Skip to main content

Innovation in Stabilization of Biopharmaceuticals

  • Chapter
  • First Online:
Recent Advances in Pharmaceutical Innovation and Research
  • 540 Accesses

Abstract

The applications of biopharmaceuticals, therapeutic molecules of biological origin, are increasing every day. The major reasons for this preference are target specificity and lower side effects. Production and downstream processing of biopharmaceuticals have their challenges that raise their final cost. The instability of proteins, during expression, purification, formulation, storage, and administration, is an issue that needs to be addressed if biopharmaceuticals are to achieve their full clinical potential. This requires a thorough understanding of the protein structure and changes that it undergoes when exposed to physical and chemical stressors. Changes in protein structure lead to a reduction in therapeutic efficacy but may introduce undesirable immunogenicity as well. A comprehensive appreciation of these changes will help devise rational usage of osmolytes as protein stabilizers. A novel direction in this is the use of nucleic aptamers that are capable of stabilizing proteins against a multitude of stress conditions. Changing/modifying pre-conceived notions of protein stabilizers is likely to yield long-lasting formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas SA, Sharma VK, Patapoff TW et al (2012) Opposite effects of polyols on antibody aggregation: thermal versus mechanical stresses. Pharm Res 29:683–694

    Article  CAS  PubMed  Google Scholar 

  • Abuchowski A, van Es T, Palczuk NC (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    Article  CAS  PubMed  Google Scholar 

  • Ajona D, Ortiz-Espinosa S, Moreno H et al (2017) A combined Pd-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov 7:694–703

    Article  CAS  PubMed  Google Scholar 

  • Akbarian M, Ghasemi Y, Uversky V et al (2018) Chemical modifications of insulin: finding a compromise between stability and pharmaceutical performance. Int J Pharm 547:450–468

    Article  CAS  PubMed  Google Scholar 

  • Alford JR, Kendrick BS, Carpenter JF et al (2008) High concentration formulations of recombinant human interleukin-1 receptor antagonist: II. Aggregation kinetics. J Pharm Sci 97:3005–3021

    Article  CAS  PubMed  Google Scholar 

  • Angelov B, Angelova A, Papahadjopoulos-Sternberg B et al (2012) Protein-containing pegylated cubosomic particles: freeze-fracture electron microscopy and synchrotron radiation circular dichroism study. J Phys Chem B 116:7676–7686

    Article  CAS  PubMed  Google Scholar 

  • Angkawinitwong U, Sharma G, Khaw PT et al (2015) Solid-state protein formulations. Ther Deliv 6:59–82

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Prestrelski SJ, Kenney WC et al (2001) Factors affecting short-term and long-term stabilities of proteins. Adv Drug Deliv Rev 46:307–326

    Article  CAS  PubMed  Google Scholar 

  • Arsiccio A, Pisano R (2017) Stability of proteins in carbohydrates and other additives during freezing: the human growth hormone as a case study. J Phys Chem B 121:8652–8660

    Article  CAS  PubMed  Google Scholar 

  • Ayala M, Horjales E, Pickard MA, Vazquez-Duhalt R (2002) Cross-linked crystals of chloroperoxidase. Biochem Biophys Res Commun 295(4):828–831. https://doi.org/10.1016/S0006-291X(02)00766-0

    Article  CAS  PubMed  Google Scholar 

  • Bam NB, Randolph TW, Cleland JL (1995) Stability of protein formulations: investigation of surfactant effects by a novel EPR spectroscopic technique. Pharm Res 12:2–11

    Article  CAS  PubMed  Google Scholar 

  • Bam NB, Cleland JL, Yang J et al (1998) Tween protects recombinant human growth hormone against agitation-induced damage via hydrophobic interactions. J Pharm Sci 87:1554–1559

    Article  CAS  PubMed  Google Scholar 

  • Becker RC, Chan MY (2009) Reg-1, a regimen comprising RB-006, a factor IXa antagonist, and its oligonucleotide active control agent RB-007 for the potential treatment of arterial thrombosis. Curr Opin Mol Ther 11:707–715

