and L = L(β1, β2, . . . , βm), by (7), we have

t−1(L) = Rβ1(x) + Rβ2(x) + · · · + Rβm(x),

which is a finitely generated R-module in R. We complete the proof of Theorem 4.

As we introduced in abstract, since R is a Noether ring, then I ⊂ R is an ideal
if and only if I is a finitely generated R-module. On the other hand, if I ⊂ R is an
ideal, then t (I ) ⊂ Z

n is a discrete subgroup of Zn , thus t (I ) is a lattice, we define
the following.

Definition 5 Let I ⊂ R be an ideal, t (I ) is called the φ-ideal lattice.

Ideal lattice first appeared in Lyubashevsky and Micciancio (2006) (see
Definition 3.1 of Lyubashevsky and Micciancio (2006)). As a direct consequence
of Theorem 4, we have the following.

Corollary 7 Let L ⊂ R
n be a subset, then L is a φ-cyclic lattice if and only if

L = L(H∗(β1)) + L(H∗(β2)) + · · · + L(H∗(βm)),

where βi ∈ R
n and m � n. Furthermore, L is a φ-ideal lattice if and only if every

βi ∈ Z
n, 1 � i � m.

Corollary 8 Suppose that φ(x) is an irreducible polynomial in Z[x], then any non-
zero ideal I of R defines a full-rank φ-ideal lattice t (I ) ⊂ Z

n.
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Proof Let I ⊂ R be a non-zero ideal, then we have I = Rα1(x) + Rα2(x) + · · · +
Rαm(x), where αi (x) ∈ R and (αi (x), φ(x)) = 1. It follows that

t (I ) = L(H∗(α1)) + L(H∗(α2)) + · · · + L(H∗(αm)).

Since each αi is a prime spot, we have rank(t (I )) = n by Corollary 6, and the
corollary follows at once.

According to Definition 3.1 of Lyubashevsky and Micciancio (2006), we have
proved that any an ideal of R corresponding to a φ-ideal lattice, which just is a φ-
cyclic integer lattice under the more general rotation matrix H = Hφ . Cyclic lattice
and ideal lattice were introduced in Lyubashevsky and Micciancio (2006), Miccian-
cio (2002), respectively, to improve the space complexity of lattice-based cryptosys-
tems. Ideal lattices allow to represent a lattice using only two polynomials. Using
such lattices, class lattice-based cryptosystems can diminish their space complex-
ity from O(n2) to O(n). Ideal lattices also allow to accelerate computations using
the polynomial structure. The original structure of Micciancio’s matrices uses the
ordinary circulant matrices and allows for an interpretation in terms of arithmetic
in polynomial ring Z[x]/ < xn − 1 >. Lyubashevsky and Micciancio (2006) later
suggested to change the ring to Z[x]/ < φ(x) >with an irreducible φ(x) over Z[x].
Our results here suggest to change the ring to Z[x]/ < φ(x) > with any polynomial
φ(x). There are many works subsequent to Micciancio (2002, Lyubashevsky and
Micciancio (2006), such as (Feige & Micciancio, 2004; Micciancio & Regev, 2009;
Peikert, 2016; Plantard & Schneider, 2013; Pradhan et al., 2019; Stehle & Steinfeld,
2011).

Example 1 It is interesting to find some examples ofφ-cyclic lattices in an algebraic
number field K . Let Q be a rational number field, without loss of generality, an
algebraic number field K of degree n is just K = Q(w), where w = wi is a root of
φ(x). If all Q(wi ) ⊂ R (1 � i � n), then K is called a totally real algebraic number
field. Let OK be the ring of algebraic integers of K , and I ⊂ OK be an ideal, I �= 0.
Since there is an integral basis {α1, α2, . . . , αn} ⊂ I such that

I = Zα1 + Zα2 + · · · + Zαn.

We may regard every ideal of OK as a lattice in Qn , and our assertion is that every
non-zero ideal of OK is corresponding to a full-rank φ-cyclic lattice of Qn . To see
this example, let

Q[w] =
{

n−1∑
i=0

aiw
i | ai ∈ Q

}
.

It is known that K = Q[w], thus every α ∈ K corresponds to a vector α ∈ Qn by
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α =
n−1∑
i=0

aiw
i τ−−−→ α =

⎛
⎜⎜⎜⎝

a0
a1
...

an−1

⎞
⎟⎟⎟⎠ ∈ Q

n.

If I ⊂ OK is an ideal of OK and I = Zα1 + Zα2 + · · · + Zαn , let B = [α1, α2, . . . ,

αn] ∈ Qn×n , which is full-rankmatrix.We have τ(I ) = L(B) as a full-rank lattice. It
remains to show that τ(I ) is a φ-cyclic lattice, we only prove that if α ∈ I ⇒ Hα ∈
τ(I ). Suppose that α ∈ I , then wα ∈ I . It is easy to verify that τ(w) = e2 (see (2.7))
and

τ(wα) = τ(w) ∗ τ(α) = Hα ∈ τ(I ).

This means that τ(I ) is a φ-cyclic lattice of Qn , which is a full-rank lattice.

4 Smoothing Parameter

As an application of the algebraic structure of φ-cyclic lattice, we show an explicit
upper boundof the smoothingparameter for theφ-cyclic lattices. Firstly,we introduce
some basic notations.

A Gauss function ρs,c(x) in Rn is given by

ρs,c(x) = e−π |x−c|2/s2 , (34)

where x ∈ R
n , c ∈ R

n , and s > 0 is a positive real number. ρs,c(x) is called the Gauss
function around original point c with parameter s. It is easy to see that

∫
Rn

ρs,c(x)dx = sn.

Thus, we may define a probability density function Ds,c(x) by

Ds,c(x) = ρs,c(x)/
∫
Rn

ρs,c(x)dx = ρs,c(x)/s
n . (35)

Suppose L ⊂ R
n is a lattice, let

Ds,c(L) =
∑
x∈L

Ds,c(x), ρs,c(L) =
∑
x∈L

ρs,c(x). (36)

The discrete Gauss distribution over L is a probability distribution DL ,s,c over L
given by
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DL ,s,c(x) = Ds,c(x)

Ds,c(L)
= ρs,c(x)

ρs,c(L)
. (37)

If c = 0 is the zero vector of R
n , we write ρs,0(x) = ρs(x), ρs,0(L) = ρs(L),

Ds,0(x) = Ds(x), and Ds,0(L) = Ds(L). Suppose that L is a full-rank lattice and
L∗ is its dual lattice, we define the smoothing parameter ηε(L) of L to be the small-
est s such that ρ1/s(L∗) � 1 + ε, more precisely,

ηε(L) = min{s : s > 0 and ρ1/s(L
∗) � 1 + ε}, (38)

where ε > 0 is a positive number. Notice that ρ1/s(L∗) is a continuous and strictly
decreasing function of s, thus the smoothing parameter ηε(L) is a continuous and
strictly decreasing function of ε.

Let L = L(β1, β2, . . . , βn) ⊂ R
n be a full-rank latticewith a basisβ1, β2, . . . , βn ,

the fundamental region P(L) is given by

P(L) =
{

n∑
i=1

aiβi |0 � ai < 1, 1 � i � n

}
. (39)

Suppose that X andY are two discrete randomvariables onRn , the statistical distance
between X and Y over L is defined by

�(X,Y ) = 1

2

∑
a∈L

|P{X = a} − P{Y = a}|. (40)

If X and Y are continuous random variables with probability density function T1 and
T2, respectively, then �(X,Y ) is defined by

�(X,Y ) = 1

2

∫
Rn

|T1(z) − T2(z)|dz. (41)

The smoothing parameter was introduced byMicciancio andRegev (2007), which
plays an important role in the statistical information of lattices. An important prop-
erty of smoothing parameter is for any lattice L = L(B) and any ε > 0, the statis-
tical distance between Ds mod L and the uniform distribution over the fundamen-
tal region P(L) is at most 1

2 (ρ1/s(L(B)∗)). More precisely, for any ε > 0 and any
s � ηε(L(B)), the statistical distance is at most 1

2ε, namely

�(
Ds,c mod L , U (P(L))

)
� ε

2
. (42)

Lemma 11 Let L ⊂ R
n be a full-rank lattice, we have

η2−n (L) �
√
n/λ1(L

∗), (43)
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where L∗ is the dual lattice of L, and λ1(L∗) is the minimum distance of L∗.

Proof See Lemma 3.2 of Micciancio and Regev (2007), or Banaszczyk (1993).

Lemma 12 Suppose that L1 and L2 are two full-rank lattices in R
n, and L1 ⊂ L2,

then for any ε > 0, we have
ηε(L2) � ηε(L1). (44)

Proof Let ηε(L1) = s, we are to show that ηε(L2) � s. Since

ρ1/s(L
∗
1) = 1 + ε, and

∑
x∈L∗

1

e−πs2|x |2 = 1 + ε.

It is easy to check that L∗
2 ⊂ L∗

1, it follows that

1 + ε =
∑
x∈L∗

1

e−πs2|x |2 �
∑
x∈L∗

2

e−πs2|x |2 ,

which implies
ρ1/s(L

∗
2) � 1 + ε,

and ηε(L2) � s = ηε(L1), thus we have Lemma 12.

According to (2.4), the ideal matrix H∗( f ) with input vector f ∈ R
n is just the

ordinary circulant matrix when φ(x) = xn − 1. Next lemma shows that the trans-

pose of a circulant matrix is still a circulant matrix. For any g =

⎛
⎜⎜⎜⎝

g0
g1
...

gn−1

⎞
⎟⎟⎟⎠ ∈ R

n , we

denote g =

⎛
⎜⎜⎜⎝
gn−1

gn−2
...

g0

⎞
⎟⎟⎟⎠, which is called the conjugation of g.

Lemma 13 Let φ(x) = xn − 1, then for any g =

⎛
⎜⎜⎜⎝

g0
g1
...

gn−1

⎞
⎟⎟⎟⎠ ∈ R

n, we have

(H∗(g))′ = H∗(Hg). (45)

Proof Since φ(x) = xn − 1, then H = Hφ (see (2.3)) is an orthogonal matrix, and
we have H−1 = Hn−1 = H ′. We write H1 = H ′ = H−1. The following identity is
easy to verify
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H∗(g) =

⎛
⎜⎜⎜⎝
g′H1

g′H 2
1

...

g′Hn
1

⎞
⎟⎟⎟⎠

It follows that

(H∗(g))′ = [Hg, H(Hg), . . . , Hn−1(Hg)] = H∗(Hg),

and we have the lemma.

Lemma 14 Suppose that g ∈ R
n and the circulant matrix H∗(g) is invertible. Let

A = (H∗(g))′H∗(g), then all characteristic values of A are given by

{|g(θ1)|2, |g(θ2)|2, . . . , |g(θn)|2},

where θn
i = 1 (1 � i � n) are the n-th roots of unity.

Proof By Lemma 13 and (ii) of Theorem 2, we have

A = H∗(Hg)H∗g = H∗(H∗(Hg)g) = H∗(g′′),

where g′′ = H∗(Hg)g. Let g′′(x) = t−1(g′′) be the corresponding polynomial of g′′.
By (iii) of Theorem 2, all characteristic values of A are given by

{g′′(θ1), g′′(θ2), . . . , g′′(θn)}, θn
i = 1, 1 � i � n. (46)

Let g =

⎛
⎜⎜⎜⎝

g0
g1
...

gn−1

⎞
⎟⎟⎟⎠ ∈ R

n . It is easy to see that

g′′(x) =
n−1∑
i=0

g2i +
(

n−1∑
i=0

gi g1−i

)
x + · · · +

(
n−1∑
i=0

gi g(n−1)−i

)
xn−1 = |g(x)|2,

where g−i = gn−i for all 1 � i � n − 1, then the lemma follows at once.

By definition 4, if g ∈ R
n is a prime spot, then there is a unique polynomial

u(x) ∈ R such that u(x)g(x) ≡ 1 (mod φ(x)). We define a new vector Tg and its
corresponding polynomial Tg(x) by

Tg = Hu, and Tg(x) = t−1(Hu). (47)

If g ∈ Z
n is an integer vector, then Tg ∈ Z

n is also an integer vector, and Tg(x) ∈ Z[x]
is a polynomial with integer coefficients. Our main result on smoothing parameter
is the following theorem.
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Theorem 5 Let φ(x) = xn − 1, L ⊂ R
n be a full-rank φ-cyclic lattice, then for any

prime spots g ∈ L, we have

η2−n (L) �
√
n(min{|Tg(θ1)|, |Tg(θ2)|, . . . , |Tg(θn)|})−1, (48)

where θn
i = 1, 1 � i � n, and Tg(x) is given by (4.14).

Proof Let g ∈ L be a prime spot, by Lemma 12, we have

L(H∗(g)) ⊂ L ⇒ ηε(L) � ηε(L(H∗(g))), ∀ε > 0. (49)

To estimate the smoothing parameter of L(H∗(g)), the dual lattice of L(H∗(g)) is
given by

L(H∗(g))∗ = L((H∗(u))′) = L(H∗(Hu)) = L(H∗(Tg)),

where u(x) ∈ R and u(x)g(x) ≡ 1 (mod xn − 1), and Tg is given by (4.14). Let
A = (H∗(Tg))′H∗(Tg), by Lemma 14, all characteristic values of A are

{|Tg(θ1)|2, |Tg(θ2)|2, . . . , |Tg(θn)|2}.

By Lemma 2, the minimum distance λ1(L(H∗(g))∗) is bounded by

λ1(L(H∗(g))∗) � min{|Tg(θ1)|, |Tg(θ2)|, . . . , |Tg(θn)|}. (50)

Now, Theorem 5 follows from Lemma 11 immediately.

Let L = L(B) be a full-rank lattice and B = [β1, β2, . . . , βn]. We denote by
B∗ = [β∗

1 , β
∗
2 , . . . , β

∗
n ] the Gram-Schmidt orthogonal vectors {β∗

i } of the ordered
basis B = {βi }. It is a well-known conclusion that

λ1(L) � |B∗| = min
1�i�n

|β∗
i |,

which yields by Lemma 11 the following upper bound

η2−n (L) �
√
n|B∗

0 |−1, (51)

where B∗
0 is the orthogonal basis of dual lattice L∗ of L .

For a φ-cyclic lattice L , we observe that the upper bound (4.17) is always better
than (4.18) by numerical testing, we give two examples here.

Example 2 Let n = 3 and φ(x) = x3 − 1, the rotation matrix H is

H =
⎛
⎝0 0 1
1 0 0
0 1 0

⎞
⎠ .
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We select a φ-cyclic lattice L = L(B), where

B =
⎛
⎝1 1 1
0 1 1
0 0 1

⎞
⎠ .

Since L = Z
3, thus L is a φ-cyclic lattice. It is easy to check

|B∗
0 | = min

1�i�3
|β∗

i | =
√
3

3
.

On the other hand, we randomly find a prime spot g =
⎛
⎝0
0
1

⎞
⎠ ∈ L and g(x) = x2.

Since xg(x) ≡ 1 (mod x3 − 1), we have Tg(x) = x2, it follows that |Tg(θ1)| =
|Tg(θ2)| = |Tg(θ3)| = 1, and

min
1�i�3

|Tg(θi )|−1 � |B∗
0 |−1 = √

3.

Example 3 Let n = 4 and φ(x) = x4 − 1, the rotation matrix H is

H =

⎛
⎜⎜⎝
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ .

We select a φ-cyclic lattice L = L(B), where

B =

⎛
⎜⎜⎝
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Since L = Z
4, thus L is a φ-cyclic lattice. It is easy to check

|B∗
0 | = min

1�i�4
|β∗

i | = 1

2
.



152 Z. Zhiyong et al.

On the other hand, we randomly find a prime spot g =

⎛
⎜⎜⎝

−2
1
0
0

⎞
⎟⎟⎠ ∈ L and g(x) = x −

2. Since ( 17 x
3 − 1

7 x
2 − 2

7 x − 5
7 )g(x) ≡ 1 (mod x4 − 1), we have Tg(x) = − 2

7 x
3 −

1
7 x

2 + 1
7 x − 5

7 , it follows that |Tg(θ1)| = 1, |Tg(θ2)| = |Tg(θ3)| = |Tg(θ4)| = 5
7 , and

min
1�i�4

|Tg(θi )|−1 = 7

5
� |B∗

0 |−1 = 2.
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On the LWE Cryptosystem with More
General Disturbance

Zheng Zhiyong and Tian Kun

Abstract The main purpose of this chapter is to give an extension on learning with
errors problem (LWE)-based cryptosystem about the probability of decryption error
with more general disturbance. In the first section, we introduce the LWE cryp-
tosystem with its application and some previous research results. Then we give a
more precise estimation probability of decryption error based on independent identi-
cal Gaussian disturbances and any general independent identical disturbances. This
upper bound probability could be closed to 0 if we choose applicable parameters. It
means that the probability of decryption error for the cryptosystem could be suffi-
ciently small. So we verify our core result that the LWE-based cryptosystem could
have high security.

Keywords Learning with errors problem · Decryption error · Probability ·
General disturbance

1 Introduction

In this section, we describe a cryptosystem based on the learning with errors problem
(LWE) (Micciancio & Regev, 2009; Regev, 2005). First, we introduce the LWE
problem. Let p be a prime number, m, n be positive integers and consider a list of
equations with error as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

< s, a1 >≈χ v1 (mod p),
< s, a2 >≈χ v2 (mod p),

...

< s, am >≈χ vm (mod p).

Here s ∈ Z
n
p, a1, a2, . . . , am are chosen independently and uniformly from Z

n
p, and

v1, v2, . . . , vm ∈ Zp. < s, ai > is the inner product of two vectors s and ai . The
errors in these equations are generated from a probability distribution χ : Zp → R

+
on Zp, i.e. for each equation, we have vi =< s, ai > +ei and ei ∈ Zp is chosen
independently based on the probability distributionχ . The problem of finding s ∈ Z

n
p

from such equations is called LWEp,χ . There is an equivalent description for the
LWE problem. The input has a pair (A, v) where A ∈ Z

m×n
p is chosen uniformly,

and the choices of v have two cases. One case for v is chosen uniformly from Z
m
p ,

the other case is As + e for a uniformly chosen vector s ∈ Z
n
p and vector e ∈ Z

m
p

chosen according to χm . The goal is to distinguish between these two cases with
non-negligible probability. It is also equivalent with a decoding problem in q-ary
lattices (Regev, 2005).

The short integer solution (SIS) problem was first introduced in the seminal work
of Ajtai (1996) and has served as the foundation for one-way and collision-resistant
hash functions, identification schemes, digital signatures, and other “minicrypt”
primitives. A very important work of Regev from 2005 introduced the LWE problem,
which is the “encryption-enabling” analogue of the SIS problem (Regev, 2009). In
fact, the two problems are very similar and can meaningfully be seen as duals of
each other.