    CAS  PubMed  Google Scholar 

  • Borowitz D, Goss CH, Stevens C et al (2006) Safety and preliminary clinical activity of a novel pancreatic enzyme preparation in pancreatic insufficient cystic fibrosis patients. Pancreas 32:258–263

    Article  CAS  PubMed  Google Scholar 

  • Brennan JR, Gebhart SS, Blackard WG (1985) Pump-induced insulin aggregation: a problem with the biostator. Diabetes 34:353–359

    Article  CAS  PubMed  Google Scholar 

  • Cabirol FL, Lim AE, Hanefeld U et al (2008) Robust and efficient, yet uncatalyzed, synthesis of trialkylsilyl-protected cyanohydrins from ketones. J Org Chem 73:2446–2449

    Article  CAS  PubMed  Google Scholar 

  • Cabral JMS, Kennedy JF (1993) Immobilisation techniques for altering thermal stability of enzymes. In: Gupta MN (ed) Thermostability of enzymes. Springer, Berlin, pp 163–179

    Google Scholar 

  • Cacia J, Keck R, Presta LG et al (1996) Isomerization of an aspartic acid residue in the complementarity-determining regions of a recombinant antibody to human IgE: identification and effect on binding affinity. Biochemistry 35:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Canchi DR, Garcia AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293

    Article  CAS  PubMed  Google Scholar 

  • Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255

    Article  CAS  PubMed  Google Scholar 

  • Chang BS, Beauvais RM, Arakawa T et al (1996) Formation of an active dimer during storage of interleukin-1 receptor antagonist in aqueous solution. Biophys J 71:3399–3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen B, Bautista R, Yu K et al (2003) Influence of histidine on the stability and physical properties of a fully human antibody in aqueous and solid forms. Pharm Res 20:1952–1960

    Article  CAS  PubMed  Google Scholar 

  • Cibiel A, Pestourie C, Duconge F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606

    Article  CAS  PubMed  Google Scholar 

  • Clausi AL, Merkley SA, Carpenter JF (2008) Inhibition of aggregation of aluminum hydroxide adjuvant during freezing and drying. J Pharm Sci 97:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Cleland JL, Powell MF, Shire SJ (1993) The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst 10:307–377

    CAS  PubMed  Google Scholar 

  • Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Román JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press LLC, Boca Raton, pp 301–323

    Google Scholar 

  • Dagan S, Hagai T, Gavrilov Y et al (2013) Stabilization of a protein conferred by an increase in folded state entropy. Proc Natl Acad Sci U S A 110:10628–10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darkwah J (2017) Protein stability: impact of formulation excipients and manufacturing processes in protein-based pharmaceuticals. PhD thesis. De Montfort University, Leicester. http://hdl.handle.net/2086/16284

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473:805–825

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Truscott RJ (2001) Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B Biol 63:114–125

    Article  CAS  Google Scholar 

  • de Beer RJ, Nuijens T, Wiermans L (2012) Improving the carboxyamidomethyl ester for subtilisin A-catalysed peptide synthesis. Org Biomol Chem 10:6767–6775

    Article  PubMed  Google Scholar 

  • Diwan M, Park TG (2003) Stabilization of recombinant interferon-alpha by pegylation for encapsulation in PLGA microspheres. Int J Pharm 252:111–122

    Article  CAS  PubMed  Google Scholar 

  • Duerr C, Friess W (2019) Antibody-drug conjugates- stability and formulation. Eur J Pharm Biopharm 139:168–176

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Sun L, Li K et al (2017) The bioactivity of d-/l-isonucleoside- and 2′-deoxyinosine-incorporated aptamer AS1411 including DNA replication/microRNA expression. Mol Ther Nucleic Acids 9:218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fradkin AH, Carpenter JF, Randolph TW (2009) Immunogenicity of aggregates of recombinant human growth hormone in mouse models. J Pharm Sci 98:3247–3264