The LWE problem is a very robust problem and can be viewed as an extension of
a well-known problem in learning theory. It remains hard even if the attacker learns
extra information about the secret and errors. Regev gave the worst-case hardness
theorem for LWE (Regev, 2009). The complexity of the best-known algorithm is
running in exponential time in n (Ajtai et al., 2001; Blum et al., 2003; Kumar &
Sivakumar, 2001). This theorem is proved by giving a quantum polynomial-time
reduction that uses an oracle for LWE to solve GapSVPγ and SIVPγ in the worst
case, thereby transforming any algorithm that solves LWE into a quantum algorithm
for lattice problems. The quantum nature of the reduction is meaningful since there
are no known quantum algorithms for GapSVPγ and SIVPγ that significantly out-
perform classical ones, beyond generic quantum speedups. It would be very useful
to have a completely classical reduction to give further confidence in the hardness
of LWE, which was given in 2009 by Peikert (2009). Regev also gave a public-key
cryptosystem whose semantic security can provably be based on the LWE prob-
lem, and hence on the conjectured quantum hardness of GapSVPγ and SIVPγ for
γ = O(n3/2) (Regev, 2009). LWE problem has a close relationship with decoding
problems in coding theory (Ajtai, 2005; Ajtai & Dwork, 1997; Alekhnovich, 2003;
Asokan et al., 2007; Ding, 2004; Kawachi et al., 2007; Peikert, 2007; Peikert et al.,
2008; Regev, 2004; Signing et al., 2022). Regev’s cryptosystem is secure against
passive eavesdroppers since the LWE problem is hard.
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Another application ofLWE is fully homomorphic encryption (FHE) (Rivest et al.,
1978). The earliest FHEconstructionswere based on average-case assumptions about
ideal lattices (Gentry, 2009; Dijk et al., 2010). Later, Brakerski and Vaikuntanathan
gave the second generation of FHE constructions, which were based on the LWE
problem (Brakerski &Vaikuntanathan, 2011a, b). In 2013, Gentry, Sahai, andWaters
proposed an LWE-based FHE scheme that has some unique and advantageous prop-
erties, such as homomorphic multiplication does not require any key-switching step,
and the scheme can be made identity-based. This yields unbounded FHE based on
LWE with just an inverse-polynomial n−O(1) error rate (Gentry et al., 1999).

Now we introduce the efficient lattice-based cryptosystem in the following which
has strong theoretical security (Micciancio & Regev, 2009).

• Private key: S ∈ Z
n×l
q is uniformly chosen at random.

• Public key: A ∈ Z
m×n
q is uniformly chosen at random and E ∈ Z

m×l
q is chosen

from the distribution ψα . The public key is (A, P = AS + E).
• Encryption: Given v ∈ Z

l
t from themessage space and a public key (A, P), choose

a vector a ∈ {−r,−r + 1, · · · , r}m uniformly at random, and compute the cipher-
text (u = AT a, c = PT a + f (v)).

• Decryption: Given a ciphertext (u, c) and a private key S, output f −1(c − ST u).

Here m, n, l, t, q, r are positive integers and α > 0. ψα is defined to be the distri-
bution on Zq obtained by sampling a normal variable with mean 0 and standard
deviation αq/

√
2π , rounding the result to the nearest integer and reduced modulo

q. f is defined as the function from Z
l
t to Z

l
q by multiplying each coordinate by q/t

and rounding to the nearest integer. f −1 is defined to be the “inverse” mapping of
f by multiplying each coordinate by t/q and rounding to the nearest integer. The
definitions of f and f −1 are in the next section. The probability of decryption error
in one letter for this cryptosystem is approximatively estimated in (Micciancio &
Regev, 2009) as

error probability per letter ≈ 2

(

1 − Φ

(
1

2tα

√
6π

mr(r + 1)

))

, (1)

where Φ is the cumulative distribution function of the standard normal distribution,

i.e. Φ(x) = ∫ x
−∞

1√
2π
e− t2

2 dt . We give here a more precise upper bound estimation

error probability � 2l

(

1 − Φ

(
q − t

2αtq

√
6π

mr(r + 1)

))

. (2)

This upper bound probability could be closed to 0 if we choose α small enough. It
means that the probability of decryption error for the cryptosystem could be suffi-
ciently small. However, the above estimation is based onGaussian disturbance. In our
work, we also give the probability of decryption error for the LWE-based cryptosys-
tem with more general disturbance. By central limit theorem (Riauba, 1975), general
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disturbance could be approximated as Gaussian disturbance, then we get the follow-
ing probability estimation result which is more advanced than that in (Micciancio &
Regev, 2009).

error probability � 2l

(

1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

))

+ lδ. (3)

Here β is the standard deviation of disturbance distribution, and δ is a positive real
number.

1.1 Innovation and Contribution

Our work gives estimation probability of decryption error based on Gaussian dis-
turbances and proves that the decryption error could be sufficiently small. The most
salient innovation and contribution is that for any general disturbances, the decryp-
tion error could also be small enough. This indicates high security and reliability of
LWE-based cryptosystem. In other words, this cryptosystem is secure enough against
passive eavesdroppers and could be applied in many kinds of encryption processes.

2 Methodology

2.1 Preliminary Property

Definition 1 ∀x ∈ R, let [x] be the closest integer to x , specially, [x] is defined to
be x − 1

2 if the fractional part of x is 1
2 . It is trivial that − 1

2 < x − [x] � 1
2 for all

x ∈ R.

Lemma 1 t and q are positive integers, t � q. ∀a ∈ Zt , let f (a) = [ qt a] ∈ Zq .
∀b ∈ Zq , let f −1(b) = [ t

q b] ∈ Zt . Then f −1( f (a)) = a for ∀a ∈ Zt holds.

Remark 1 If a1 ≡ a2 (mod t), we have f (a1) ≡ f (a2) (mod q), so the definition
of f is well defined and reasonable.

Proof of Lemma 1 (1) If t = q, then we have f (a) = [a] = a and

f −1( f (a)) = f −1(a) = [a] = a, ∀a ∈ Zt .

(2) If t < q, then q
2t > 1

2 , we know
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q

t
a − 1

2
�

[q

t
a
]

<
q

t
a + 1

2
.

It follows that

q

t
a − q

2t
<

q

t
a − 1

2
�

[q

t
a
]

<
q

t
a + 1

2
<

q

t
a + q

2t
.

So we can get
q

t
a − q

2t
<

[q

t
a
]

<
q

t
a + q

2t
.

This is equivalent to

a − 1

2
<

t

q

[q

t
a
]

< a + 1

2
,

and

−1

2
<

t

q

[q

t
a
]

− a <
1

2
.

Thus,

[ t
q

[q
t
a] − a] = 0, and

[
t

q

[q

t
a
]]

= a.

This means that
f −1( f (a)) = a, ∀a ∈ Zt . �

Lemma 2 t and q are positive integers, t > q. If a is uniformly chosen in Zt , then

P{ f −1( f (a)) 	= a} = 1 − q

t
.

Proof of Lemma 2 t > q, from Lemma 1 we have

[
q

t

[
t

q
b

]]

= b, ∀b ∈ Zq .

This is equivalent to

f

([
t

q
b

])

= b, ∀b ∈ Zq .

So we get

f −1

(

f

([
t

q
b

]))

= f −1(b) =
[
t

q
b

]

, ∀b ∈ Zq .

Here 0,
[
t
q

]
,
[
2t
q

]
, . . . ,

[
(q−1)t

q

]
are different from each other in Zt . Next we prove

that the number of a in Zt satisfying f −1( f (a)) = a is no more than q. Let A be the
set containing all the elements satisfying f −1( f (a)) = a inZt . ∀a1, a2 ∈ A, a1 	= a2
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in Zt , then we have f (a1) 	≡ f (a2) (mod q), i.e. f (a1) 	= f (a2) in Zq . This means
the number of A is no more than q.

Above all, it shows that 0,
[
t
q

]
,
[
2t
q

]
, . . . ,

[
(q−1)t

q

]
are just all the numbers in Zt

such that f −1( f (a)) = a. Based on a is uniformly chosen in Zt , then

P{ f −1( f (a)) 	= a} = 1 − q

t
. �

Corollary 1 t , q, and l are positive integers. ∀a = (a1, a2, . . . , al) ∈ Z
l
t , let f (a) =([ q

t a1
]
,
[ q
t a2

]
, . . . ,

[ q
t al

]) ∈ Z
l
q . ∀b = (b1, b2, . . . , bl) ∈ Z

l
q , let f −1(b) =

([
t
q b1

]
,
[
t
q b2

]
, . . . ,

[
t
q bl

])
∈ Z

l
t . If a is uniformly chosen in Zl

t and a1, a2, . . . , al
are independent, then

P{ f −1( f (a)) 	= a} = max

{

0, 1 −
(q

t

)l
}

.

Proof of Corollary 1 If t � q, from Lemma 1, we have

f −1( f (ai )) = ai , ∀ai ∈ Zt , ∀1 � i � l.

So
f −1( f (a)) = a, ∀a ∈ Z

l
t .

P{ f −1( f (a)) 	= a} = 0 = max

{

0, 1 −
(q

t

)l
}

.

If t > q, from Lemma 2, we have

P{ f −1( f (ai )) = ai } = q

t
, ai ∈ Zt , ∀1 � i � l.

Since a1, a2, . . . , al are independent, therefore,

P{ f −1( f (a)) = a} =
(q

t

)l
, a ∈ Z

l
t .

P{ f −1( f (a)) 	= a} = 1 −
(q

t

)l = max

{

0, 1 −
(q

t

)l
}

. �
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2.2 Probability of Decryption Error Based on Gaussian
Disturbance

Now we can calculate the probability of decryption error for the LWE-based cryp-
tosystem. As described in the first section, assume S be the private key, (A, P) be
the public key, and we choose v ∈ Z

l
t from the message space, encrypt v, and then

decrypt it. The ciphertext is (u = AT a, c = PT a + f (v)). The decryption result is

f −1(c − ST u) = f −1(PT a + f (v) − ST u)

= f −1((AS + E)T a + f (v) − ST AT a)

= f −1(ET a + f (v)).

Here the decryption result f −1(ET a + f (v)) ∈ Z
l
t . The decryption error occurs if

f −1(ET a + f (v)) 	= v. Since all the parameters are taken to guarantee security and
efficiency of the cryptosystem, here we set q > t and obtain the following theorem.

Theorem 1 t , q, l, m, r are positive integers and q > t . v ∈ Z
l
t , f is defined in the

previous section, Em×l is a Gaussian disturbance matrix with each element chosen
independently from the Gaussian distribution with mean 0 and standard deviation
αq/

√
2π , a ∈ {−r,−r + 1, · · · , r}m is uniformly chosen at random. Then we have

the following inequality of the probability of decryption error.

P{ f −1(ET a + f (v)) 	= v} � 2l

(

1 − Φ

(
q − t

2αtq

√
6π

mr(r + 1)

))

.

Here Φ is the cumulative distribution function of the standard normal distribution,

i.e. Φ(x) = ∫ x
−∞

1√
2π
e− t2

2 dt .

Proof of Theorem 1 In order to compute the probability of decryption error, we
consider one letter first, i.e. the probability of f −1(ET

i a + f (vi )) 	= vi , here vi is
the i th coordinate of v, Em×l = (E1, E2, . . . , El), and f −1(ET

i a + f (vi )) is the i th
coordinate of f −1(ET a + f (v)). From Lemma 1, we know that f −1( f (vi )) = vi
for any vi ∈ Zt under this condition. We have

−1

2
<

q

t
vi −

[q

t
vi

]
� 1

2
.

− t

2q
� t

q

[q

t
vi

]
− vi <

t

2q
.

So if | tq ET
i a| < 1

2 − t
2q , we get
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∣
∣
∣
∣
t

q
ET
i a + t

q

[q

t
vi

]
− vi

∣
∣
∣
∣ <

1

2
− t

2q
+ t

2q
= 1

2
.

[
t

q
ET
i a + t

q

[q

t
vi

]
− vi

]

= 0.

[
t

q
ET
i a + t

q

[q

t
vi

]]

= vi .

f −1(ET
i a + f (vi )) = vi .

It means that if | tq ET
i a| < 1

2 − t
2q , we can get f

−1(ET
i a + f (vi )) = vi . Equivalently,

if f −1(ET
i a + f (vi )) 	= vi , i.e. the decryption error occurs in the i th letter, then

| tq ET
i a| � 1

2 − t
2q . So the probability of decryption error in one letter is no more

than the probability of | tq ET
i a| � 1

2 − t
2q , i.e.

P{ f −1(ET
i a + f (vi )) 	= vi } � P

{∣
∣
∣
∣
t

q
ET
i a

∣
∣
∣
∣ � 1

2
− t

2q

}

.

The next step we estimate the probability of | tq ET
i a| � 1

2 − t
2q . Since each coordi-

nate of Ei is chosen independently from the Gaussian distribution with mean 0 and
standard deviation αq/

√
2π and the sum of independent Gaussian variables is still a

Gaussian variable, ET
i a is also aGaussian distribution variable. a = (a1, a2, . . . , am)

and each ai is chosen from {−r,−r + 1, · · · , r} uniformly at random, then

E(ai ) = −r + (−r + 1) + · · · + r

2r + 1
= 0.

Var(ai ) = (−r)2 + (−r + 1)2 + · · · + r2

2r + 1
= r(r + 1)

3
.

E(ET
i a) = 0.

Var(ET
i a) =

(αq

2π

)2 · r(r + 1)

3
m = α2q2mr(r + 1)

6π
.

Therefore, ET
i a is treated as a normal distributionwithmean 0 and standard deviation

αq
√
mr(r + 1)/

√
6π . We have

P

{∣
∣
∣
∣
t

q
ET
i a

∣
∣
∣
∣ � 1

2
− t

2q

}

= P

{
∣
∣ET

i a
∣
∣ � q − t

2t

}
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= P

{
∣
∣ET

i a
∣
∣
/

(

αq

√
mr(r + 1)

6π

)

� q − t

2t

/
(

αq

√
mr(r + 1)

6π

)}

= P

{

|ET
i a|/(αq

√
mr(r + 1)

6π
) � q − t

2αtq

√
6π

mr(r + 1)

}

= 2

(

1 − Φ

(
q − t

2αtq

√
6π

mr(r + 1)

))

.

So we get the following inequality for the probability of decryption error of the
LWE-based cryptosystem

P{ f −1(ET a + f (v)) 	= v}

� l P{ f −1(ET
i a + f (vi )) 	= vi }

� l P

{∣
∣
∣
∣
t

q
ET
i a

∣
∣
∣
∣ � 1

2
− t

2q

}

= 2l
(
1 − Φ

(
q − t

2αtq

√
6π

mr(r + 1)

)
)
.

�

This upper bound probability estimation ismore precise than (1). The upper bound
could be as closed as 0 if we choose α small enough. It means that the probability
of decryption error for the LWE-based cryptosystem could be made very small with
an appropriate setting of parameters.

2.3 Probability of Decryption Error for General Disturbance

In this section, we estimate the probability of decryption error for the LWE-based
cryptosystem when the noise matrix E = (Ei j )m×l is chosen independently from a
general common variable.

Theorem 2 t , q, l, r are positive integers and q > t , m is a undetermined positive
integer. v ∈ Z

l
t , f is defined in the second section, Em×l is a general disturbance

matrix with each element chosen independently from a common random variable of
mean 0 and standard deviation β, a ∈ {−r,−r + 1, · · · , r}m is uniformly chosen
at random. For any δ > 0, we can find positive integer m, such that the following
inequality of the probability of decryption error holds.
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P{ f −1(ET a + f (v)) 	= v} � 2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ.

Here Φ is the cumulative distribution function of the standard normal distribution,

i.e. Φ(x) = ∫ x
−∞

1√
2π
e− t2

2 dt .

Proof of Theorem 2 Similarly as the proof of Theorem 1, we need to estimate
the probability of | tq ET

i a| � 1
2 − t

2q . Since the coordinates of E
T
i are independent

identically distributed, ET
i and a are also independent, by central limit theorem

(Riauba, 1975), ET
i a is approximately normal distribution with mean 0 and standard

deviation d = √
mVar(Ei j )Var(ai ) = β

√
mr(r+1)

3 . Thus, for any sufficiently small
δ > 0, there is a positive integer m such that

P

{∣
∣
∣
∣
t

q
ET
i a

∣
∣
∣
∣ � 1

2
− t

2q

}

= P

{
∣
∣ET

i a
∣
∣ � q − t

2t

}

= P

{
∣
∣ET

i a
∣
∣
/

(

β

√
mr(r + 1)

3

)

� q − t

2t

/
(

β

√
mr(r + 1)

3

)}

= P

{
∣
∣ET

i a
∣
∣
/

(

β

√
mr(r + 1)

3

)

� q − t

2βt

√
3

mr(r + 1)

}

= 2
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ ε.

Here |ε| � δ. Then we get the following inequality for the probability of decryption
error of the LWE-based cryptosystem for general disturbance

P{ f −1(ET a + f (v)) 	= v}

� l P{ f −1(ET
i a + f (vi )) 	= vi }

� l P

{∣
∣
∣
∣
t

q
ET
i a

∣
∣
∣
∣ � 1

2
− t

2q

}

= 2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lε.

� 2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ.
�
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This probability could be also closed to 0 if we choose the parameter β
√
m and

δ small enough. Therefore, the probability of decryption error of the LWE-based
cryptosystem for general disturbance could be made very small, which leads to high
security.

Example 1 Let t = 2, q = 5, l = 1, m = 1, r = 1, δ = 10−3, v ∈ Z2 is uniformly
chosen at random, the disturbance E is a random variable with the distribution ψβ

such that P{E = k} = βk

2·k!e
−β for integer k and P{E = 0} = e−β with parameter

β = 10−3, a ∈ {−1, 0, 1} is uniformly chosen at random. Then the probability of
decryption error

P{ f −1(Ea + f (v)) 	= v} = P

{[
2

5

(

Ea +
[
5

2
v

])]

	= v

}

= 1

2
P

{[
2

5
Ea

]

	= 0

}

+ 1

2
P

{[
2

5
(Ea + 2)

]

	= 1

}

� 1

2
P{E 	= 0} + 1

2
P{E 	= 0}

= 1 − P{E = 0} = 1 − e−0.001 < 10−3.

On the other hand,

2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ > 10−3.

So it follows that

P{ f −1(Ea + f (v)) 	= v} < 2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ.

The inequality in Theorem 2 holds.

Example 2 Let t = 2, q = 5, l = 1, m = 1, r = 1, δ = 10−4, v ∈ Z2 is uniformly
chosen at random, the disturbance E is a Laplace distribution variable with parameter
λ = 0.05 and probability density function f (x) = 1

2λe
− |x |

λ rounding to the nearest
integer, a ∈ {−1, 0, 1} is uniformly chosen at random. Similarly as Example 1, the
probability of decryption error

P{ f −1(Ea + f (v)) 	= v} = P

{[
2

5

(

Ea +
[
5

2
v

])]

	= v

}
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� 1 − P{E = 0} = 1 −
1
2∫

− 1
2

1

2λ
e− |x |

λ dx = e−10 < 10−4.

On the other hand,

2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ > 10−4.

It follows that

P{ f −1(Ea + f (v)) 	= v} < 2l
(
1 − Φ

(
q − t

2βt

√
3

mr(r + 1)

)
)

+ lδ.

The inequality in Theorem 2 holds.

3 Results and Conclusions

In this work, we first introduce the LWE problem and LWE-based cryptosystem. We
give a more precise estimation probability of decryption error based on independent
identical Gaussian disturbances. The salient significance of our work is that for any
general independent identical disturbances, we also give the estimation probability
of decryption error using central limit theorem. The upper bound probability could
be closed to 0 if we choose applicable parameters. It means that the probability of
decryption error for the cryptosystem could be sufficiently small. Then we confirm
that the LWE-based cryptosystem could have high security.

4 Discussions

4.1 Future Work

Although we have reached our objective in this work, there are still many interesting
works to study in this research area in the future. We will focus on the fully homo-
morphic encryption (FHE)-based cryptosystem later, which is an application of LWE
(Brakerski &Vaikuntanathan, 2011a, b; Dijk et al., 2010; Gentry, 2009; Gentry et al.,
1999). Fully homomorphic encryption was known to have abundant applications in
cryptography, but for three decades no plausibly secure scheme was known until
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2009. To date, the FHE-based cryptography has more than three generations. The
third generation FHE scheme based on LWE problem is proved that has some unique
and advantageous properties (Gentry et al., 1999). It also remains some improvable
technique which needs to be studied in depth.
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On the High Dimensional RSA
Algorithm—A Public Key Cryptosystem
Based on Lattice and Algebraic Number
Theory

Zheng Zhiyong, Liu Fengxia, and Chen Man

Abstract The most known public key cryptosystem was introduced in 1978 by
Rivest et al. (1978) and is now called the RSA public key cryptosystem in their
honor. Later, a few authors gave a simple extension of RSA over algebraic numbers
field (see Takagi and Naito (2015), Uematsu et al. (1985, 1986)), but they require
that the ring of algebraic integers is Euclidean ring, and this requirement is much
more stronger than the class number one condition. In this chapter, we introduce a
high dimensional form of RSA by making use of the ring of algebraic integers of an
algebraic number field and the lattice theory. We give an attainable algorithm (see
Algorithm1)which is significant both from the theoretical and practical point of view.
Our main purpose in this chapter is to show that the high dimensional RSA is a lattice
based on public key cryptosystem indeed, of which would be considered as a new
number in the family of post-quantum cryptography (see Peikert (2014), Pradhanet
al. (2019)). On the other hand, we give a matrix expression for any algebraic number
fields (see Theorem 2), which is a new result even in the sense of classical algebraic
number theory.
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1 Introduction

Let Q, R, C be the rational numbers field, real numbers field, and complex numbers
field, respectively, and Z be the integers ring. Let E ⊂ C be an algebraic numbers
field of degree n, and R ⊂ E be the ring of algebraic integers of E . Suppose that
A ⊂ R is a non-zero ideal(all ideals in this chapter are non-zero), then the factor ring
R/A is a finite ring, we denote by N (A) the number of elements of R/A, which is
called the norm of A, and denote by ϕ(A) the number of invertible elements of R/A,
which is called the Euler totient function of A. For any α ∈ R, the principal ideal
generated by α is denoted by αR, then α is an invertible element of R/A if and only
if (αR, A) = 1. It is known (see Theorem 1.19 of Narkiewicz (2004)) that

ϕ(A) = N (A)
∏

P|A
(1 − 1

N (P)
) (1)

where the product is extended over all prime ideals P dividing A. Moreover, if α ∈ R
and (αR, A) = 1, then

αϕ(A) ≡ 1(mod A). (2)

To generalize that RSA to arbitrary algebraic number fields E , we first show the
following assertion.

Theorem 1 Let P1 and P2 be two distinct prime ideals of R and A = P1P2, then for
any α ∈ R and integer k ≥ 0, we have

αkϕ(A)+1 ≡ α(mod A). (3)

Proof Let α ∈ R. If (αR, A) = 1, then (3) follows directly from (2). If (αR, A) =
A, then αR ⊂ A and α ∈ A, (3) is trivial. Thus, we only consider the cases of
(αR, A) = P1 and (αR, A) = P2. If (αR, A) = P1, then (αR, P2) = 1, by (2) we
have

αϕ(P2) ≡ 1(mod P2).

It follows that
αkϕ(A) ≡ 1(mod P2), ∀k ∈ Z, k ≥ 0.

Therefore, there exists an element β ∈ P2 such that

αkϕ(A) = 1 + β.

We thus have

αkϕ(A)+1 = α + αβ, and αkϕ(A)+1 ≡ α(mod A),

since αβ ∈ A. The same reason gives (3) when (αR, A) = P2.
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Table 1 RSA in the ring of algebraic integers

RSA in the Ring of Algebraic Integers

• Parameters: n ≥ 1 is a positive integer, E/Q is an algebraic numbers field of

degree n, R ⊂ E is the ring of algebraic integers of E . P1 and P2
are two prime ideals of R, A = P1P2, R/A is the factor ring,

S is a set of coset representatives of R/A, ϕ(A) is the Euler

function of A, 1 ≤ e < ϕ(A) and 1 ≤ d < ϕ(A) are two positive

integers such that ed ≡ 1(mod ϕ(A))

• Public keys: The ideal A and positive integer e are the public keys.

• Private keys: The prime ideals P1, P2 and the positive integer d are the

private keys

• Encryptions: For any input message α ∈ S, the ciphertext c is c ≡ αe(mod A)

• Decryption: cd ≡ αed ≡ α( mod A), one can find plaintext α from c in S

According toTheorem1, one can easily extend the classical RSAover an algebraic
number field as follows (also see Takagi and Naito (2015)), but it does not give the
proof of (3)).

Obviously, if n = 1, the above algorithm is the ordinary RSA. However, it is
difficult to find the prime ideals in R and to construct a set of coset representatives of
R/A yet. In Takagi and Naito (2015), the author supposed the ring R is a Euclidean
ring, so that S can be constructed by Euclidean algorithm in R. The simplest way is
to select an prime element α in R, so that the principal ideal αR is a prime ideal. In
algorithm I, we would precisely construct a set of coset representatives for the factor
ring R/A by the lattice theory. Here we give an approximate construction of the set
of coset representatives for factor ring R/A.

If P ⊂ R is a prime ideal, then P ∩ Z = pZ, where p ∈ Z is a rational prime
number. Since R/P is a finite field and Z/(pZ) ⊂ R/P , thus N (P) = p f , where
f (1 ≤ f ≤ n) is called the degree of P . We write pR = Pe1

1 Pe2
2 · · · Peg

g , where
P = P1 and Pi are distinct prime ideals, ei is called the ramification index of Pi .
There exists a remarkable relation among ramification indexes and degrees (see
Theorem 3 of page 181 of Ireland and Rosen (1990))

g∑

i=1

ei fi = n. (4)

Let {α1, α2, · · · αn} ⊂ R be an integral basis for E/Q, A = P1P2. Suppose that P1 ∩
Z = pZ and P2 ∩ Z = qZ, then A ∩ Z = pqZ, where p and q are two distinct
rational prime numbers.
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Lemma 1 Let

S1 =
{

n∑

i=1

aiαi | 0 ≤ ai < pq, ai ∈ Z, 1 ≤ i ≤ n

}
. (5)

Then S1 covers a set of coset representatives of R/A. Moreover, if the degrees of P1
and P2 are n, then S1 is precisely an set of coset representatives of R/A.

Proof Since A = P1P2, P1 ∩ Z = pZ, and P2 ∩ Z = qZ, we have pqR ⊂ A, thus
R/pqR maps onto R/A. To prove the first assertion, it is enough to show that S1 is a
set of coset representatives of R/pqR. Since {α1, α2, . . . αn} is an integral basis and

R = Zα1 + Zα2 + · · · + Zαn.

Suppose thatα = ∑n
i=1 miαi ∈ R, writemi = ai pq + ri , where 0 ≤ ri < pq. Clearly

α ≡
n∑

i=1

riαi (mod pqR).

Thus every coset of pqR contains an element of S1. If
∑n

i=1 riαi = ∑n
i=1 r

′
iαi are in

S1 and in the same coset mod pqR, then

n∑

i=1

(
ri − r ′

i

)
αi ≡ 0(mod pqR).

Since αi are linearly independent, it follows that

ri ≡ r ′
i ( mod pq) and ri = r ′

i , 1 ≤ i ≤ n.

Next, suppose that the degrees of P1 and P2 aren, then N (P1) = pn and N (P2) = qn ,
by (4)we thus have P1 = pR, P2 = qR, and A = pqR. The second assertion follows
immediately.

If one replaces S by S1 in Table 1, then the successful probability of decryption is

N (A)/pnqn = p f1−nq f2−n, (6)

where f1 and f2 are the degrees of P1 and P2, respectively.
We note that f1 = f2 = n if and only if P1 = pR and P2 = qR; in this special

case, we may give a numerical explanation. It is easy to see that

ϕ(A) = ϕ(pR)ϕ(qR) = (
pn − 1

) (
qn − 1

)
.

By Theorem 1, for any a ∈ Z, we have
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ak(p
n−1)(qn−1)+1 ≡ a(mod pq), k ∈ Z, k ≥ 0. (7)

Since S1 is a set of coset representatives of R/A, α = ∑n
i=1 aiαi ∈ S1, wemay regard

α as a vector (a1, a2, . . . , an) ∈ Z
n
pq . Let m = pq, 1 ≤ e < (pn − 1) (qn − 1) and

1 � d < (pn − 1) (qn − 1) such that

ed ≡ 1(mod (pn − 1)(qn − 1)).

Then for every input message α = (a1, a2, · · · , an), we use the public key (m, e)
and private key (p, q, d) to encryption and decryption for each ai in order, obvi-
ously, these are the algorithms given by Takagi and Naito (2015), we consider these
algorithms are just a simple repeat of RSA.

Themain purpose of this chapter is to show that the high dimensional form of RSA
algorithm is a lattice based on cryptosystem in general. To do this, we first establish
a relationship between an algebraic number field E and the Euclidean space Qn . Let
R

n be the Euclidean space which is a linear space over R with the Euclidean norm
|x |,

|x | =
(

n∑

i=1

x2i

) 1
2

, where x ′ = (x1, x2, · · · , xn) ∈ R
n. (8)

We use the column notation for vector in R
n , and x ′ is the transpose of x , which is

called a row vector in R
n . Qn ⊂ R

n is a subspace of R
n.

Without loss of generality, an algebraic number field E of degree n may be
expressed as E = Q(θ), where θ is an algebraic integer of degree n and Q(θ) is
the field generated by θ over Q. Let φ(x) be the minimal polynomial of θ ,

φ(x) = xn − φn−1x
n−1 − · · · − φ1x − φ0 ∈ Z[x], (9)

where all φi ∈ Z. It is known that

E = Q[θ ] =
{

n−1∑

i=0

aiθ
i | ai ∈ Q

}
. (10)

We define an one to one correspondence between E and Qn by τ :

α =
n−1∑

i=0

aiθ
i ∈ E

τ−→ α =

⎛

⎜⎜⎜⎝

a0
a1
...

an−1

⎞

⎟⎟⎟⎠ ∈ Qn (11)

and write τ(α) = α or α
τ→ α. In fact, τ is a homomorphism of additive group from

E to Qn , because of τ(aα) = aτ(α) for all a ∈ Q.
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As usual, the trace and norm mappings from E to Q are denoted by

tr(α) = trE/Q(α), and N (α) = NE/Q(α).

It is known (see corollary of page 58 of Narkiewicz (2004)) that

N (αR) = |N (α)|, ∀α ∈ R. (12)

A full-rank lattice L is a discrete addition subgroup of R
n , the equivalent expression

for L is (See Micciancio and Regev (2009), Zheng et al. (2023))

L = L(B) = {
Bx | x ∈ Z

n
}
, (13)

where B = [
β1, β2, · · · , βn

]
n×n ∈ R

n×n is an invertible matrix of n × n dimension,
B is called a generatedmatrix of L . If L ⊂ Qn , we call L a rational lattice, if L ⊂ Z

n ,
we call L an integer lattice. It is not difficult to see that every ideal of R corresponds
to an rational lattice, we have the following.

Lemma 2 Let A ⊂ R be an ideal and A �= 0, then τ(A) is a rational lattice.

Proof Let {β1, β2, · · · , βn} ⊂ A be an integral basis for E/Q, one has

A = Zβ1 + Zβ2 + · · · + Zβn.

It follows that
τ(A) = Zβ1 + Zβ2 + · · · + Zβn,

where β i = τ(βi ) ∈ Qn . Let B = [β1, β2, · · · , βn], since {β1, β2, · · · , βn} is lin-
early independent over Q, thus B is an invertible matrix, and we have

τ(A) = L(B) = {Bx | x ∈ Z
n}.

The lemma follows at once.

Let L ⊂ Qn be a rational lattice, of which be corresponded by an ideal A in E for
some suitable algebraic number field E , we call L an ideal lattice. Ideal lattice was
first introduced by Lyubashevsky andMicciancio (2006) in the case of integer lattice,
here we generalize this notation to the case of rational lattices. For more detailed
discussion about ideal lattice, we refer to (Zheng et al., 2023).

To give an attainable algorithm for high dimensional RSA, we require the follow-
ing NC-property for the algebraic number field E.

NC- property: E = Q(θ) and R = Z[θ ], (14)

where
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Table 2 Algebraic number fields with NC-property

Algebraic Number Fields with NC-property

• Quadratic Fields(see Proposition 13.1.1 of Ireland and Rosen (1990))

E = Q(
√
d), where d ∈ Z is a square-free integer and d = 2, 3(mod 4)

• Cyclotemic Fields (see Theorem 2.6 of Washington (1982))

E = Q (ξn), where ξn = e2π i/n is a primitive n-th root of unity

• Totally Real Algebraic Number Fields (see Proposition 2.16 of Washington (1982))

E = Q(ξn + ξ−1
n ), and E ⊂ R is the maximal real subfield of Q(ξn)

Z[θ ] =
{

n−1∑

i=0

aiθ
i | ai ∈ Z, 1 ≤ i ≤ n

}
. (15)

Some of the well-known algebraic number fields satisfy the NC-property, we list
a few as follows (Table2).

2 Ideal Matrices

Suppose that θ is an algebraic integer of degree n, φ(x) = xn − φn−1xn−1 − · · · −
φ1x − φ0 ∈ Z[x] is the minimal polynomial of θ , thus φ(x) is irreducible. Let θ =
θ0, θ1, θ2, · · · , θn−1 be n different roots of φ(x), the Vandermonde matrix of φ(x) is
defined by

V = Vφ = [
θ i
j

]
0≤i, j≤n−1

, and 
 = det(Vφ) �= 0. (16)

According to φ(x), we denote the rotation matrix or adjoint matrix (see page 116
of Manin and Panchishkin (2005)) by

H = Hφ =

⎛

⎜⎜⎜⎝

0 · · · 0 φ0

φ1

In−1
...

φn−1

⎞

⎟⎟⎟⎠ ∈ Z
n×n, (17)

where In−1 is the unit matrix of n − 1 dimension.

Definition 1 An idealmatrix H∗( f ) generated by the input vector f ∈ R
n is defined

by
H∗( f ) = [

f , H f , · · · , Hn−1 f
]
n×n ∈ R

n×n (18)

and all ideal matrices are denoted by
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M∗
R

= {
H∗( f ) | f ∈ R

n
}

and M∗
Q = {

H∗( f ) | f ∈ Qn
}
. (19)

Definition 2 For any two vectors f and g in R
n , the φ-conventional product is

defined by
f ⊗ g = H∗( f )g (20)

and the m-multi product is denoted by

f
⊗m =

m︷ ︸︸ ︷
f ⊗ f ⊗ · · · ⊗ f , m ∈ Z, m ≥ 1. (21)

Remark 1 If φ(x) = xn − 1, then Hφ is the classical circulant matrix (see Davis
(1994)), and conventional product with circulant matrix was first proposed by Hoff-
stein et al. (1998), which plays a key role in their cryptosystem. In Zheng et al.
(2023), we generalized this definition with more general rotation matrices.

By (18), H∗( f ) = 0 is a zero matrix if and only if f = 0 is a zero vector, and
H∗( f + g) = H∗( f ) + H∗(g), then H∗( f ) = H∗(g) if and only if f = g. Thus
we may regard H∗ : R

n → M∗
R
as an one to one correspondence, which is also a

homomorphism of Abel group.
The main aim of this subsection is to show the Qn is a field under the φ-

conventional product and M∗
Q is also a field under the ordinary additive and product

of matrices, both of which are isomorphic to the algebraic number field E = Q(θ).
To do this, we require some basic properties of the ideal matrices.

Let e1, e2, · · · , en be the unit vectors of R
n , namely

e1 =

⎛

⎜⎜⎜⎝

1
0
...

0

⎞

⎟⎟⎟⎠ , e2 =

⎛

⎜⎜⎜⎝

0
1
...

0

⎞

⎟⎟⎟⎠ , · · · , en =

⎛

⎜⎜⎜⎝

0
0
...

1

⎞

⎟⎟⎟⎠ . (22)

Lemma 3 Let τ be defined by (11), then we have

{
τ
(
θ k
) = ek+1, 0 ≤ k ≤ n − 1

H∗ (ek) = Hk−1, 1 � k � n.
(23)

Proof τ
(
θ k
) = ek+1 follows directly from the definition of τ . We use induction

to prove H∗ (ek) = Hk−1. It is easy to see that H∗ (e1) = In , the unit matrix of n
dimension. Suppose that H∗ (ek−1) = Hk−2, for k ≥ 2, note that ek = Hek−1, it
follows that
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H∗ (ek) = [
Hek−1, H

2ek−1, · · · , Hnek−1
]

= H
[
ek−1, Hek−1, · · · , Hn−1ek−1

]

= HH∗(ek−1) = HHk−2 = Hk−1.

The lemma follows immediately.

Since φ(x) is the characteristic polynomial of H , by the Hamilton-Cayley theo-
rem, we have

φ(H) = 0, or Hn = φ0 + φ1H + · · · + φn−1H
n−1. (24)

Therefore, all the rotation matrices Hk(k ≥ 0) are the ideal matrices, especially, the
unit matrix In = H∗ (e1) is an ideal matrix.

Let R[x] be the polynomials ring and R(x)/〈φ(x)〉 be the quotient ring, where
〈φ(x)〉 is the principal ideal generated by φ(x) in R[x]. We establish an one to one
correspondence t between R

n and R[x]/〈φ(x)〉 by

f =

⎛

⎜⎜⎜⎝

f0
f1
...

fn−1

⎞

⎟⎟⎟⎠ ∈ R
n t−→ f (x) = f0 + f1x + · · · + fn−1x

n−1 ∈ R[x]/〈φ(x)〉

(25)
and write t ( f ) = f (x), or t−1( f (x)) = f .

Lemma 4 For any f ∈ R
n, the ideal matrix H∗( f ) is given by

H∗( f ) = f (H) = f0 In + f1H + · · · + fn−1H
n−1. (26)

Moreover, if F(x) ∈ R[x] and F(x) ≡ f (x)(mod φ(x)), then f (H) = F(H).

Proof Writing f = f0e1 + f1e2 + · · · + fn−1en , by Lemma 3, we have

H∗( f ) = f0H
∗(e1) + f1H

∗(e2) + · · · + fn−1H
∗(en)

= f0 In + f1H + · · · + fn−1H
n−1 = f (H).

Suppose that F(x) ≡ f (x)(mod φ(x)), by (24), we have f (H) = F(H) immedi-
ately.

Lemma 5 Let f and g be two vectors in R
n, and f (x), g(x) be the corresponding

polynomials, respectively, then we have

t ( f ⊗ g) ≡ f (x)g(x)(mod φ(x)). (27)

Proof Since t is a bijection, it is suffice to show that
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t−1( f (x)g(x)) = f ⊗ g. (28)

Let g(x) = g0 + g1(x) + · · · + gn−1xn−1 ∈ R[x]/〈φ(x)〉, then

xg(x) = g0x + · · · + gn−1x
n

= gn−1φ0 + (g0 + φ1gn−1)x + · · · + (gn−2 + φn−1gn−1)x
n−1.

It follows that
t−1(xg(x)) = Ht−1(g(x)) = Hg.

More generally, we have

t−1
(
xkg(x)

) = Hkt−1(g(x)) = Hkg, 0 ≤ k ≤ n − 1. (29)

Let f (x) = f0 + f1x + · · · + fn−1xn−1, then

t−1( f (x)g(x)) =
n−1∑

k=0

fk t
−1 (xkg(x)

) =
n−1∑

k=0

fk H
kg = H∗( f )g = f ⊗ g.

The lemma follows immediately.