    Article  CAS  PubMed  Google Scholar 

  • Gantenbein AR, Sarikaya H, Riederer F et al (2015) Postoperative hemicrania continua-like headache - a case series. J Headache Pain 16:526

    Article  PubMed  Google Scholar 

  • Gast K, Schuler A, Wolff M et al (2017) Rapid-acting and human insulins: hexamer dissociation kinetics upon dilution of the pharmaceutical formulation. Pharm Res 34:2270–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gervasi V, Dall Agnol R, Cullen S et al (2018) Parenteral protein formulations: an overview of approved products within the European Union. Eur J Pharm Biopharm 131:8–24

    Article  CAS  PubMed  Google Scholar 

  • Goolcharran C, Cleland JL, Keck R et al (2000) Comparison of the rates of deamidation, diketopiperazine formation and oxidation in recombinant human vascular endothelial growth factor and model peptides. AAPS J 2:E5

    Article  CAS  Google Scholar 

  • Grassi L, Cabrele C (2019) Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 51:1409–1431

    Article  CAS  PubMed  Google Scholar 

  • Guisan JM (2006) Immobilization of enzymes and cells, 2nd edn. Humana Press, Totowa

    Book  Google Scholar 

  • Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  PubMed  Google Scholar 

  • Hartimath SV, El-Sayed A, Makhlouf A et al (2019) Therapeutic potential of nimotuzumab PEGylated-maytansine antibody drug conjugates against EGFR positive xenograft. Oncotarget 10:1031–1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann WK, Saptharishi N, Yang XY et al (2004) Characterization and analysis of thermal denaturation of antibodies by size exclusion high-performance liquid chromatography with quadruple detection. Anal Biochem 325:227–239

    Article  CAS  PubMed  Google Scholar 

  • Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb Technol 48:107–122

    Article  CAS  PubMed  Google Scholar 

  • Hong T, Iwashita K, Shiraki K (2018) Viscosity control of protein solution by small solutes: a review. Curr Protein Pept Sci 19:746–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang BT, Lai WY, Chang YC et al (2017) A CTLA-4 antagonizing DNA aptamer with antitumor effect. Mol Ther Nucleic Acids 8:520–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izutsu K (2005) Stabilization of therapeutic proteins by chemical and physical methods. Methods Mol Biol 308:287–292

    CAS  PubMed  Google Scholar 

  • Izutsu KI (2018) Applications of freezing and freeze-drying in pharmaceutical formulations. Adv Exp Med Biol 1081:371–383

    Article  CAS  PubMed  Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18:24–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Kaur J, Prasad S et al (2020) Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 16(3):255–274. https://doi.org/10.1080/17460441.2021.1829587

    Article  CAS  PubMed  Google Scholar 

  • Jegan RJ, Emilia AT (2004) Strategies in making cross-linked enzyme crystals. Chem Rev 104:3705–3722

    Article  Google Scholar 

  • Jetani HC, Bhadra AK, Jain NK et al (2014) Nucleic acid aptamers stabilize proteins against different types of stress conditions. J Pharm Sci 103:100–106

    Article  CAS  PubMed  Google Scholar 

  • Jezek J, Rides M, Derham B et al (2011) Viscosity of concentrated therapeutic protein compositions. Adv Drug Deliv Rev 63:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Johnson RE, Qi H, Borgmeyer JR et al (2004) Stable pH optimized formulation of a modified antibody. WO Patent WO/2004/019861

    Google Scholar 

  • Jones MT, Mahler H-C, Yadav S et al (2018) Considerations for the use of polysorbates in biopharmaceuticals. Pharm Res 35:148

    Article  PubMed  Google Scholar 

  • Kabiri M, Unsworth LD (2014) Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies. Biomacromolecules 15:3463–3473

    Article  CAS  PubMed  Google Scholar 

  • Kallenberg A, van Rantwijk F, Sheldon R et al (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal. 347:905–926

    Article  CAS  Google Scholar 

  • Kaplon H, Reichert JM (2019) Antibodies to watch in 2019. MAbs 11:219–238

    Article  CAS  PubMed  Google Scholar 

  • Katchalski-Katzir E (1993) Immobilized enzymes--learning from past successes and failures. Trends Biotechnol 11:471–478

    Article  CAS  PubMed  Google Scholar 

  • Katterle B (2018) How stable are new biologics? Pharm Ind 80:1557–1563

    CAS  Google Scholar 

  • Kaur G, Roy I (2008) Therapeutic applications of aptamers. Expert Opin Investig Drugs 17:43–60

    Article  CAS  PubMed  Google Scholar 

  • Kerwin BA (2008) Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci 97:2924–2935

    Article  CAS  PubMed  Google Scholar 

  • Kesik-Brodacka M (2018) Progress in biopharmaceutical development. Biotechnol Appl Biochem 65:306–322

    Article  CAS  PubMed  Google Scholar 

  • Kiese S, Papppenberger A, Friess W et al (2008) Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci 97:4347–4366

    Article  CAS  PubMed  Google Scholar 

  • Kishore D, Kundu S, Kayastha AM (2012) Thermal, chemical and pH induced denaturation of a multimeric beta-galactosidase reveals multiple unfolding pathways. PLoS One 7:e50380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz U, Teml A, Schwab M (2007) Clinical pharmacokinetics and use of infliximab. Clin Pharmacokinet 46:645–660

    Article  CAS  PubMed  Google Scholar 

  • Knotts TA IV, Rathore N, de Pablo JJ (2008) An entropic perspective of protein stability on surfaces. Biophys J 94:4473–4483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozma GT, Shimizu T, Ishida T et al (2020) Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEgylated nano-biopharmaceuticals. Adv Drug Deliv Rev 154–155:163–175. https://doi.org/10.1016/j.addr.2020.07.024

    Article  CAS  PubMed  Google Scholar 

  • Kreilgaard L, Frokjaer S, Flink JM et al (1998) Effects of additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch Biochem Biophys 360:121–134

    Article  CAS  PubMed  Google Scholar 

  • Lam KCL, Rajaraman G (2012) Assessment of P-glycoprotein substrate and inhibition potential of test compounds in MDR1-transfected MDCK cells. Curr Protoc Pharmacol 58:7.13.11–7.13.17

    Google Scholar 

  • Laptos T, Omersel J (2018) The importance of handling high-value biologicals: physico-chemical instability and immunogenicity of monoclonal antibodies. Exp Ther Med 15:3161–3168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Basle Y, Chennell P, Tokhadze N et al (2020) Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci 109:169–190

    Article  PubMed  Google Scholar 

  • Lee HJ, McAuley A, Schilke KF et al (2011) Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev 63:1160–1171

    Article  CAS  PubMed  Google Scholar 

  • Li S, Schöneich C, Borchardt RT (1995) Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization. Biotechnol Bioeng 48:490–500

    Article  CAS  PubMed  Google Scholar 

  • Lipiainen T, Peltoniemi M, Sarkhel S et al (2015) Formulation and stability of cytokine therapeutics. J Pharm Sci 104:307–326

    Article  PubMed  Google Scholar 

  • Lopez-Gallego F, Betancor L, Mateo C et al (2005) Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J Biotechnol 119:70–75

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Joubert MK, Stevenson R et al (2011) Chemical modifications in therapeutic protein aggregates generated under different stress conditions. J Biol Chem 286:25134–25144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahler HC, Allmendinger A (2017) Stability, formulation, and delivery of biopharmaceuticals. Protein Ther 2:469–491

    Article  Google Scholar 

  • Malik R, Roy I (2011) Probing the mechanism of insulin aggregation during agitation. Int J Pharm 413:73–80

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Roy I (2013) Stabilization of bovine insulin against agitation-induced aggregation using RNA aptamers. Int J Pharm 452:257–265