Lemma 6 For any two vectors f =

⎛

⎜⎜⎜⎝

f0
f1
...

fn−1

⎞

⎟⎟⎟⎠ ∈ R
n, g =

⎛

⎜⎜⎜⎝

g0
g1
...

gn−1

⎞

⎟⎟⎟⎠ ∈ R
n,we have

the following properties for ideal matrices:

i H∗( f )H∗(g) = H∗ (g)H∗( f
) ;

ii H∗( f )H∗(g) = H∗(H∗( f )g);
iii H∗( f ) = V−1

φ diag { f (θ0) , f (θ1) , · · · , f (θn−1)} Vφ;

iv det
(
H∗( f )

) = ∏n−1
i=0 f (θi );

v If f ∈ Qn, f �= 0, then H∗( f ) is an invertible matrix and

(
H∗( f )

)−1 = H∗(u),

where u(x) ∈ Q[x] is the unique polynomial such that u(x) f (x) ≡ 1(mod φ(x)) in
Q[x].
Proof By Lemma 4, we have

H∗( f )H∗(g) = f (H)g(H) = g(H) f (H) = H∗(g)H∗( f ).

To prove (ii), we write H∗( f )g = f ⊗ g, it follows that
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H∗ (H∗( f )g
) = H∗( f ⊗ g) = f (H)g(H) = H∗( f ) · H∗(g).

By Theorem 3.5 of Davis (1994), we have

H = V−1
φ diag {θ0, θ1, · · · , θn−1} Vφ. (30)

It follows that

H∗( f ) = f (H) = V−1
φ diag { f (θ0) , f (θ1) , · · · , f (θn−1)} Vφ.

Since diag { f (θ0) , f (θ1) , · · · , f (θn−1)} is a diagonal matrix, we have

det
(
H∗( f )

) = det (diag { f (θ0) , f (θ1) , · · · , f (θn−1)}) =
n−1∏

i=0

f (θi ) .

To show the last assertion, since f ∈ Qn, f �= 0, and φ(x) is an irreducible poly-
nomial, thus we have ( f (x), φ(x)) = 1 in Q[x], There are u(x) ∈ Q[x] and v(x) ∈
Q[x] such that

u(x) f (x) + v(x)φ(x) = 1.

By (29) and noting that t−1(1) = e1 ∈ R
n , we have u ⊗ f = e1. It follows that

H∗(u) · H∗( f ) = H∗(e1) = In.

We complete the proof of Lemma.

Next, we discuss the algebraic number field E = Q(θ) and recall τ is an one to
one correspondence between E and Qn .

Lemma 7 For any two elements α and β in E, we have

τ(αβ) = τ(α) ⊗ τ(β) = α ⊗ β. (31)

Proof Let β = β0 + β1θ + · · · + βn−1θ
n−1, where βi ∈ Q, it is easily seen that

θβ = φ0βn−1 + (β0 + φ1βn−1) θ + · · · + (βn−2 + φn−1βn−1) θn−1,

thus we have τ(θβ) = Hτ(β) = Hβ, and

τ
(
θ kβ

) = Hkτ(β) = Hkβ, 0 ≤ k ≤ n − 1. (32)

Let α = α0 + α1θ + · · · + αn−1θ
n−1, by Lemma 4, we have
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τ(αβ) =
n−1∑

k=0

αkτ
(
θ kβ

) =
n−1∑

k=0

αk H
kβ = H∗(α)β = α ⊗ β,

the lemma follows immediately.

Let A = (
ai j
)
n×n be a square matrix, and the trace of A is defined by Tr(A) =∑n

i=1 aii as usual. The main result of this subsection is the following theorem.

Theorem 2 Let E = Q(θ) be an algebraic number field of degree n, and φ(x) ∈
Z[x] be the minimal polynomial of θ . Then the linear space Qn is a field under
the φ-conventional product, and all of the ideal matrices M∗

Q generated by rational
vectors is also a field with the ordinary additive and product of matrices. Both of
them are isomorphic to E, namely

E ∼= Qn ∼= M∗
Q . (33)

Moreover, let α ∈ E, tr(α) and N (α) be the trace and norm of α, then we have

tr(α) = Tr
(
H∗(α)

)
, and N (α) = det

(
H∗(α)

)
. (34)

Proof τ : E → Qn given by (11), it is clearly that

τ(α + β) = τ(α) + τ(β), and τ(αβ) = τ(α) ⊗ τ(β).

Thus Qn is a field under the φ-conventional product and E ∼= Qn . By Lemma 6, we
have

H∗(α + β) = H∗(α) + H∗(β) and H∗ (α ⊗ β
) = H∗(α)H∗(β),

thus M∗
Q is also a field and E ∼= Qn ∼= M∗

Q .
The main difficulty is to prove (34). We observe that θ induces a linear transfor-

mation of E/Q by α → θα, and the matrix of this linear transformation under basis{
1, θ, θ2, · · · , θn−1

}
is just H , namely

θ
(
1, θ, θ2, · · · , θn−1

) = (
1, θ, θ2, · · · , θn−1

)
H.

By the definition of trace, we have

tr(θ) = Tr(H), and tr(θ k) = Tr(Hk), , 1 ≤ k ≤ n − 1.

Let α = α0 + α1θ + · · · + αn−1θ
n−1 ∈ E , it follows that

tr(α) =
n−1∑

k=0

αi tr
(
θ k
) =

n−1∑

i=0

αi Tr
(
Hk
) = Tr

(
n−1∑

k=0

αi H
k

)
= Tr

(
H∗(α)

)
.
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To show that conclusion on the norm, letα(i)(0 ≤ i ≤ n − 1)be then conjugations
of α in the smallest normal extension of Q containing E , where α(0) = α = α0 +
α1θ + · · · + αn−1θ

n−1. It is easily seen that

α(i) =
n−1∑

k=0

αkθ
k
i , where θ0 = θ and 0 ≤ i ≤ n − 1.

By property (iii) of Lemma 6, we have

N (α) =
n−1∏

i=0

α(i) =
n−1∏

i=0

α (θi ) = det
(
H∗(α)

)
.

We complete the proof of Theorem 2.

The cyclic lattice in R
n was introduced by Micciancio (2007), (also see Zheng

et al. (2023)), which plays an important role in Ajtai’s construction of collision
resistant Hash function (see Ajtai and Dwork (1997)). As an application, we show
that every ideal in an algebraic number field corresponds to a cyclic lattice:

Corollary 1 Let A ⊂ R be an ideal and A �= 0, then τ(A) ⊂ Qn is a cyclic lattice.

Proof Suppose that α ∈ A. Since θ ∈ R, then θα ∈ A. By (31), we have

τ(θα) = Hα ∈ τ(A).

Thus τ(A) is a cyclic lattice.

3 High Dimensional RSA

In this section, we give an attainable algorithm for the high dimensional RSA by
making use of lattice theory, and this algorithm is significant both from the theoretical
and practical point of view. Suppose that the algebraic numbers field E satisfying
the NC-property, then R = Z[θ ] is the ring of algebraic integers of E , the restriction
of correspondence τ gives a ring isomorphism from R to Z

n . Let Z(x) be the ring of
integer coefficients polynomials and (φ(x)) be the principal ideal generated by φ(x)
in Z(x), it is easy to see that R ∼= Z[x]/(φ(x)). Let M∗

Z
be the set of ideal matrices

generated by an integral vector, i.e.

M∗
Z

= {
H∗( f ) | f ∈ Z

n
}
. (35)

Then the following four rings are isomorphic from each other

Z[x]/(φ(x)) ∼= R ∼= Z
n ∼= M∗

Z
. (36)
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For any polynomial α(x) = α0 + α1x + · · · + αn−1xn−1 ∈ Z[x]/(φ(x)), the cor-
responding algebraic integer is α = α0 + α1θ + · · · + αn−1θ

n−1 ∈ R, we write this
isomorphism by

α(x) → α
τ−→ α

H∗−→ H∗(α). (37)

A φ-ideal lattice means an integer lattice of which corresponds an ideal of
Z(x)/(φ(x)), it was first introduced by Lyubashevsky and Micciancio in (see also
Zheng et al. (2023)), which also plays a key role in Gentry’s construction for the full
homomorphic cryptosystem (see Gentry (2009)), and Fluckiger and Suarez (2006)
extended this definition to total real number field.

Lemma 8 Let E be an algebraic numbers field with NC- property, R = Z[θ ] be the
ring of algebraic integers of E. Then there is an one to one correspondence between
ideals of R and the φ-ideal lattices. Moreover, if α ∈ R, then we have

τ(αR) = L
(
H∗(α)

)
. (38)

In general, suppose that A ⊂ R is an ideal and A �= 0, then there exist two elements
α and β in A such that

τ(A) = L
(
H∗(α)

)+ L
(
H∗(β)

)
. (39)

Proof Since there is an one to one correspondence between the φ-ideal lattices and
the ideals of Z[x]/(φ(x)) (See Corollary of Zheng et al. (2023)), by (36), the first
assertion follows immediately. Let α ∈ R, then αR = {αx | x ∈ R}, by Lemma 7
we have

τ(αx) = H∗(α)x, where x =

⎛

⎜⎜⎜⎝

x0
x1
...

xn−1

⎞

⎟⎟⎟⎠ ∈ Z
n.

It follows that
τ(αR) = {

H∗(α)x | x ∈ Z
n
} = L

(
H∗(α)

)
.

To prove (39), it is known that any ideal of R is generated by at most two elements
(see corollary 5 of page 11 of Narkiewicz (2004) ), namely, A = αR + βR, then we
have

τ(A) = τ(αR) + τ(βR) = L
(
H∗(α)

)+ L
(
H∗(β)

)
.

To introduce an attainable algorithm for high dimensional RSA, we require some
basic results from lattice theory. Let L = L(B) ⊂ R

n be a full-rank lattice, and the
determinant of L is defined by

d(L) = | det(B)|. (40)



On the High Dimensional RSA Algorithm … 183

Suppose that the generated matrix B = [
b1, b2, · · · , bn

]
, bi ∈ R

n is the column

vectors of B. Since
{
b1, b2, · · · , bn

}
is a basis for R

n , let B∗ =
{
b

∗
1, b

∗
2, · · · , b

∗
n

}

be the corresponding orthogonal basis, where b
∗
1 = b1, and b

∗
i is obtained by the

Gram-Schmidt orthogonal process in order.
A basis B is called in Hermited Normal Form (HNF) if it is upper triangular, all

elements on the diagonal are strictly positive, and any other elements bi j satisfies
0 ≤ bi j < bii . It is easy to see that every integer lattice L = L(B)has a unique basis in
Hermited Normal Form, denoted by HNF(L) (see Theorem 2.4.3 of Cohen (1993)).
Moreover, given any basis B for lattice L ,HNF(L) can be efficiently computed from
B (see Cohen (1993), Micciancio (2001)).

Proposition 1 Let L = L(B) and B = (bi j )n×n be the basis in HNF. Then the cor-
responding orthogonal basis B∗ is a diagonal matrix, namely

B∗ = diag {b11, b22, · · · , bnn} . (41)

Moreover, we have

d(L) =
n∏

i=1

bii . (42)

Proof See Micciancio (2001).

Definition 3 Let L = L(B) ⊂ R
n be a full-rank lattice, and B∗ =

[
b

∗
1, b

∗
2, · · · , b

∗
n

]

be the corresponding orthogonal basis, the orthogonal parallelepiped F (B∗) is
defined by

F(B∗) =
{

n∑

i=1

xib
∗
i | 0 ≤ xi < 1 and xi ∈ R

}
. (43)

Proposition 2 Let L = L(B) ⊂ Z
n be an integer lattice, B = HNF(L) be the basis

in HNF and B∗ = diag {b11, b22, · · · , bnn} be the corresponding orthogonal basis,
F (B∗) is the orthogonal parallelepiped given by (43), then S is a set of coset repre-
sentatives for the quotient group Z

n/L, where

S = F
(
B∗) ∩ Z

n = {
x ′ = (x1, x2, · · · , xn) | ∀xi ∈ Z and 0 ≤ x1 < bii

}
.

Proof See Sect. 4.1 of Micciancio (2001).

Now, we return to the algebraic numbers field E = Q[θ ] (with NC-property). Let
α, β ∈ R be two algebraic integers, by Lemma 8, the principal ideal αR corresponds
to the minimal φ-ideal lattice L(H∗(α)). Thus A = (αR)(βR) = αβR corresponds
to L (H∗(α ⊗ β)).

Definition 4 For given α, β ∈ R, τ(α) = α, and τ(β) = β, we denote the lattice
Lα,β by
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Lα,β = L
(
H∗(α ⊗ β)

)
. (44)

The HNF basis of Lα,β is denoted by Bα,β and the corresponding orthogonal basis
is denoted by

B∗
α,β = diag {b1, b2, · · · , bn} , (45)

where bi ∈ Z and bi ≥ 1. The parallelepiped is given by

Sα,β = {
(x1, x2, · · · , xn) ∈ Z

n | xi ∈ Z and 0 ≤ xi < bi
}
. (46)

Lemma 9 Let α ∈ R, β ∈ R, and A = αβR. Then Sα,β given by (46) is correspond-
ing to a set of coset representatives of the factor ring R/A in the algebraic numbers
field E with NC-property.

Proof By Proposition 1, it is easy to see that

∣∣Sα,β

∣∣ =
n∏

i=1

bi = ∣∣det
(
H∗(α ⊗ β)

)∣∣ = ∣∣det
(
H∗(α)

)∣∣ · ∣∣det (H∗(β)
)∣∣ = d

(
Lα,β

)
.

By Theorems 2 and (12), we have

N (A) = |N (α · β)| = |N (α)| · |N (β)| = ∣∣det
(
H∗(α)

)∣∣ · ∣∣det (H∗(β)
)∣∣ = d

(
Lα,β

)
.

It follows that N (A) = ∣∣Sα,β

∣∣. Since E satisfies NC-property, if α ∈ R, then α =
τ(α) ∈ Z

n , hence α ≡ β(mod A) in R, if and only if

α ≡ β
(
mod Lα,β

)
.

The lemma follows from Proposition 2 immediately.

The main result of this subsection is the following theorem.

Theorem 3 Let E be an algebraic numbers field of degree n with NC-property,
α ∈ R, β ∈ R be two distinct prime elements, A = αβR, and Lα,β be the lattice
given by (44). Then for any a ∈ Z

n, k ∈ Z, k ≥ 0, we have

a⊗(kϕ(α,β)+1) ≡ a
(
mod Lα,β

)
, (47)

where
ϕ(α, β) = (∣∣det

(
H∗(α)

)∣∣− 1
) (∣∣det

(
H∗(β)

)∣∣− 1
)
. (48)

Proof Since E satisfies NC-property, a ∈ Z
n , then a = τ−1(a) ∈ R. By Theorem 1,

we have
akϕ(A)+1 ≡ a( mod A).

It is easy to see that
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Table 3 Algorithm I

Algorithm 9.1: RSA in the Algebraic Numbers Field

n ≥ 1 is a positive integer, E/Q is an algebraic numbers field with NC-property of

degree n, R ⊂ E is the ring of algebraic integers of E , α ∈ R, β ∈ R are two distinct

prime elements of R, A = αβR is a principal ideal of R, H∗(α ⊗ β) is the ideal

matrix corresponding to A, Lα,β = L
(
H∗(α ⊗ β)

)
is the lattice generated by

H∗(α ⊗ β), Bα,β = HNF
(
Lα,β

)
is the basis of Lα,β in HNF,

B∗
α,β = diag {b1, b2, · · · , bn} is the corresponding orthogonal basis

• Parameters: ϕ(α, β) = (|det (H∗(α))| − 1)
(∣∣det

(
H∗(β)

)∣∣− 1
)
,

Sα,β = {x ′ = (x1, x2, · · · , xn) ∈ Z
n | 0 ≤ xi < bi }. 1 ≤ e < ϕ(α, β),

1 ≤ d < ϕ(α, β), such that ed ≡ 1(mod ϕ(α, β))

• Public keys: The rotation matrix H , the lattice L(Bα,β) = Lα,β and the

positive integer e are public keys

• Private keys: Ideal matrices H∗(α), H∗(β), the basis H∗(α ⊗ β) of Lα,β

and positive integer d are private keys.

• Encryption: For any input message a ∈ Sα,β , the ciphertext c is given by

c ≡ a⊗e(mod Lα,β).

• Decryption: c⊗d ≡ a⊗de ≡ a⊗(kϕ(α,β)+1) ≡ a(mod Lα,β). One can find the plaintext

a from c in Sα,β

ϕ(A) = ϕ(αR)ϕ(βA) = (N (αR) − 1)(N (βR) − 1)

= (|N (α)| − 1)(|N (β)| − 1)

= (∣∣det
(
H∗(α)

)∣∣− 1
) (∣∣det

(
H∗(β)

)∣∣− 1
)

= ϕ(α, β).

By Lemma 8, we have

τ(A) = τ(αβR) = L
(
H∗(α ⊗ β)

) = Lα,β and τ
(
akϕ(α,β)+1

) = a⊗(kϕ(α,β)+1).

Therefore, (47) follows immediately.

According to the above theorem, we may describe an attainable algorithm for
high dimensional RSA as follows (Table3).

Remark 2 If the class number hE = 1, in other words, R is a UFD, then the prime
elements are equivalent to irreducible elements in R, and one can find prime elements
α from α(x) ∈ Z[x]/(φ(x)) and α(x) irreducible.
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4 Security and Example

The classical RSA public key cryptosystem is nowadays used in a wide variety of
applications ranging from web browsers to smart cords. Since its initial publication
in 1978, many researchers have tried to look for vulnerabilities in the system. Some
clever attacks have been found (see Bonech (2002), Coppersmith (2001)). How-
ever, none of the known attacks is devastating and the ordinary RSA system is still
considered secure.

The security of highdimensionalRSAdepends onvirtually factoringof an element
of the algebraic integers ring R into product of of distinct prime elements. Factoring
on R is much more complicated than factoring of a positive integer, and none of
efficient method is known up to day, thus we consider the high dimensional RSA
almost absolutely secure.

To see the size of private keys, since det (H∗(α)) = N (α), it may be extremely
huge, for example, if α = p ∈ Z, β = q ∈ Z are prime numbers, then

det
(
H∗(α)

) = N (α) = pn, det
(
H∗(β)

) = qn

and
ϕ(α, β) = (

pn − 1
) (
qn − 1

)
,

which is much larger than pq, the latter is the site of public key of the classical RSA
cryptosystem.

The lattice based on cryptography has been intensively studied for the past two
decades. The GGH cryptosystem proposed by Goldreich et al. (1997) is perhaps
the most intuitive encryption scheme based on lattices. The public key is a “bad”
basis for a lattice, and Micciancio proposed in (2001) to use, as the public basis, the
Hermite Normal Form B = HNF(L). The private key of GGH is an exceptionally
good basis for L . The security of GGH relies on the assumption that it is difficult to
find a special basis for L from a known basis of L . In this sense, we regard the high
dimensional RSA as secure as GGH/HNF cryptosystem at least.

Another number theoretic cryptosystem based on the lattice is NTRUEncrypt.
The public key cryptosystem NTRU proposed in 1996 by Hoffstein et al. (1998)
is the fastest known lattice-based encryption scheme, although its description relies
on arithmetic over polynomial quotient ring Z [x]/〈xn − 1〉, it was easily observed
that it could be expressed as a lattice based on cryptosystem. NTRU uses a q-ary
convolutional modular lattice(see Micciancio and Regev (2009), Zheng (2022)), its
public key is also the HNF basis of L, and the private key is a special basis of L
containing two secrete polynomials f (x) and g(x). Obviously, our algorithm I is at
least as hard as solving NTRUEncrypt.

Unfortunately, neither GGH nor NTRU is supported by a proof of security show-
ing that breaking the cryptosystem is at least as hard as solving some underlying
lattice problem; they are primarily practical proposals aimed at offering a concrete
alternative to RSA or other number theoretic cryptosystems (see page 166 of Mic-
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ciancio and Regev (2009)). However, the significance of this chapter is to show that
the real alternative of RSA is the high dimensional RSA we present here rather than
GGH and NTRU.

Example 1 Finally, we give an example and see how to work the high dimensional
RSA in a quadratic field. Let E = Q(

√
d), d ∈ Z be a square-free integer and d ≡ 2,

or 3 mod 4, thus E satisfies the NC-property. Let δE be the discriminant of E , and
it is known that δE = 4d (see Proposition 13.1.2 of Ireland and Rosen (1990)). Let
p ∈ Z be an odd prime satisfying the following condition:

p � 4d, and x2 ≡ d(mod p) is not solvable in Z. (49)

ByProposition 13.1.3 of Ireland andRosen (1990), we know that p is a prime element
in E .

According to Algorithm I, we select two large primes p and q of which satisfying
(49). Let α = p and β = q, then

ᾱ =
(
p
0

)
, β̄ =

(
q
0

)
, H∗(α) =

(
p 0
0 p

)
, and H∗(β) =

(
q 0
0 q

)
.

It follows that

H∗(α ⊗ β) = H∗(α)H∗(β) =
(
pq 0
0 pq

)
, Lα,β = L

(
H∗(α ⊗ β)

)
(50)

and

Sα,β =
{
x =

(
x1
x2

)
∈ Z

2 | 0 ≤ x1, x2 < pq

}
. (51)

It is easy to see that
ϕ(α, β) = (p2 − 1)(q2 − 1). (52)

In this special case, the two-dimensional RSA may be described as follows
(Table4).

We can similarly deal with the cases of Cyclotomic Fields. Let n = ϕ(m) for some
positive integers m, ξm = e2π i/m, E = Q(ξm), and R ⊂ E be the ring of algebraic
integers of E . Suppose that p ∈ Z is a rational prime number, then p is a prime
element of R if and only if (see Theorem 2 of page 196 of Ireland and Rosen (1990))

p � m and pϕ(m) ≡ 1(mod m). (53)

Suppose that p ∈ Z and q ∈ Z are two distinct prime numbers satisfying (53), we
obtain the lattice L(H∗(p ⊗ q)) and an attainable algorithm in Q(ξm).
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Table 4 RSA in a quadratic field

RSA in A Quadratic Field

• Parameters: E = Q(
√
d), d is a square-free integer and d ≡ 2 or 3(mod 4)

the rotation matrix H =
(
0 d

1 0

)
, p, q are two large and distinct

prime numbers of which satisfy (49). N = pq and χ(N ) = (
p2 − 1

) (
q2 − 1

)

L = L(B) is a lattice, B =
(
N 0

0 N

)
. 1 ≤ e < χ(N ), 1 ≤ d1 < χ(N )

such that ed1 ≡ 1(mod χ(N ))

• Public keys: H, N and the positive integer e are public keys

• Private keys: p, q and the positive integer d1 are private keys

• Encryption: For any a =
(
a1
a2

)
∈ Z

2
pq , the ciphertext c =

(
c1
c2

)
∈ Z

2

given by c ≡ a⊗e(mod L)

• Decryption: c⊗d1 ≡ a⊗d1e ≡ a(mod L). One can find the plaintext a from c in Z
2
pq
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Central Bank Digital Currency
Cross-Border Payment Model Based
on Blockchain Technology

Mao Hanyu

Abstract Since the turn of the twenty-first century, the growth of the globalized
economy and trade has accelerated, and the cross-border payment system, which
is an essential component of the international financial infrastructure, has played a
significant role in the global economy and trade. However, traditional cross-border
payments present risks and challenges, such as expensive processing fees, limited
payment efficiency, information asymmetry in the trade process, and reliance on
a highly centralized cross-border payment system. This chapter is based on con-
sortium blockchain technology and utilizes Polkadot’s Parachain, Relay chain, and
cross-chain technologies as references; a scalable, high-efficiency, high-security,
and privacy-protecting central bank digital currency cross-border payment model
is designed. Analyzed the usage of hash digest technology and CoinJoin technol-
ogy to avoid the tracing of transactions in order to protect privacy. The issuance of
multi-country central bank digital currency or stablecoin anchored to a basket of fiat
currencies is discussed as the currency in circulation in the model. Finally, the central
bank digital currency cross-border payment development trend is summarized and
forecasted.

Keywords Payment model · Cross-border · Blockchain technology · CBDC

1 Introduction

Since 2020, the global digital transformation has been developing rapidly, and the
era of central bank digital currency (CBDC) is accelerating, with China’s digital
currency—e-CNY leading the world. The launch of the e-CNY not only promotes
the healthy development of China’s digital economy but also benefits the RMB
internationalization plan and speeds up the pace of RMB internationalization. At the
same time, CBDC has especially significant advantages in cross-border payments,
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which can effectively solve the problems of extended time, high cost, low efficiency,
and low transparency faced by current cross-border payments. In addition, building
a cross-border payment network system based on CBDC will also be a pivotal key
to unlocking the opportunity to break the monopoly position of the US dollar and
reshape the global cross-border payment system. Therefore, CBDC cross-border
payments will inject new vitality into the rapid growth of our economy and will
also play a pivotal role in establishing a fair and equitable international monetary
settlement system.

With the rapid development of CBDC, CBDC cross-border payments are becom-
ing a research hotspot in the central bank’s digital currency research area. According
to a survey by BIS, more than 50% of central banks consider cross-border payments
as one of the crucial reasons for accelerating the development of CBDC. Traditional
cross-border payments suffer from high fees, low efficiency, information asymmetry
in the cross-border trade process, and the potential financial risk of a highly central-
ized cross-border payment system. The CBDC cross-border payment system, with
the characteristics of high payment efficiency, low cost, and high transparency, is
not only conducive to solving the current existence of cross-border trade friction and
breaking the centralized cross-border payment system, but also conducive to elimi-
nating the use of competitive currency devaluation, currency war, and other vicious
behaviors between countries, promoting the peaceful development of financial mar-
kets, and laying amoderately centralized cross-border payment systemwith a healthy
market foundation for international trade (Yang, 2020). Therefore, a large number of
central banks and international organizations have started to try to explore the appli-
cation of CBDC in cross-border payments. On February 26, 2022, the United States,
together with the European Union, the United Kingdom, and Canada, issued a joint
statement announcing that Russia is banned from using the Society for Worldwide
Interbank Financial Telecommunications (SWIFT) international settlement system.
It undoubtedly accelerated the research of countries investigating the idea of bypass-
ing SWIFT for cross-border transactions.

Currently, the research on cross-border payment of central bank digital currency
is still in the initial stage. There is a lack of in-depth research for a scalable and
high-efficiency cross-border payment model, which leads to a lack of necessary
theoretical research and essential technical support for its development. Therefore,
it is significant to design a scalable, high-efficiency, CBDC cross-border payment
model based on blockchain.

CBDC cross-border payments issued by central banks have become a significant
trend. In this chapter, we use Polkadot’s Parachain, Relay Chain, and cross-chain
technologies as references for the CBDC cross-border payment model, and we com-
mit to designing a scalable, high-efficiency, highly secure, and privacy-preserving
CBDC cross-border payment model based on consortium chain.
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2 CBDC Cross-Border Payment Development Current
Situation

CBDC cross-border payments can be made in two ways: first, retail central bank
digital currencies (CBDCs) in a given jurisdiction are available to people both inside
and outside the jurisdiction, with no coordination between central banks; and second,
central banks work together to establish access and settlement arrangements between
different retail or wholesale CBDCs (Wan & Wu, 2022). CBDC cross-border pay-
ments can be divided into four quadrants: “same system and same currency”, “same
system and different currency”, “same currency and different currency”, “same cur-
rency and different system”, and “different currency and different system”. Among
them, “same system and different currency” and “different currency and different
system” are the most typical scenarios for cross-border payments and will be a key
research focus in the future.

At this stage, for CBDC cross-border payments research, the following threemod-
els are used to achieve cross-border and cross-currency interoperability, enhancing
compatibility of CBDCs systems; linking multiple CBDC systems; integrating mul-
tiple CBDCs in a single multi-CBDC (mCBDC) system (Auer et al., 2021). Models
linking multiple CBDC systems include the Stella project of the European Cen-
tral Bank and the Bank of Japan (2019); and the Jasper-Ubin project of the Bank
of Canada (BOC) and the Monetary Authority of Singapore (MAS) (2019). Jura
project for cross-border payment between Banque de France and Swiss National
Bank. Integrating multiple CBDCs in a single mCBDC system mainly contains the
Aber project of the UAE and the Central Bank of Saudi Arabia (2020); Dunbar, a
joint project of the Monetary Authority of Singapore and the BIS (2022); and the
Inthanon-LionRock project of the Bank of Thailand and the Hong Kong Monetary
Authority (2020). In 2021, with the addition of the Digital Currency Institute of the
People’s Bank of China and the United Arab Emirates Bank, the project evolved into
its third phase. It was renamed the mCBDC Bridge (mBridge) Project (Inthanon-
LionRock to mBridge-Building a multi CBDC platform for international payments,
2021).

Recently, the CBDC projects Jasper, Ubin, and Stella have completed their exper-
iments. All these projects continue the line “from wholesale payments to voucher
payments to cross-border payments” (Yao, 2021). Thus, enabling cross-border pay-
ments is the ultimate goal and an essential part of theCBDCresearch route.Moreover,
the experimental results of these representative wholesale CBDC projects show that
current technology and design solutions can support Real-Time Gross Settlement
(RTGS) in terms of efficiency and can also realize Liquidity Saving Mechanism
(LSM) in terms of functionality (Huang, 2022). Also, these projects show that cross-
chain technology is a crucial issue for CBDC cross-border payments. Although
CBDC cross-border payments have become a research hotspot both at home and
abroad, most existing research scholars focus on the two fields of economics and law
for CBDC cross-border payments, and the proposed CBDC cross-border payment
model has not been sufficiently investigated on a technical level.
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At the technical level, most research by central banks or international organiza-
tions has focused on linkingmultipleCBDCsystems and integratingmultipleCBDCs
in a singlemCBDC system. However, most projects are still at the experimental stage
with the participation of only a few countries and lack a certain degree of scalability
in practice. At the same time, the cross-chain technology used to linkmultiple CBDC
systems, hash time-locked contract (HTLC), is limited in its application scenarios,
where the two sides of a transaction need to establish N2 magnitude of transaction
channels between them, and the number of transaction channels grows in power as N
increases. Therefore, the scalability of hash time-locked contract (HTLC) is deficient
and may not be suitable for application to large-scale economies. While integrating
multiple CBDCs in a single mCBDC system can avoid complex hash time-lock con-
tract (HTLC) and improve payment efficiency, the establishment of privacy groups
inevitably introduces multi-ledger-style behaviors and constraints that hinder the
realization of transaction atomicity. Therefore, research on cross-chain technology
and the introduction of effective privacy protection mechanisms to achieve transac-
tion atomicity and improve transaction efficiency while ensuring transaction privacy
are the focus of future research.

3 Polkadot Technology Overview

Polkadot is a scalable heterogeneous multi-chain technology that provides a more
general cross-chain protocol. Any blockchain system compatible with Polkadot’s
cross-chain protocol will be able to complete cross-chain interconnection (Polkadot,
2016). Polkadot is envisioned as a new form of blockchain “blockchain network” and
one of the critical infrastructures of the future web 3.0. As shown in Fig. 1, Polkadot
is completed with Parachain, relay chain, and bridge. It uses various Parachain tech-
nologies to satisfy the needs of different applications. It uses Relay chain technology
to unify the management of consensus security and data interaction, which can solve
the scalability and isolability problems of current blockchain technology.

3.1 Relay Chain and Parachain Technology

The Parachain is a member blockchain of Polkadot that collects and processes trans-
actions and transmits them to a Relay chain. Each participating Parachain has a high
degree of autonomy and flexibility. Each Parachain can be designed and focused on a
specific scenario as long as it follows the protocols set by Polkadot. The Relay chain
is the core of the Polkadot network, responsible for maintaining the whole network’s
security, coordinating consensus among different Parachains, and forwarding cross-
chain transactions between each Parachain. The consensus mechanism of the Relay
chain uses an asynchronous Byzantine fault-tolerant algorithm to reach consensus.
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Fig. 1 Polkadot architecture
schematic

In order to maintain the relay chain, the Polkadot network establishes four roles:
Nominator, Validator, Collator, and Fisherman. Nominators are a group of token
(DOT) holders who have the authority to vote for the Validator. Validator nodes
have the highest authority in the network, having the ability to create blocks for
the whole network. They are elected by Nominator vote and can validate blocks
and pack blocks after a sufficient deposit (TOKEN) is mortgaged in the system. If
the validators perform their duties, they are rewarded for generating blocks. If the
validators don’t perform their duties, they are punished by having some or all of
their deposit deducted. The collators are a group of nodes that collect information
from the Parachain and package it for submission to the validators. They submit
candidate blocks to the validators and assist them in creating valid blocks, which are
rewarded with a fee. Collators will go and collect as much information as possible in
order to get more fees. Fisherman is a relatively independent node in the system. It
is only responsible for monitoring the system’s illegal activities and reporting their
detection. Then it will receive a substantial one-time reward. Moreover, a deposit
is required to become a Fisherman, mainly used to prevent Sybil Attack by witches
that waste the verifier’s computing time and resources.

3.2 Polkadot Cross-Chain Technology

Cross-chain communication is the most critical part of Polkadot, as shown in Fig. 2.
Because of the relay chain’s security guarantee for the whole system, transactions
conducted on one Parachain can be transferred to another Parachain through the
relay chain. As a result, cross-chain transactions on Polkadot are simpler and more
efficient than other cross-chain methods. Specifically, each Parachain maintains an
egress and an ingress transaction queue. The queue uses Merkle trees to ensure data
authenticity. When a Parachain (A) initiates a cross-chain transaction to another
Parachain (B), the transaction is pushed to Parachain A’s egress queue. Then the
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Fig. 2 Schematic diagram of cross-chain transactions on Polkadot This figure from PolkadotWhite
Paper Polkadot (2016)

relay chain transfers the transactions in Parachain A’s egress queue to Parachain B’s
ingress queue, which then processes the transactions in its ingress queue itself (Yuan
& Wang, 2019).

4 CBDC Cross-Border Payment Model

This section will introduce a CBDC cross-border payment model based on con-
sortium blockchain technology, referencing Polkadot’s Parachain, Relay Chain, and
cross-chain technologies. Figure 3 depicts a scalable, high-efficiency, high-security,
and privacy-protecting CBDC cross-border payment model.

Fig. 3 CBDC cross-border
payments model schematic
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4.1 Design of Parachain

Every country is a Parachain in this model, and each Parachain is a consortium
blockchain. The consortium blockchain is a permissioned blockchain, meaning only
the internal designation of several nodes can upload, record, and read data. These
nodes act as bookkeeper nodes, and they collectively decide to generate blocks.
Using consortium blockchain can significantly improve the blockchain’s operational
efficiency and reduce network latency, all while ensuring the privacy of each trans-
action’s data. Therefore, Parachain in each country can be adopted in the form of
consortium blockchains, which can achieve the purpose of improving efficiency and
protecting privacy.

Since Parachain has a high degree of autonomy and flexibility, each country’s
Parachain can be designed independently according to its own country’s conditions.
Therefore, the consensus mechanism of each country’s Parachain can be chosen
according to the country’s reality, such as the mainstream consensus mechanisms
applied to the consortium blockchain: Raft, PBFT, etc. The Parachain of each country
can be divided into several nodes with different authorities according to the actual
situation of cross-border payment in the country, including the central bank, trusted
financial payment institutions, and regulatory agencies. As a result, three roles are
established in the network of this model: Validators, Collators, and Supervisors.

The work of Collators is to collect information on the Parachain, submit candidate
blocks to the Validators, and assist the group of validators in creating valid blocks.
They also have the authority to vote for the Validators. Consequently, the Collators
can be commercial banks and trusted financial payment institutions in every country.
Validators are the nodes with the authority to generate blocks and have the highest
authority in the system. The Validators nodes are elected by vote of the Collators and
are responsible for validating the blocks and packaging them. Each country’s central
bank or specialized agency can fill this critical role. Supervisors are the nodes that
need to be responsible for regulating illegal activities in the system. Thus, it can be
held by the regulator of each country.

Taking China as an example, the nodes of Collators can be served by six state-
owned commercial banks, including Industrial and Commercial Bank of China
(ICBC), Agricultural Bank of China (ABC), Bank of China(BOC), China Construc-
tion Bank (CCB), Bank of Communications (BCM), and Postal Savings Bank of
China (PSBC), and trusted commercial banks and third-party payment institutions
can be added in the future. Validators are the central bank of China, the People’s
Bank of China, and its affiliated institutions. Supervisors are mainly served by the
Ministry of Commerce, the China Banking and Insurance Regulatory Commission,
the National Audit Office, and other regulatory authorities.
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4.2 Design of Relay chain

In this model, the Relay chain is the same as the consortium blockchain, which con-
tains the protocols of all Parachains, can recognize the transaction format of each
country’s Parachain, and can be responsible for coordinating consensus and for-
warding cross-chain transactions between different Parachains. The Validator nodes,
which the Collators vote on in each country, are also added to the relay chain and
are responsible for packaging transactions and generating blocks.

Specifically, the Collators in each country’s Parachain first elect the Validators in
charge of their Parachain, and the Validators are added to the Relay chain. After that,
the Collators on each country’s Parachain will collect the transactions into the blocks
with a Noninteractive Zero-Knowledge Proof, which is used to prove that the father
block of this child block is valid, and hand them over to the Validators in charge of
their country’s Parachain. The Validators from each country involved in this cross-
border transaction form a team of Validators to validate the blocks in the order in
which the Collators send them and then consensus out the Parachain blocks for that
height. When the Validators of each country’s Parachain involved in cross-border
payments confirm that their country’s Parachain has confirmed the transaction, the
Validators group then routes the message to the Relay chain and generates the Relay
chain blocks. In the next round, the Collators in each country’s Parachain vote again
to elect new validators and round this cycle.

4.3 Cross-Chain Transaction

The cross-chain transactions of the model are approximately the same as those of
Polkadot. Each country’s Parachain contains an egress transaction queue and an
ingress transaction queue (there can be multiple exports and ingresses if the transac-
tion volume is large). The Relay chain transfers transactions from the egress transac-
tion queue at the source Parachain to the ingress transaction queue at the destination
Parachain.

The egress transaction queue contains a list of grids with routing information,
each with a concatenated structure of exit submissions. Merkle tree proofs can be
provided between verifiers of Parachains so that blocks of one Parachain can be
proven to correspond to the egress transaction queue of another Parachain, guaran-
teeing data authenticity. If the ingress transaction queue of a Parachain exceeds the
block processing threshold, it is marked as complete on the relay chain, and no new
messages are received until the queue is emptied. The Merkle tree is used to prove
that the collector’s operations in the Parachain blocks are trustworthy.

For example, the flow of a cross-border transaction between China and Russia
is as follows. When a Chinese Parachain launches a cross-chain transaction to a
Russian Parachain, this transaction will first be pushed to the Chinese Parachain’s
egress transaction queue. Then the Relay chain will transfer this transaction from
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the Chinese egress transaction queue to the Russian ingress transaction queue. Then
the Russian Parachain will process the transaction in the ingress queue. This design
can effectively guarantee the security of cross-chain transactions and significantly
improve the efficiency of cross-chain transactions.