    Article  CAS  PubMed  Google Scholar 

  • Mallardi A, Angarano V, Magliulo M et al (2015) General approach to the immobilization of glycoenzyme chains inside calcium alginate beads for bioassay. Anal Chem 87:11337–11344

    Article  CAS  PubMed  Google Scholar 

  • Manning MC, Chou DK, Murphy BM et al (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27:544–575

    Article  PubMed  Google Scholar 

  • Margolin AL, Navia MA (2001) Protein crystals as novel catalytic materials. Angew Chem 40:2204–2222

    Article  CAS  Google Scholar 

  • McIntosh KA, Charman WN, Charman SA (1998) The application of capillary electrophoresis for monitoring effects of excipients on protein conformation. J Pharm Biomed Anal 16:1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Meng W, Guo X, Qin M et al (2012) Mechanistic insights into the stabilization of srcSH3 by pegylation. Langmuir 28:16133–16140

    Article  CAS  PubMed  Google Scholar 

  • Mianowska B, Szadkowska A, Pietrzak I et al (2011) Immunogenicity of different brands of human insulin and rapid-acting insulin analogs in insulin-naive children with Type 1 diabetes. Pediatr Diabetes 12:78–84

    Article  CAS  PubMed  Google Scholar 

  • Min K, Jo H, Song K et al (2011) Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (-) prostate cancers. Biomaterials 32:2124–2132

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Kamal M, Kang SA et al (2016) E-selectin targeting pegylated-thioaptamer prevents breast cancer metastases. Mol Ther Nucleic Acids 5:e399

    Article  CAS  PubMed  Google Scholar 

  • Morpurgo M, Veronese FM (2004) Conjugates of peptides and proteins to polyethylene glycols. Methods Mol Biol 283:45–70

    CAS  PubMed  Google Scholar 

  • Moussa EM, Panchal JP, Moorthy BS et al (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105:417–430

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee J, Gupta MN (2016) Lipase coated clusters of iron oxide nanoparticles for biodiesel synthesis in a solvent free medium. Bioresour Technol 209:166–171

    Article  CAS  PubMed  Google Scholar 

  • Nabuchi Y, Fujiwara E, Ueno K et al (1995) Oxidation of recombinant human parathyroid hormone: effect of oxidized position on the biological activity. Pharm Res 12:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Nielsen L, Khurana R, Coats A et al (2001) Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 40:6036–6046

    Article  CAS  PubMed  Google Scholar 

  • Ozboyaci M, Kokh DB, Corni S et al (2016) Modeling and simulation of protein-surface interactions: achievements and challenges. Q Rev Biophys 49:e4

    Article  PubMed  Google Scholar 

  • Pace NC, Scholtz JM, Grimsley GR (2014) Forces stabilizing proteins. FEBS Lett 588:2177–2184

    Article  PubMed Central  Google Scholar 

  • Pan H, Chen K, Chu L et al (2009) Methionine oxidation in human IgG2 Fc decreases binding affinities to Protein A and FcRn. Protein Sci 18:424–433

    Article  CAS  PubMed  Google Scholar 

  • Patel KP, Sethi R, Dhara AR et al (2017) Challenges with osmolytes as inhibitors of protein aggregation: can nucleic acid aptamers provide an answer? Int J Biol Macromol 100:75–88

    Article  CAS  PubMed  Google Scholar 

  • Persichetti RA, Clair NLS, Griffith JP et al (1995) Cross-linked enzyme crystals (CLECs) of thermolysin in the synthesis of peptides. J Am Chem Soc 117:2732–2737

    Article  CAS  Google Scholar 

  • Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10:348–351

    Article  CAS  PubMed  Google Scholar 

  • Pisal DS, Kosloski MP, Balu-Iyer SV (2010) Delivery of therapeutic proteins. J Pharm Sci 99:2557–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodeus A, Abdul-Wahid A, Fischer NW et al (2015) Targeting the PD-1/PD-L1 immune evasion axis with DNA aptamers as a novel therapeutic strategy for the treatment of disseminated cancers. Mol Ther Nucleic Acids 4:e237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Orgel S, Francon A et al (2018) Urea improves stability of inactivated polio vaccine serotype 3 during lyophilization and storage in dried formulations. J Pharm Sci 107:2070–2078