4.4 Privacy Protection

In Parachain, the blockchain ledger takes advantage of the irreversible nature of the
hash algorithm and uses hash digests instead of transaction-sensitive information. At
the same time, CoinJoin technology is used to obfuscate transactions and sever the
relationship between the input and output addresses of transactions so that the origin
and destination of transactions cannot be traced for privacy protection.

In Relay chain, if other countries are not involved, the block can be generated by
only the countries involved in cross-border transactions confirming the transactions.
The relevant detailed information does not need to be authenticated by the nodes
of other countries, which can prevent other countries from knowing the details of
the transactions and can effectively protect the privacy of cross-border transaction
information for each country.

5 CBDC Cross-Border Payment Model Architecture

Thewhole cross-bordermodel is divided into four layers, as shown in Fig. 4. They are
application layer, architecture layer, blockchain layer, and digital currency issuance
layer.

Application layer: This layer mainly faces users and can provide user identity
authentication services, system access services, etc. The authentication technology
verifies the user’s identity through the authentication center to ensure the validity of
the trader’s identity. Users can access the system if they pass authentication.

Architecture layer: This layer is composed of Parachain,which is designed by each
country, and Relay chain, which is responsible for forwarding cross-chain transac-
tions, as shown in Fig. 3. Parachain and Relay chain are consortium blockchains that
are ideal for practical applications. Three trusted roles are established in the network
of the model: Validators, Collators, and Supervisors, to help the whole system work
more effectively.

Blockchain layer: This layer consists of the core technical aspects of blockchain,
such as Peer-to-Peer networks, Smart Contracts, Time stamps, and Consensus mech-
anisms. Distributed ledger technology resolves the problem of storing, transfer-
ring, and querying transaction information in cross-border payments. The consensus
mechanism solves the agreement between validators on transactions and ledgers
(Zhu, 2021). Resolving the problem of double payment through Digital signature
and Time Stamp, Smart Contract technology can realize automatic accounting rec-
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Fig. 4 CBDC cross-border
payment model architecture
diagram

onciliation and error handling in cross-border payments, ensuring that transactions
are trusted and reliable. The smart contract automatically identifies and executes
the actual conditions and matches the situations that arise to the relevant processing
rules. This way, all information is recorded between the parties synchronously and
cannot be tampered with by either party. It can also effectively prevent the loss of
information due to technical failures (Huang & Luo, 2021).

Digital currency issuance layer: Itmainly corresponds to the issuance and redemp-
tion of the digital currency used in this model, as well as themanagement andmainte-
nance of this digital currency. Since the essence of building a cross-border payment
system based on CBDC is to establish a regional economic association, regional
economic cooperation is a prerequisite for CBDC to be recognized in cross-border
payments. Therefore, a multi-country CBDC anchored to a basket of legal currencies
is considered to be issued as the circulating currency in the model; or a stable cur-
rency anchored to a basket of legal currencies is issued as the circulating currency.
This digital currency should only be used for cross-border payment clearing between
Parachains of individual countries. It cannot be freely exchanged or used outside this
cross-border payment model between financial institutions on the parallel circulation
chain. The intrinsic value and purchasing power of this digital currency can be deter-
mined by each party’s central basket of traded goods based on historical transaction
volumes (or other forms). In this way, it can bypass the US dollar settlement and
circumvent the constraints of countries’ foreign exchange reserves anchored by the
US dollar without challenging the monetary sovereignty of national central banks
(Huang & Luo, 2021).
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6 Summary and Prospect

This chapter utilizes Polkadot’s Parachain, Relay chain, and cross-chain technolo-
gies as references and is based on consortium blockchain technology; a scalable,
high-efficiency, high-security, and privacy-protecting CBDC cross-border payment
model is designed. The purpose of privacy protection is investigated by using hash
digest technology and CoinJoin technology to obfuscate the input address and out-
put address of transactions. The construction of a free-floating legal digital currency
system bypassing U.S. dollar settlement is discussed so that multi-country CBDCs
anchored to a basket of legal currencies can be issued, or stablecoins anchored to a
basket of legal currencies can be issued as the circulating currencies in the model in
order to contribute to the study of CBDC cross-border payments.

With the increasing perfection of CBDC cross-border payment technology and
the more mature development of cross-chain technology, the future is expected to
form a regional-centric polycentric pattern. A new pattern of economic development
in which “different currencies in the same system” are used within a region and “dif-
ferent currencies in different systems” are used between areas in the future. Nowa-
days, CBDC cross-border payment has become an international research hotspot.
Although some countries are already experimenting with CBDC cross-border pay-
ment, the security and scalability of its cross-chain still need time to be proven.
Follow-up research can focus on the following two levels: Technically, the focus
and difficulty of CBDC cross-border payments lie in cross-chain technology, so
the research of more secure and efficient cross-chain technology is a hotspot for
future research. At the same time, the research of new consensus algorithms that
can be applied to blockchain cross-chain will also greatly improve the efficiency of
CBDC cross-border payments. In terms of regulation, it is necessary to strengthen
the supervision of CBDC cross-border payments; it is not only essential to identify
the regulatory authority of CBDC cross-border payment but also to improve the legal
study of CBDC cross-border payment. In addition, we can also learn from the regula-
tory sandbox model and introduce a newmodel of the “Chinese regulatory sandbox”
to balance risk and innovation.
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LLE Based K-Nearest Neighbor
Smoothing for scRNA-Seq Data
Imputation

Yifan Feng, Yutong Ai, and Hao Jiang

Abstract The single-cell RNA sequencing (scRNA-seq) technique allows single
cell level of gene expression measurements, but the scRNA-seq data often contain
missing values, with a large proportion caused by technical defects failing to detect
gene expressions, which is called dropout event. The dropout issue poses a great chal-
lenge for scRNA-seq data analysis. In this chapter, we introduce a method based on
KNN-smoothing: LLE-KNN-smoothing to impute the dropout values in scRNA-seq
data and show that the LLE-KNN-smoothing greatly improves the recovery of gene
expression in cells and shows better performance than state-of-the-art imputation
methods on a number of scRNA-seq data sets.

Keywords LLE · scRNA-seq · Dropout issue

1 Introduction

Single-cell RNAsequencing (scRNA-seq)was first reported in Tang et al. (2009), and
it is a high-throughput sequencing technology of the transcriptome at the single cell
level, reflecting the heterogeneity between cells. The technology plays a significant
part in many fields, such as developmental biology, microbiology and so on, and has
gained a lot of attention in life science research (Kelsey et al., 2017; Stubbington
et al., 2019).

The advent of scRNA-seq technology provides great help for revealing hidden
biological functions. However, scRNA-seq data is noisy and incomplete, containing
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a large number of zero values. The zero values caused by failure of signal detection
are called dropouts (Liu & Trapnell, 2016). The dropout event results from a failure
of amplification of the original RNA transcript, and the generated noise may disrupt
potential biological signals and hinder the downstream analysis. Hence it is a great
challenge on how to distinguish the true biological zero and the false zero in scRNA-
seq data.

A great number of imputation methods have been proposed to solve the dropout
issues arisen in bulk RNA-seq data (Moorthy et al., 2019). For example, Kim et
al. proposed a local least squares imputation method called LLsimpute (Kim et al.,
2004). This method uses least squares optimization to represent the missing genes as
a linear combination of its similar genes. Aittokallio (2010) proposed amethod based
on fuzzy clustering and gene ontology to estimate the missing values in microarray
data. However, these imputation methods may not be directly applicable to scRNA-
seq data as scRNA-seq data is much more sparse than bulk RNA-seq data.

In the design of imputation methods for scRNA-seq data, some researchers try to
interpret the observed data through probability distribution model. Typical models
assume that the scRNA-seq data follow Poisson or negative binomial distribution.
The analysis of Ziegenhain (2017) and various studies show that in the absence
of real expression differences, the mean variance relationship of genes or proteins
closely follow Poisson distribution ( Grün et al., 2014). The randomness of single-
cell sequencing technology leads to excessive zero values in single-cell data, and
many studies include zero inflation to explain excessive zero values in scRNA-seq
data (Fan et al., 2016; Parekh et al., 2017; Pierson and Yau, 2015; Risso et al., 2017).

MAGIC (Dijk et al., 2017) is a graph imputation method based onMarkov affinity
matrix. For a given cell, MAGIC first finds its most similar cell and aggregates the
gene expression of these highly similar cells, so as to estimate the gene expression
of those with dropout events and other noise sources. However, due to the sparsity
of scRNA-seq data, the nearest neighbor in the original data may not represent the
most biologically similar cells, which may add new bias to the data and eliminate
meaningful biological properties.KNN-smoothing (Wagner et al., 2017) is developed
by identifying the k-nearest neighbor of cells with average expression update to
perform imputation. DrImpute (Gong et al., 2018) is also a smoothingmethod, which
is designed based on the consistency clustering method of scRNA-seq data (Kiselev
et al., 2017). In this method, Spearman and Pearson correlation coefficients are used
to calculate the distance matrix between cells, while K-means is used to cluster the
distancematrixwithin the expected cluster number range. These representatives form
a class of smoothing based imputation methods.

Model based imputationmethods constitute a large proportion of imputationmeth-
ods for scRNA-seq data. scImpute (Wei et al., 2018) uses a mixed model to distin-
guish dropout zeros from true zeros. However, scImpute assumes that each gene has
a dropout rate, but it has been confirmed that the dropout rate of genes depends on
many factors, such as cell type and RNA-seq protocols (Kharchenko et al., 2014),
so the selection of dropout rate may need further discussion and research. SAVER
(Mo et al., 2017) assumes that the original data follow Poisson distribution and form
a prediction model for each gene through the observed gene count (UMI) and then
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uses the weighted average of the observed count and the predicted value to restore
the true expression of each gene in each cell. netNMF-sc (Elyanow et al., 2020) com-
bines the network regularized nonnegative matrix decomposition with zero inflation
processes in transcription count matrix. VIPER (Chen and Zhou, 2018) is based on
a nonnegative sparse regression model, which predicts the cells to be imputed by
actively selecting a set of sparse local neighborhood cells. In addition, VIPER mod-
els dropout probability in the way of specific cell types and specific genes and infers
all modeling parameters from the data using an efficient quadratic programming
algorithm.

Deep learning based imputation methods in the recent years have gained a lot of
attention. AutoImpute (Talwar et al., 2018) is based on deep autoencoder and sparse
gene expressionmatrix. DCA (deep count autoencoder) (Eraslan et al., 2019) is based
on the negative binomial noise model, which can minimize the reconstruction error
without supervision to learn the distribution parameters of specific genes, which
can be applied to data sets of millions of cells. DeepImpute (deep neural network
imputation) (Arisdakessian et al., 2018) imputes genes by constructing multiple
sub-neural networks. The method uses dropout layers and loss functions to learn
distribution in the data and constructs a predictive model, with imputation of missing
data alone.

Ensemble methods were proposed mainly for fully integrating the advantages of
the available methods. Enimpute (Zhang, 2019) combines the basic results of eight
different imputation methods (ALRA, DCA, DrImpute, MAGIC, SAVER, scImpute,
scRMD,Seurat) and takes trimmedmean to get the robust results. SHARP (Wan et al.,
2020) is an algorithm based on ensemble random projection (RP) that is capable to
deal with a scale of 10 million cells.

Among the abovemethods, the smoothing basedmethodmainly imputes themiss-
ing values according to the expression of similar cells, which highly relies on distance
measures to define similarity. Themodel-basedmethod can better distinguish the real
zeros from the dropouts, but the results largely depend on the assumptions of themod-
els, which may lack generalization ability. Deep learning has high scalability and can
process larger data sets, but at the same time, it requires too much time in training
and learning steps, and the memory consumption is larger than other methods. In
this chapter, we propose LLE (Locally linear embedding) (Zhou, 2016) based on
KNN-smoothing for single cell data imputation. While dealing with real data, the
global non-linearity of LLE as well as the property of maintaining the manifold
structure can better restore the data. Compared with other methods, we believe that
LLE-smoothing achieves better results.
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Algorithm 1 K-nearest neighbor smoothing for UMI-filtered scRNA-Seq data
Input:
p, the number of genes.
n, the number of cells.
X , a p × n matrix.
k, the number of neighbors to use for smoothing.
d, the number of principal components to use for determining neighbors.

Output:
S,a p × n smoothed matrix.

Input: procedure KNN-SMOOTH(p, n, X, k)
S = COPY (X)

steps = �log2(k + 1))�
1: for t = 1 to steps do
2: M = MEDIAN-NORMALIZE(S)
3: F = FREEMAN-TUKEY-TRANSFORM(M)
4: Y = LEADING-PC-SCORES(F, d)
5: D = PAIRWISE-DISTANCE(Y )
6: A = ARGSORT-ROWS(D)
7: k−step = MIN

{
2t − 1, k

}

8: for j = 1 to n do
9: for i = 1 to p do
10: Si j = 0
11: end for
12: end for
13: for j = 1 to n do
14: for v = 1 to k−step + 1 do
15: u = A jv
16: for i = 1 to p do
17: Si j = Si j + Xiu
18: end for
19: end for
20: end for
21: end for
22:
23: return S

2 Materials and Methods

2.1 The K-Nearest Neighbor Smoothing Algorithm

The k-nearest neighbor smoothing (KNN-smoothing) algorithm realizes imputation
by aggregating information from similar cells based on the k-nearest neighbor (KNN)
idea. The algorithm is formalized in Algorithm 1. Here, Xi j refers to the expression
of i ′th gene and j ′th cell of X . COPY (X ) returns an independent memory copy of
X . MEDIAN-NORMALIZE (X ) returns a new matrix of the same dimension as X ,
in which the values in each column have been scaled by a constant so that the column
sum equals the median column sum of X . FREEMAN-TUKEY-TRANSFORM (X )
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returns a new matrix of the same shape as X , in which all values have been Free-
man.Tukey transformed (FTT)FreemanandTukey (1950)

(
f (x) = √

x + √
x + 1

)
.

LEADING-PC-SCORES (X, d) returns the principal component scores of the obser-
vations in X (contained in the columns) for the first d principal components.
PAIRWISE-DISTANCE (X ) computes the pair-wise distance matrix D from X ,
here Di j is the Euclidean distance between the i ′th column and the j ′th column of X .
For a matrix D with n columns, ARGSORT-ROWS (D) returns a matrix of indices
A that sorts D in a row-wise manner, i.e., Dj A j1

≤ Dj A j2
≤ ... ≤ Dj A jn

for all j .

2.2 Locally Linear Embedding

The k-nearest neighbor smoothing algorithm highly depends on the distance evalu-
ation and hence, LEADING-PC-SCORES (X, d) is a critical step in the realization
of the algorithm. Taking into consideration that PCA is a linear embedding method
that may neglect the non-linear intrinsic property of scRNA-seq data, we propose
LLE-based method for low-dimensional projection of scRNA-seq data.

LLE is a dimensionality reduction method based on the concept of topological
manifold. It assumes that each sample point and its neighbor sample point in high-
dimensional space are approximately located on a hyperplane, so the sample point
can be reconstructed by a linear combination of its neighbor sample points. Since
LLE algorithm only considers the k-nearest neighbor information of each point,
which is computationally efficient. Assume X = (x1, x2, ..., xN ) ∈ RD×N , for each
data point xi ∈ RD×1, it can be represented by the linear combination of its k nearest
neighbor:

xi =
k∑

j=1

wji x ji (1)

where wi ∈ Rk×1, wji is j th of wi , x ji is the j th nearest neighbor of xi . i.e.

wi =

⎡

⎢⎢⎢
⎣

w1i

w2i
...

wki

⎤

⎥⎥⎥
⎦

xi =

⎡

⎢⎢⎢
⎣

x1i
x2i
...

xDi

⎤

⎥⎥⎥
⎦

(2)

Minimize the following loss function:

argmin
w

N∑

i=1

∥∥∥∥∥∥
xi −

k∑

j=1

wji x ji

∥∥∥∥∥∥

2

(3)

Solving the above formula, the weight coefficient can be obtained by
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w = [w1,w2, . . . ,wN ] (4)

where wi ∈ Rk×N corresponds to N data points, (i = 1, 2, ...N ).
After reducing the original data from D dimension to d dimension, xi → yi , the

reduced representation can still be expressed as the linear combination of its k-nearest
neighbors, and the combination coefficient remains unchanged, so the loss function
can be written as:

argmin
Y

N∑

i=1

∥∥∥∥∥∥
yi −

k∑

j=1

wji y ji

∥∥∥∥∥∥

2

(5)

where Y is the data located in the low dimensional space after dimensional reduction
is obtained:

Y = [y1, y2, . . . , yN ] (6)

We can rewrite the optimization objective as follows

�(w) =
N∑

i=1

∥∥∥∥∥∥
xi −

k∑

j=1

wji x ji

∥∥∥∥∥∥

2

=
N∑

i=1

∥∥∥∥∥∥

k∑

j=1

(
xi − x ji

)
wji

∥∥∥∥∥∥

2

=
N∑

i=1

‖(Xi − Ni )wi‖2

=
N∑

i=1

wT
i (Xi − Ni )

T (Xi − Ni )wi

(7)

Regarding Si as the local covariance matrix, we have

Si = (Xi − Ni )
T (Xi − Ni )

�(w) =
N∑

i=1

wT
i Siwi (8)

We can introduce Lagrange multiplier method

L (wi ) =
N∑

i=1

wT
i Siwi + λ

(
wT
i 1k − 1

)
(9)

to get the optimal solution by derivation
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∂L (wi )

∂wi
= 2Siwi + λ1k = 0 (10)

wi = S−1
i 1k

1Tk S
−1
i 1k

(11)

where 1k is the column vector of all 1 elements of k × 1, the local covariance matrix
Si is a matrix of k × k, and its denominator is actually matrix Si , namely the sum of
all elements of the inverse matrix, and its molecule is the column vector obtained by
summing rows with the inverse matrix of Si .

Finally, the optimization problem for the low dimensional embedding becomes

argmin
Y

�(Y ) =
N∑

i=1

∥∥∥∥∥∥
yi −

k∑

j=1

wji y ji

∥∥∥∥∥∥

2

(12)

s.t.
N∑

i=1

yi = 0,
N∑

i=1

yi y
T
i = N Id×d (13)

where
Y = [y1, y2, . . . , yN ] ∈ Rd×N (14)

Let M denote
M = (I − W )T (I − W ) (15)

The optimization problem can be rewritten as:

argmin
Y

tr(YMY T ), s.t.YY T = I (16)

It can be seen that Y T is actually a matrix composed of the eigenvector of M ,
so we only need to take the eigenvector corresponding to the smallest d non-zero
eigenvalues of M .

3 Results

3.1 Availability of Data

The scRNA-seq data sets are available from Gene Expression Omnibus (GEO)
database. Here, we use three data sets: Brain (Darmanis et al., 2015), Zeisel andKlein
for method evaluation. Zeisel and Klein can be downloaded fromGEO database with
accession numbers GSE60361 and GSE65525 (Table 1).
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Algorithm2Locally linear embeddingneighbor smoothing forUMI-filtered scRNA-
Seq data
Input:
p, the number of genes.
n, the number of cells.
X , a p × n matrix.
k, the number of neighbors to use for smoothing.
d, the dimensions of manifold learning .

Output:
S,a p × n smoothed matrix.

Input: procedure LLE-smoothing(p, n, X, k)
S = COPY (X)

steps = �log2(k + 1))�
1: for t = 1 to steps do
2: M = MEDIAN-NORMALIZE(S) // a new p × n matrix
3: F = FREEMAN-TUKEY-TRANSFORM(M) // a new p × n matrix
4: Y = LLE(F, d) // a new d × n matrix
5: D = PAIRWISE-DISTANCE(Y ) // a new n × n matrix
6: A = ARGSORT-ROWS(D) // a new n × n matrix
7: k−step = MIN

{
2t − 1, k

}

8: for j = 1 to n do
9: for i = 1 to p do
10: Si j = 0
11: end for
12: end for
13: for j = 1 to n do
14: for v = 1 to k−step + 1 do
15: u = A jv
16: for i = 1 to p do
17: Si j = Si j + Xiu
18: end for
19: end for
20: end for
21: end for
22:
23: return S

3.2 Data Processing and Visualization

The input of our method is a count matrix X with rows representing genes and
columns representing cells.After logarithmic transformation andFTT transformation
according to the process of Algorithm 4, X is mapped to a d-dimensional space by
LLE. The Euclidean distance between each sample and its k nearest neighbors is
calculated to form the distance matrix Xn×n and then smoothed step by step from 1
to k. We use t-distributed neighborhood embedding to visualize the data.
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Table 1 Summary of data sets used for imputation

Data size Cell clusters

Klein 24175 * 2716 4

Brain 16384 * 420 8

Zeisel 4412 * 3005 9

3.3 Performance Evaluation

For evaluation, we use SC3 to cluster the imputed data to test the imputation effect.
The Adjusted Rand index (ARI) is used to evaluate the clustering accuracy between
the original cluster label of the data set and the cluster label of SC3. The results
show that compared with other imputation methods, LLE-KNN-smoothing provides
the best ARI in all three data sets of the experiment (as is shown in Table 2). For
the nearest neighbor of parameter k, we can see that the ARI value of LLE-KNN-
smoothing method is relatively high under different data sets, and when the value
of parameter k changes, the clustering accuracy of LLE-KNN-smoothing changes
slowly and remains stable (Figs. 1, 2 and 3).

Weuse t-SNEvisualization to analyze the advantages anddisadvantages of various
methods under different data sets. We find LLE-KNN-smoothing is better than other
methods (Table 2) and that our method performs better between inter-class and intra-
class (Fig. 4 shows the result of data set Brain).

Fig. 1 Different k of the four imputation methods on data set Brain



212 Y. Feng et al.

Fig. 2 Different k of the four imputation methods on data set Zeisel

Fig. 3 Different K of the four imputation methods on data set Klein

Table 2 ARI of different imputation methods using SC3 clustering results (k = 32)

ARI Brain Zeisel Klein

KNN-smoothing 0.8007 0.3187 0.8508

KNN-KPCA 0.9505 0.8352 0.8649

KNN-UMAP 0.8781 0.8272 0.8594

LLE-KNN-smoothing 0.9425 0.7917 0.9868

MAGIC 0.9239 0.2723 0.3604

4 Conclusions

In this chapter, we have used different data sets to demonstrate that LLE-KNN-
smoothing perform better than other methods. In future work, we will continue to
study the selection method of parameter k, d, and other manifold learning meth-
ods. Other work would be devoted to explore the effect of smoothing for differential
expression analysis, gene set enrichment analysis, trajectory inference, etc.We antic-
ipate that LLE-KNN-smoothing algorithm will perform well.
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Fig. 4 t-SNE visualization of the reduced dimensions of the five imputation methods on dataset
brain. a Raw data. b–f data after KNN-smoothing, KNN-smoothing (KPCA), KNN-smoothing
(UMAP), LLE-KNN-smoothing, MAGIC
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The Application of Time Series Analysis
in the Fiscal Budget Variance of China

Guanhua Chen and Xinqi Gong

Abstract During the process of budget planning and execution, irregular behaviors
will be reflected in the level of the difference between budgeted and actual figures
(named budget variance). Considering that these two processes are both led by Gov-
ernment Of China (hereinafter called GOC), the budget variance is widely used to
evaluate the fiscal system. This chapter collects State General Public Budget data
from 2000 to 2018 and analyzes their influence on budget variance. Then the fore-
cast for budget variance is completed by modeling the budget execution and budget
variance rate separately. The descriptive analysis and AIC (Akaike Information Cri-
terion) contributes to decide the candidate model, the RMSE (Root Mean Square
Error) on test data is used to select the final optimal model. The forecast shows that
the extent of budget variance will be further controlled in 2011 and 2012, this chapter
explains the result with fiscal theories to enhance the credibility of it and thereby
provides a couple of policy advice on Chinese budget reform.

Keywords Budget variance · Time series analysis · Fiscal science

1 Introduction

Budgeting is an important administrative process, which reveals both the range and
direction of government action, as well as the effectiveness of the monitoring on
government activities from National People’s Congress (hereinafter called NPC)
and private sectors (Chen, 2000). Since the tax sharing reform in 1994, China has
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accomplished extensive and profound reforms in budgeting process. However, there
is still some room for improvement, and according to “Decision of the State Council
on Deepening the Reform of the Budget Management System” issued in 2014, it
is summarized as “the budgeting is not scientific enough, the budget system needs
more supervision, the scale of financial carry-over and balance funds is large, and
the budget data needs more transparency” etc. Irregular behaviors in budget planning
and execution will be reflected in the budget variance. One of the characteristics of
a scientific, transparent, and standardized budget system is that the final account
income and expenditure are consistent with which planned by the budget.

Since the 21st century, the level of budget variance of the Chinese government
has experienced a rise and then a fall. Budget variance generally expanded year by
year (Sun &Wu, 2012; Wang, 2009) from 2000 to 2011, peaking at a 15.8% of over-
collection and 9% of over-spending. From 2012 to 2018, it has been significantly
controlled. The average budget variance in revenue during this period was 6.39%,
and that of spending was 4.29%. Figures of United Kingdom and the United States
is instructive for further reform: the average public sector recurrent revenue budget
deviation in the United Kingdom from 2001 to 2003 was—2.8% (Wang, 2009). In
the United States, the average expenditure deviation from the fiscal budget was 2.1%
in 2007 (Cui n.d.). China still has a long way to go in terms of reducing budget
variance in comparison to countries mentioned above.

The budget is naturally uncertain so a certain degree of variance is permitted.How-
ever, large variance can lead to economic and institutional problems. For instance,
excessive revenue adds to the burden on tax payers and impacts the market vitality,
while excessive under-spending funds leads to inadequate provision of public goods
(e.g., infrastructure) by the government, thus affecting social stability and People’s
livelihood. Institutionally, excessive budget variance implies the weak monitoring of
the government. Therefore, it is important for Chinese government to speed up the
budget reform and to establish a modern fiscal system to promote the modernization
of national governance capacity.

Budget variance contains great research value, so historical data can be analyzed to
reveal the reform achievement in China’s fiscal system. At the same time, forecasting
this indicator can show whether there is still room for improvement and provide a
reference for the direction of further reform. The main work of this chapter has three
parts. Firstly, we analyze Chinese budget variance, clarifying the linkages between
fiscal deviations and the general environment at home and abroad through statistical
descriptions. Then the chapter builds a series of time series models and select the best
one to predict the variance in the next two years. Finally, the chapter introduces fiscal
science theory to explain the prediction and make some reasonable policy advice.
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2 A General View on Budget Data

2.1 Introduction to Concept and Data Source

State General Public Budget is one of the four major components of Chinese fiscal
system and can be divided into revenue and expenditure. The revenue part mainly
includes tax income and non-tax income like confiscation income and transferred
funds from the central government to local government. The expenditure part aimed
at improving the people’s livelihood and maintaining national security, including
spending on domestic defense, education, and infrastructure etc. The budgeting pro-
cess can be divided into two stages, budget planning and budget execution. Former
is the annual fiscal revenue and expenditure plan of the state, which is examined and
approved by legal procedures, stipulating the sources of national revenue and the
purpose of spending, reflecting the scope and direction of government activities. The
latter is the annual implementation of budget plan, reflecting the actual economic
activities on the state level.

The calculation of budget variance rate is:

Budget Variance Rate = Budget Execution − Budget Planning

Budget Planning
(1)

The chapter uses the data of StateGeneral PublicBudgetRevenue andExpenditure
ranging from 2000 to 2018 (see Table 1), which is obtained from the China Financial
Yearbook.

2.2 Descriptive Analysis of Budget Variance

As seen in Fig. 1, the budget deviation is a common phenomenon from 2000 to
2018 on a yearly basis. Most of the situation is over-collection and over-expenditure,
under-collection only occurred in 2015 and under-expenditure only occurred in 2014.
Over-collection rates peaks in 2007 (16.5%), 2011 (15.8%) and 2010 (12.4%), while
over-expenditure rates peaks in 2011 (9%), 2001 (8.9%) and 2007 (7%). The average
revenue budget variance rate from 2000 to 2018 is 6.4%, which is higher than that
of expenditure which is 4.3%. There is a consistent trend between revenue and
expenditure variance rate, and the correlation coefficient of them is 0.77, showing a
strong positive correlation.

Trend of budget variance is influenced by domestic fiscal policies as well as the
global economic environment. From 1998 to 2004, due to China’s two successive
active fiscal policies, the revenue budget variance rate stayed around 7%, and finally
peaked in 2007. In 2008 and 2009, due to the negative impact of the U.S financial
crisis, the budget variance has all fallen back. The new round of fiscal expansion
in 2010 and 2011 helped China and the world get out of crisis, however it also led



220 G. Chen and X. Gong

Table 1 State general public budget execution from 2000 to 2018 (billion yuan; %)

Revenue Expenditure

Year Budget Execution Variance
rate (%)

Budget Execution Variance
rate (%)

2000 12337.77 13395.23 8.6 15136.23 15886.5 4.96

2001 14760.2 16386.04 11.0 17358.3 18902.58 8.9

2002 18014.83 18903.64 4.9 21112.98 22053.15 4.45

2003 20501.32 21715.25 5.9 23699.62 24649.95 4.0

2004 23570.34 26396.47 12.0 26768.64 28486.89 6.4

2005 29255.03 31649.29 8.2 32255.03 33930.28 5.2

2006 35423.38 38760.2 9.4 38373.38 40422.73 5.3

2007 44064.85 51321.78 16.5 46514.85 49781.35 7.0

2008 58486 61330.35 4.9 61386 62592.66 2.0

2009 66230 68518.3 3.5 76235 76299.93 0.1

2010 73930 83101.51 12.4 84530 89874.16 6.3

2011 89720 103874.43 15.8 100220 109247.79 9.0

2012 113600 117253.52 3.2 124300 125952.97 1.3

2013 126630 129209.64 2.0 138246 140212.1 1.4

2014 139530 140370.03 0.6 153037 151785.56 –0.8

2015 154300 152269.23 –1.3 171500 175877.77 2.6

2016 157200 159604.97 1.5 180715 187755.21 3.9

2017 168630 172592.77 2.3 194863 203085.49 4.2

2018 183177 183359.84 0.1 209830 220904.13 5.3

Average 80492.67 83684.87 6.39 90320.05 93563.22 4.29

Over-collection and over-expenditure is common phenomenon from 2000 to 2018. Over-collection
rates peaks in 2007(16.5%), 2011 (15.8%) and 2010 (12.4%), while over-expenditure rates peaks
in 2011 (9%), 2001 (8.9%) and 2007 (7%)

to a high budget variance (Chen & Lv, 2019). In the following years, the economy
of China entered a new normal, the budget deviation began to decline due to the
slowdown of GDP growth, under-spending appears in 2014 and under-revenue does
so in 2015. The Ministry of Finance has been promoting structural tax cuts and fee
reductions since 2014 and appropriately expanding the fiscal deficit. Corresponding
to this policy, the spending budget variance rate exceeded the revenue budget variance
rate for the first time in 2015, and remained higher than the latter in the next four
years, growing slowly continuously.

Budget variance was controlled in general after 2015 mainly because the new
budget law came into effect in that year, deepening the fiscal reform. The reduction
of the budget variance is the latest achievement in establishing amodern fiscal system
inChina, indicating that the budgeting process is progressing toward amore scientific
direction. The fact that the average expenditure budget variance is smaller than that
of revenue reflects that the budget review system is more stringent in expenditure
management than revenue. The lack of systematic auditing and monitoring of over-
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Fig. 1 State General Public Budget variance rate from 2000 to 2018 (%). The revenue and expen-
diture variance rate peaked in 2007 and 2011 and were significantly controlled after 2014

collection funds leads to the less frugal use of it, therefore over-collection canpartially
explanation for over-expenditure (Focus on budget deviations, 2008).

2.3 Descriptive Analysis of Budget Execution

As seen in Fig. 2, the budget execution is cyclical on a quarterly basis. In terms of
revenue, it peaks in the second quarter and then falls back in the rest of the year while
in terms of expenditure the largest percentage of annual spending occurs in the last
quarter. The average revenue for the four quarters from 2000 to 2018 is 20789.60,
23961.65, 19442.53, 19476.90 billion yuan, while that of expenditure is 17888.10,
23212.16, 21828.40, 30602.28 billion yuan. The cause of spending surging at the end
of the year is the lack of scientific budgeting and monitoring of the over-collected
funds. The difference between revenue and expenditure is usually positive in the first
part of the year and negative in the second part of the year.

3 Overview of Time Series Analysis Techniques

Time series are defined as ordered random variable sequences. The most common
time series are discrete stochastic processes obtained at successively equally spaced
time points. Time series describes the intrinsic structure of the series and the target
of modeling is to make predictions. In brief, time series forecasting is the art of
predicting the future by understanding the past.
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Fig. 2 The State General Public Budget execution from 2000 to 2018 (season; billion yuan).
Revenues and expenditures have a tendency to grow over time, while making seasonal changes
in cycles of 4. The difference between revenue and expenditure shows that there is often a slight
surplus in national income in the first half of the year, which is offset by a sudden increase in
expenditures in the last quarter

3.1 Decomposition of Time Series

The time series can be decomposed into long-term trend variation T (a trend in a
long period of time), seasonal variation S (regular variation due to seasonal changes),
cyclical variationC (longer, more irregular cyclical variation) and irregular variation
L (change caused bymany contingent factors). The time series Y can be expressed as
a function of the above four factors i.e. Y = F(T, S,C, L) like additive model (Y =
T + S + C + L) and the multiplicative model (Y = T ∗ S ∗ C ∗ L). This chapter
focuses on modeling T, S, L of the time series.

3.2 ARIMA( p, d, q)

In AR(p) the value at time t is a linear combination of the intercept, past p period
observations, and a random error obeying normal distribution.

Xt = ψ0 +
p∑

i

ψi Xt−i + εt . (2)
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Here Xt represents the value at moment t , εt represents random error obeying
normal distribution at moment t with a variance of σ 2 which is mutually independent
from Xt and ψi represents the weight of lag order i . Generally a sufficient and
necessary condition for AR(p) to be stationary is that all roots of the characteristic
equation falling outside the unit circle. Specially, the AR(1) model is a Markov
process, and Xt only relates to Xt−1. For example, the sufficient condition for AR(1)
to be stationary is |ψi | ≤ 1. Its mathematical properties when smooth are shown
below, which shows that the auto-correlation of AR(1) model is long-tailed.

E(Xt ) = φ0

1 − φ1
. (3)

Var(Xt ) = σ 2

1 − φ2
1

. (4)

γk =

⎧
⎪⎨

⎪⎩

σ 2

1 − φ1
2 k = 0

φ1γk−1 k > 0

. (5)

ρk =
{
1 k = 0

φ1ρk−1 k > 0
. (6)

In MA(q)model the value at t is a linear combination of the past q period random
error, an intercept and the random error obeying normal distribution.

Xt = θ0 +
p∑

i

θiεt−i + εt . (7)

Here θi represents the weight of lag order i . The MA process of finite order does
not require any precondition to be stationary. The mathematical properties of MA(1)
are shown below, from which can be seen that the auto-correlation of the finite order
model is truncated-tailed.

E(Xt ) = θ0. (8)

Var(Xt ) = σ 2(1 + θ1
2). (9)

γk =

⎧
⎪⎨

⎪⎩

σ 2(1 + θ1
2) k = 0

σ 2θ1 k = 1

0 k > 1

. (10)
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ρk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 k = 0

θ1

1 + θ1
2 k = 1

0 k > 1

. (11)

ARMA model combines AR(p) with MA(q) which can be written as:

Xt = φ0 +
p∑

i=1

φi Xt−i + εt +
q∑

i=1

εt−i . (12)

ARMA(1, 1) also requires |φ1| ≤ 1 to be stationary, and the mathematical prop-
erties of the stationary ARMA(1, 1) is shown below. Its auto-correlation coefficient
is similar to the AR(1) model, and the partial auto-correlation coefficient is similar
to the MA(1) model which are both long-trailed, decaying since two order lag.

E(Xt ) = φ0

1 − φ1
. (13)

Var(Xt ) = σ 2 1 + θ1
2 + 2φ1θ1

1 − φ1
2 . (14)

γk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 2 1 + θ1
2 + 2φ1θ1

1 − φ1
2 k = 0

σ 2 (φ1 + θ1)(1 + φ1θ1)

1 − φ1
2 k = 1

φ1γk−1 k > 1

. (15)

ρk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 k = 0

(φ1 + θ1)(1 + φ1θ1)

1 + θ1
2 + 2φ1θ1

k = 1

φ1ρk−1 k > 1

. (16)

ARI MA(p, d, q) model introduces the differential operation to ARMA(p, q).
In ARI MA(p, d, q), a time series is firstly transformed into a stationary one through
d difference and then the ARMA model is established on it. Using B to denote the
lagging operator, ARI MA(p, d, q) can be defined as:

Xt = (1 − B)d Xt . (17)

Xt = φ0 +
p∑

i=1

φi Xt−i + εt +
q∑

i=1

εt−i . (18)
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3.3 SARIMA( p, d, q)(P, D, Q)s

SARIMA model introduces seasonal trend to ARIMA, using B to denote the lagging
operator, Bs to denote s-order lag operator SARIMA(p, d, q) can be defined as:

Yt = (1 − Bs)D(1 − B)d Xt . (19)

Yt = φ0 +
p∑

i=1

φi Yt−i +
P∑

i=1

φs
i Yt−si + εt +

q∑

i=1

εt−i +
Q∑

i=1

εt−si . (20)

4 Modeling of Budget Variance

4.1 Prediction of Budget Execution

4.1.1 Exploratory Data Analysis

The fiscal revenue and expenditure was increasing between 2000 and 2018, and the
volatility was small. In Figs. 3 and 4 the auto-correlation decreases slowly, so a unit
root non-stationary model can be applied.

The unit root is detected by Adf test, after the first-order difference the serial auto-
correlation decreases slowly, and the auto-correlation plot shows that there is likely
to be a seasonal trend with a period of four for both fiscal revenue and expenditure.
Revenue and expenditure items are often similar to those of the same period last year.
For example, some expenditure items in education, defense, and public facilities field
is fixed every year. Therefore, the seasonal effect is reasonable. Hence further make
fourth-order differences on the data.

Fig. 3 The auto-correlation plot of revenue budget execution. The auto-correlation trails off, but
the partial auto-correlation truncates after the third order
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Fig. 4 The auto-correlation plot of expenditure budget execution. The auto-correlation trails off,
but the partial auto-correlation truncates after the fifth order

The data after fourth-order difference to extract seasonal effects are smooth non-
white noise series, which meet the prerequisites of modeling. Then we take the data
from 2000 to 2016 as training set and the data from 2017, 2018 as test set.