    Article  CAS  PubMed  Google Scholar 

  • Radermecker RP, Renard E, Scheen AJ (2009) Circulating insulin antibodies: influence of continuous subcutaneous or intraperitoneal insulin infusion, and impact on glucose control. Diabetes Metab Res Rev 25:491–501

    Article  CAS  PubMed  Google Scholar 

  • Raso SW, Abel J, Barnes JM et al (2005) aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci 14:2246–2257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayaprolu BM, Strawser JJ, Anyarambhatla G (2018) Excipients in parenteral formulations: selection considerations and effective utilization with small molecules and biologics. Drug Dev Ind Pharm 44:1565–1571

    Article  CAS  PubMed  Google Scholar 

  • Richards FM, Knowles JR (1968) Glutaraldehyde as a protein cross-linkage reagent. J Mol Biol 37:231–233

    Article  CAS  PubMed  Google Scholar 

  • Riek R, Eisenberg DS (2016) The activities of amyloids from a structural perspective. Nature 539:227–235

    Article  PubMed  Google Scholar 

  • Roberts CJ (2014) Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 32:372–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8:E501–E507

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy I, Gupta MN (2006) Design of smart biocatalysts: immobilization of enzymes on smart polymers. In: Guisan JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, pp 87–95

    Chapter  Google Scholar 

  • Roy I, Sharma S, Gupta MN (2004) Smart biocatalysts: design and applications. Adv Biochem Eng Biotechnol 86:159–189

    CAS  PubMed  Google Scholar 

  • Salnikova MS, Middaugh CR, Rytting JH (2008) Stability of lyophilized human growth hormone. Int J Pharm 358:108–113

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Garcia L, Martin L, Mangues R (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33

    Article  Google Scholar 

  • Schoevaart R, Wolbers MW, Golubovic M et al (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem 351:207–213

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA, Brady D (2018) The limits to biocatalysis: pushing the envelope. Chem Comm (Cambridge) 54:6088–6104

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Cui F, Yamamoto H et al (2009) Optimized formulation of high-payload PLGA nanoparticles containing insulin-lauryl sulfate complex. Drug Dev Ind Pharm 35:177–184

    Article  CAS  PubMed  Google Scholar 

  • Shire SJ (1996) Stability characterization and formulation development of recombinant human deoxyribonuclease I [Pulmozyme, (Dornase Alpha)]. Pharm Biotechnol 9:393–426

    Article  CAS  PubMed  Google Scholar 

  • Sifniotis V, Cruz E, Eroglu B et al (2019) Current advancements in addressing key challenges of therapeutic antibody design, manufacture, and formulation. Antibodies (Basel) 8:36

    Article  CAS  PubMed  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  PubMed  Google Scholar 

  • Solanki VA, Jain NK, Roy I (2011) Stabilization of tetanus toxoid formulation containing aluminium hydroxide adjuvant against freeze-thawing. Int J Pharm 414:140–147

    Article  CAS  PubMed  Google Scholar 

  • Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors (Basel) 12:612–631

    Article  PubMed  Google Scholar 

  • Song JG, Lee SH, Han H-K (2017) The stabilization of biopharmaceuticals: current understanding and future perspectives. J Pharm Investig 47:475–496

    Article  CAS  Google Scholar 

  • Strambini GB, Gabellieri E (1996) Proteins in frozen solutions: evidence of ice-induced partial unfolding. Biophys J 70:971–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swierczewska M, Lee KC, Lee S (2015) What is the future of pegylated therapies? Expert Opin Emerg Drugs 20:531–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamizi E, Jouyban A (2016) Forced degradation studies of biopharmaceuticals: selection of stress conditions. Eur J Pharm Biopharm 98:26–46