4.1.2 Unit Root Non-stationary Model

The seasonal parameter is decided as 4, establishing AR(3) based on the AIC. The
SARIMA(3, 1, 0)(0, 1, 0)4 model shows that all the parameters are statistically sig-
nificant with AIC of 1082.82. Using MA, the auto-correlation plot indicates a lag
order of three, so SARIMA(0, 1, 3)(0, 1, 0)4 is established. The model shows that
only coefficient ma1 was not statistically significant and the AIC is 1079.42. Setting
ma1 to 0 and AIC becomes 1080.63, so we choose the firstMA model.

Trying SARIMA(3, 1, 3)(0, 1, 0)4, AIC is 1083.23 and coefficients ar1, ar2, ar3,
ma1,ma3 are not statistically significant. Fix ar1 to 0, the newmodel shows anAIC of
1081.28 with ar2, ma1, ma3 being not statistically significant. Then fix ma1 to 0, the
AIC becomes 1079.38, with all remaining coefficients being statistically significant.

Comparing all models based on AIC, it is concluded that SARIMA(3, 1, 3)
(0, 1, 0)4, ar1 = 0,ma1 = 0 is the optimal unit root non-stationary model for rev-
enue execution.

For expenditure budget execution the seasonal parameter is also decided as 4.
Using AR model first, deciding the order as 6 according to AIC, the results of
SARIMA(6, 1, 0)(0, 1, 0)4 shows that all parameters are statistically significant and
the AIC is 1132.89. Then consider MA model, SARIMA(0, 1, 5)(0, 1, 0)4 model
shows that coefficients ma2, ma3, ma4, ma5 are not statistically significant and the
AIC is 1136.75. Fix ma2, ma3, ma4, ma5 to 0 and it shows that all the remaining
parameters are statistically significant and AIC becomes 1131.5.

Considering ARIMA, SARIMA(6, 1, 5)(0, 1, 0)4 model shows that the AIC is
1133.54 and coefficients ar1, ar3, ar5, ma2, and ma3 are not statistically significant.
After fixing ar5,ma1,ma3,ma4 to zero the AIC becomes 1129.38 and all remaining



The Application of Time Series Analysis … 227

coefficients are statistically significant. SARIMA(6, 1, 5)(0, 1, 0)4, ar5 = 0,ma1 =
0,ma3 = 0,ma4 = 0 is the optimal unit root non-stationary model by comparing
AIC of all the models mentioned above.

4.1.3 Fixed Trend Model

Since the data has a increasing trend, fixed trend model is another candidate model.
Considering the nonlinear trend, the regression of revenue to time shows that both
one-order and two-order term coefficients of time are statistically significant, with
an R-squared of 0.95. In Fig. 5, overlaying the estimated trend on the original series,
it is found in Fig. 6 that the fitted values are consistent with the actual ones.

Fig. 5 Fitting effect of revenue budget execution (billion yuan). The fitted curve is basically con-
sistent with data

Fig. 6 Fitting residuals of revenue (billion yuan). Obviously it is non-stationary time series
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Fig. 7 Fitting effect of expenditure budget execution (billion yuan). The fitted curve is basically
consistent with data

After removing the fixed trends, the remaining part are clearly non-stationary
series and the auto-correlation plot of it shows thatARmodel can be applied. Accord-
ing to AIC AR(5) is chosen whose AIC is 1173.7. Considering that the data have a
strong seasonal correlation so the fourth-order difference is applied and the model
SARIMA(1, 0, 0)(0, 1, 0)4 is built according to the auto-correlation plot, whose AIC
is 1092.85.

The Regression of expenditure to time shows that the first-order and the second-
order coefficients are statistically significant, and theR-squared is about 0.9. Figures 7
and 8 shows that the fitted values are consistent with data, and the residual meets the
modeling requirement.

AR(4) model is applied and the AIC is 1223.14. Considering the seasonal trend,
fourth-order difference operation is done and the optimal model is obtained which
is SARIMA(0, 0, 0)(0, 1, 0)4 whose AIC is 1142.3.

4.1.4 Model Comparison and Testing

The optimal unit root non-stationary model as well as the fixed trend model are
selected based on AIC and their performance on test data is compared to make the
final choice (see Table 2). It is found that the SARIMAmodel outperforms theAR,MA
model with seasonal parameters on both revenue and expenditure. In terms of rev-
enue budget execution, the fixed trendmodel outperforms the unit root non-stationary
model on test data, although its AIC is slightly higher than it. In terms of expenditure
budget execution, the fixed trend model outperforms the unit root non-stationary
model on both training and test data. In conclusion, SARIMA(1, 0, 0)(0, 1, 0)4
with a fixed trend is the optimal model for predicting expenditures execution,
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Fig. 8 Fitting residuals of expenditure (billion yuan). Obviously it is non-stationary time series

Table 2 Comparison of revenue and expenditure forecasting models

Model type Model AIC RMSE

Revenue Unit root non-stationary
model

SARIMA(3, 1, 0)(0, 1, 0)4 1082.82 /

SARIMA(0, 1, 3)(0, 1, 0)4 1079.42 /

SARIMA(3, 1, 3)(0, 1, 0)4,
ar1 = 0,ma1 = 0

1079.38 4411.12

Fixed trend model SARIMA(1, 0, 0)(0, 1, 0)4 with
quadratic trend term

1092 4212.779

Expenditure Unit root non-stationary
model

SARIMA(6, 1, 0)(0, 1, 0)4 1132.89 /

SARIMA(0, 1, 5)(0, 1, 0)4, ma2 = 0,
ma3 = 0 ,ma5 = 0

1131.5 /

SARIMA(6, 1, 5)(0, 1, 0)4,
ar5 = 0,ma1 = 0,ma3 = 0,ma4 = 0

1129.38 3242.246

Fixed trend model SARI MA(0, 0, 0)(0, 1, 0)4 with
quadratic trend term

1142.3 4376.246

and SARIMA(6, 1, 5)(0, 1, 0)4, ar5 = 0,ma1 = 0,ma3 = 0,ma4 = 0 is the optimal
model for predicting revenue execution. Validating these two models, the residual of
their prediction meet the white noise requirement.

4.1.5 Forecast and Policy Advice

The forecast shows that the revenue and expenditure executionwill continue growing:
the state general public budget revenue will reach 246,765.0 and 267,782.89 billion
yuan in 2021 and 2022 while expenditure will reach 258,529.00 and 273,031.33
billion yuan (see Table 3). Figure 9 shows that expenditure will still exceed the
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revenue in the next two years, but the difference between revenue and expenditure
will be significantly controlled. According to the model, from 2021 to 2022, it will
be reduced to –1176.396 billion yuan and then to –5248.44 billion yuan.

The excess of expenditure over revenue is the result of China’s proactive fiscal
policy in recent years. Premier Li Keqiang said in the 2020 government work report
that “the current international situation is more unstable and uncertain, the world
economic situation is complex and severe; the domestic economy is not yet a solid
foundation for recovery, consumer spending is still constrained, investment growth is
not strong enough, small and medium-sized enterprises and individual entrepreneurs
have more difficulties, and the pressure on stable employment is greater. In this
situation, the government still needs to give a hand”, so the policy will continue as
a heartening agent for market vitality.

On the other hand, the decrease in the fiscal deficit indicates that China’s fiscal
sustainabilitywill be improved.AlthoughChina’s fiscal deficit ratio is always at a low

Table 3 Forecast of the state general public budget revenue and expenditure

Season Revenue Expenditure Difference

2021Q1 59138.40 56870.24 2268.16

2021Q2 68150.72 75785.07 –7634.35

2021Q3 58292.60 62349.92 –4057.32

2021Q4 61183.32 63523.78 –2340.46

2022Q1 64315.78 60857.28 3458.49

2022Q2 73379.50 79660.89 –6281.39

2022Q3 63572.76 65720.32 –2147.56

2022Q4 66514.86 66792.84 –277.98

Fig. 9 Forecast of revenue and expenditure budget execution from 2021 to 2022 (season; billion
yuan). In the next two years, the expenditure execution will still exceed the revenue, while the
difference between income and expenditure will continue to narrow
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level compared to Japan, the U.S. and other developed countries, China still needs to
be wary of the rapid expansion of government debt, which will rapidly climb once
the government becomes debt-dependent, creating a “snowball” effect, i.e., “issuing
new debt to pay off old one”. In addition, Chinese government also has a hidden debt
problem, which is not yet accurately counted, but is generally considered to be of a
large scale (Liu & Huang, 2008).

All in all, the future trend of fiscal revenue and expenditure reflects the trade-off
between controlling fiscal deficit and restoring the vitality of the market economy,
which is a reflection of the “no sharp turn” fiscal policy.

By 2020, China has already implemented a massive tax and fee reduction policy.
Finance Minister Liu Kun stated at a meeting of the NPC onMarch 5, 2021: “During
the 13th Five-Year Plan period, tax cut and fee reduction is unprecedented, reaching
a total of 7.6 trillion yuan, thus effectively promoting the development of market
players and the real economy.” However, tax cuts and fee reductions can also make it
more difficult to balance fiscal revenue and expenditure. Therefore it is suggested that
the finance department should make appropriate adjustments on policy, optimize the
tax structure, achieve increases anddecreases in different tax sections rather than large
and general tax cuts. At the same time, the existing tax policy should be implemented,
especially the “precise policy”, which means the cuts must be applied to the most
difficult areas and enterprises of small and medium-size in the industry. In terms of
expenditure, we should keep the strategy of reducing expenditure, especially those
for going abroad, vehicle purchase and operation and official reception.

4.2 Prediction of Budget Variance

Based on Eq. 1 the chapter will predict budget variance using the following formula
on the grounds that the factors affecting it can be divided into those which affects
the level of budget execution and those who affects budget variance rate, separately
modeling them can help to better capture the serial correlation in data. This section
will complete the modeling of the rate of budget variance.

Budget Variance = Budget Execution ∗
(

Budget Variance Rate

Budget Variance Rate + 1

)
. (21)

4.2.1 Exploratory Data Analysis

Over-collecting and over-spending are common between 2000 and 2018, and it can
also be seen in Fig. 10 that the budget variance of revenue and expenditure are both
non-stationary time series. After first-order difference the data passes the stationary
test, thus a unit root non-stationary model can be applied.
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4.2.2 Unit Root Non-stationary Model

MAmodel is applied and the lag order is set as 2 according to the auto-correlation plot.
ARIMA(0, 1, 2) shows an AIC of 110.63 and the parameter ma1 is not statistically
significant. After setting it to zero the AIC decreases to 109.6, which is better than
the previous model.

In AR model, according to the auto-correlation plot, the lag order should be set
to 2. ARIMA(2, 1, 0) shows an AIC value of 108.19 and the parameter ar1 is not
statistically significant. The AIC value rises to 108.63 after setting ar1 to zero, so
the previous model is chosen.

ARIMA(2, 0, 2) shows an AIC value of 116.64. Setting the insignificant param-
eters ma1 and ma2 to zero degrades the model to the AR model, so ARMA is not
included as a candidate model.

MA model is applied for the budget variance rate of expenditure after first-order
difference. The lag order should be set as 2 according to the auto-correlation plot.
The ARIMA(0, 1, 2) model shows an AIC of 90.89, with parameter ma1 and ma2
being statistically significant. These two parameters were retained because the AIC
increases after removing them.

According to the auto-correlation plot ARIMA(2, 1, 0) is set with AIC as 92.92
and ar1 being not statistically significant. After setting it to zero AIC decreases to
92.37.

Considering ARMA, ARIMA(2, 0, 2) model shows an AIC of 93.83. Setting ar1
and ma2 to zero, AIC decreases to 90.41.

Fig. 10 The state public budget data variance rate (%)
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Table 4 Comparison of the model on budget variance rate

Model AIC

Revenue ARI MA(0, 1, 2),ma1 = 0 109.6

ARI MA(2, 1, 0) 108.19

ARI MA(0, 1, 2) 90.89

Expenditure ARI MA(2, 1, 0), ar1 = 0 92.37

ARI MA(2, 0, 2), ar1,ma2 =
0

90.41

4.2.3 Model Comparison and Testing

The optimal model is selected from those mentioned above (see Table 4):
ARIMA(2, 1, 0) is the optimal model for revenue budget variance rate, ARIMA
(2, 0, 2), ar1 = 0,ma2 = 0 is the optimal model for expenditure. The residual of
both models pass the white noise test.

4.2.4 Forecast and Policy Advice

The revenue budget variance is forecast to be 1.0377 and 0.4684% in 2021 and 2022,
and 3.685 and 3.8845% for those of expenditure. Figure 11 tells that the budget
variance rate in the next two years will be further controlled compared with the
previous years, while the phenomenon of over-collection, over-spending and the
general trend that expenditure variance rate exceeding revenue variance rate will
remain unchanged. Taking the forecast results into Eq. 21, the revenue variance in
2021 and 2022 will be 2534.38 and 1248.44 billion yuan while expenditure variance
will be 9188.20 and 10209.32 billion yuan. Compared with the data of 2017 and
2018, the absolute value of budget variance remains unchanged, which indicates
that it is under control, considering the continuous growth of national economy. The
forecast results can be explained from four perspectives:

The first factor is economy. Economic factors affect both budget variance rate and
the level of budget execution: the faster the economy develops, the faster the budget
execution grows, while the uncertainty of budgeting process also increases, leading
to an increasing variance. In 2010s, China has experienced a shift from “speed” to
“quality” in development priorities and started to consciously control its economic
growth rate, while at the same time launching a supply-side reform. These macro
factors have made it easier to estimate China’s growth prospects and thus make it
much less difficult to control budget deviations in the future. From a revenue per-
spective, it is common practice for the Chinese government to set revenue budgets
by adding a few percentage points to the current year’s GDP growth rate (Sun &Wu,
2012). Considering that governments at all levels have always been more inclined
to leave room while budgeting (Wang, 2009), the over-collection phenomenon will
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Fig. 11 The forecast budget variance rate (year; %). The revenue and expenditure variance rate
will be further controlled in 2021 and 2022, and the rate of expenditure will be higher than that of
revenue

remain constant in the long run. From the perspective of expenditures, more fiscal
spending items will occur during proactive fiscal policy, leading to more difficul-
ties in controlling variance, which constitutes a partial explanation for the fact that
expenditure variance will exceed revenue variance in the future.

The second factor is the soft constraints of budget execution (Chen & Lv, 2019).
This factor mainly affects the level of budget variance rate, and the stricter it is, the
lower the rate will be. Before 2007, the over-collected funds were neither included
in the supervision of the NPC nor excluded from the next year’s budget. The inad-
equate regulation becomes an incentive for over-collection (Ma, 2009). Similarly,
the lack of supervision on under-spent funds will also encourage expenditure vari-
ance to increase. In order to solve the soft constraint problem, the GOC has made
unremitting efforts since 2007: in 2007, the central government established the Cen-
tral Budget Stabilization and Adjustment Fund (CBSAF) to save and subsidize the
over-collected funds to the short-collection year. The Budget Law of the People’s
Republic of China (2014 Revision) (hereinafter referred to as the new budget law),
which was implemented in 2014, has increased the control over budgeting processes
by increasing the transparency of the budget, establishing a system to control the
inter-year budget and balance the budget across years; In the second revision of the
Regulations on the Implementation of the Budget Law in 2018, the reform guideline
of improving the budget performance management system and constructing a new
pattern of all-round budget performance management was proposed. These moves
target strengthening soft constraints, which will help restrain the budget variance in
the long run.

The third factor is related to fiscal management system which mainly affects the
level of budget variance rate. As local governments rely on the central government’s
transfer payments, they are motivated to fight for more financial aids than they need,
which encourages the phenomenon of “fighting more than spending” and oppor-
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tunistic behaviors (Chen & Lv, 2019). Furthermore, local governments tend to raise
their spending, especially in the last quarter, to fulfill budget tasks, which leads to
irregular use of funds and other risks. These two factors contributed to the variance
in fiscal expenditure in the past. However, the Regulations on the Implementation of
the Budget Law, which were revised for the second time in 2018, point to improve
the transfer payment process, clarify the fiscal relationship between governments
by clarifying the types and scope of transfer payments, improving the evaluation of
special transfer payments and regulating the process of fund transfer more strictly.
These actions have significantly controlled the fiscal expenditure variance, which is
reflected in the forecast.

The fourth factor is external supervision, which mainly affects the level of budget
variance rate. In China, the NPC is charged with overseeing the budget (Chen & Lv,
2019), while the private sector also plays a supervisory role. Before the revision of
the new budget law, the NPC’s supervision was not sound enough, lacking profes-
sionalism,while it was also difficult for the private sector to form a strong supervision
on the budget due to the insufficient information disclosed by the government. In
2014, the New Budget Law made efforts to strengthen the NPC’s supervision and
audit power over the use of budget funds, and the budget report was also required to
be more detailed. In 2018, the Implementation of the Budget Law further requires
more transparency, disclosing more data about government debt, agency operating
expenses, government procurement and financial earmarked funds. Furthermore, it
stipulated explicitly that special transfer payments should be disclosed by region
and project, and expenditures by item. These measures strengthen the supervision
function of the NPC and society, which is a reflection of the people’s ownership and
will continuously curb the budget variance rate.

All in all, the decrease of budget variance rate in the next two years is the result
of the continuous reform of China’s fiscal budget system over years. It is one of the
most important achievement of the GOC’s modernization of national governance
capacity.

Based on the results of modeling and analysis, in order to further control the
budget variance, we can focus on the following aspects. The first is to develop more
scientific budgeting methods like adopting more mathematical models (e.g., time
series techniques and uncertainty theory) and big data techniques (e.g., deep learning)
to establish a more predictive budget planning system; The second is to strengthen
the management of budget performance evaluation, such as implementing medium-
term financial budgeting management and gradually integrating it into the existing
budget performance evaluation. The third is to harden the soft constraints on budget
planning and execution. For example, by eliminating the misuse of over-collected
and under-spent funds through legislation. The fourth is to further improve the budget
law, clarify the fiscal relationship between central government and local government,
focus on controlling scale of transfer payments, especially special transfer payments,
enhance the efficiency of capital flow. Finally, GOC should further implement the
supervision over the budget planning and execution to create a more transparent
budget system. For this purpose, the NPC’s power must be reinforced and more
details of fiscal data needs to be published.



236 G. Chen and X. Gong

5 Conclusion

This chapter completes a descriptive analysis of budget data from 2000 to 2018
in China, pointing out that the level of history budget variance is affected by the
global economy and the macroeconomic policies of China. A series of budgetary
management actions and fiscal reforms implemented by the Chinese government
since 2014 were effective which is reflected in the fact that the budget variance has
been well controlled in recent years. The chapter chooses unit root non-stationary
model and fixed trend model to model for budget execution and budget variance rate
data. The future budget variance in the next two years is calculated from the forecast
of the twomodels. According to the prediction, the budget variance in 2021 and 2022
will be further controlled, and this positive trend is the result of the combination of
economic, soft constraints, institutional and regulatory factors.

There is still much room for improvement. Theoretical forecast errors for 2021
and 2022may exist (Zhao&Wu, 2013)mainly because the impact of the epidemic on
China’s economy is not taken into account. There is also room for improvement in the
combination of fiscal theory andmodeling results.Other researchers canmake further
analysis, like forecasting the level of budget variance of a province or municipality,
thus drawing conclusions with local characteristics (Lin &Ma, 2013). China’s fiscal
data are increasingly abundant, so the research difficulty of this topic will decrease
over time. Finally, there are more time series methods that can be used to accomplish
the tasks accomplished in this chapter, such as time series multiplicative models
(Jiang&Cheng, 2018),more advancedmathematical tools such as uncertainty theory
(Liu & Peng, 2005), data mining techniques (Qin, 2018) and Markov Chains (Hou
et al., 2010; Li & Yi, 1997) can be used during modeling, which may lead to more
accurate conclusions.
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