    Article  CAS  PubMed  Google Scholar 

  • Tonnis WF, Mensink MA, de Jager A et al (2015) Size and molecular flexibility of sugars determine the storage stability of freeze-dried proteins. Mol Pharm 12:684–694

    Article  CAS  PubMed  Google Scholar 

  • Torosantucci R, Mozziconacci O, Sharov V et al (2012) Chemical modifications in aggregates of recombinant human insulin induced by metal-catalyzed oxidation: covalent cross-linking via Michael addition to tyrosine oxidation products. Pharm Res 29:2276–2293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torosantucci R, Schoneich C, Jiskoot W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31:541–553

    Article  CAS  PubMed  Google Scholar 

  • Trainor K, Broom A, Meiering EM (2017) Exploring the relationships between protein sequence, structure and solubility. Curr Opin Struct Biol 42:136–146

    Article  CAS  PubMed  Google Scholar 

  • Turecek PL, Bossard MJ, Schoetens F et al (2016) PEgylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci 105:460–475

    Article  CAS  PubMed  Google Scholar 

  • Uy R, Wold F (1977) Introduction of artificial crosslinks into proteins. Adv Exp Med Biol 86A:169–186

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 108:1494–1508

    Article  CAS  PubMed  Google Scholar 

  • Vermeer AW, Bremer MG, Norde W (1998) Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic teflon surface studied by circular dichroism spectroscopy. Biochim Biophys Acta 1425:1–12

    Article  CAS  PubMed  Google Scholar 

  • Visuri K (1993) Preparation of cross-linked glucose isomerase crystals. US Patent 5,437,993

    Google Scholar 

  • Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145

    Article  CAS  PubMed  Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  CAS  PubMed  Google Scholar 

  • Wang W (2005) Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm 289:1–30

    Article  CAS  PubMed  Google Scholar 

  • Wang W (2015) Advanced protein formulations. Protein Sci 24:1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Singh SK, Li N et al (2012) Immunogenicity of protein aggregates--concerns and realities. Int J Pharm 431:1–11

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Luo Y, Bing T et al (2014) DNA aptamer evolved by cell-selex for recognition of prostate cancer. PLoS One 9:e100243

    Article  PubMed  PubMed Central  Google Scholar 

  • Warne NW (2011) Development of high concentration protein biopharmaceuticals: the use of platform approaches in formulation development. Eur J Pharm Biopharm 78:208–212

    Article  CAS  PubMed  Google Scholar 

  • Waters B, Lillicrap D (2009) The molecular mechanisms of immunomodulation and tolerance induction to factor VIII. J Thromb Haemost 7:1446–1456

    Article  CAS  PubMed  Google Scholar 

  • Webber MJ, Appel EA, Vinciguerra B et al (2016) Supramolecular pegylation of biopharmaceuticals. Proc Natl Acad Sci U S A 113:14189–14194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Chen L, Chen J et al (2009) Rapid glycation with D-ribose induces globular amyloid-like aggregations of BSA with high cytotoxicity to SH-SY5Y cells. BMC Cell Biol 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wörn A, Plückthun A (1998) Mutual stabilization of VL and VH in single-chain antibody fragments, investigated with mutants engineered for stability. Biochemistry 37:13120–13127

    Article  PubMed  Google Scholar 

  • Xu D, Xu D, Yu X et al (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhang X, Ye M et al (2011) Aptamer-conjugated nanomaterials and their applications. Adv Drug Deliv Rev 63:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamay TN, Kolovskaya OS, Glazyrin YE et al (2014) DNA-aptamer targeting vimentin for tumor therapy in vivo. Nucleic Acid Ther 24:160–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapadka KL, Becher FJ, Gomes Dos Santos AL et al (2017) Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus 7:20170030

    Article  PubMed  PubMed Central  Google Scholar 

  • Zboralski D, Hoehlig K, Eulberg D et al (2017) Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res 5:950–956

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kalonia DS (2007) The effect of neighboring amino acid residues and solution environment on the oxidative stability of tyrosine in small peptides. AAPS PharmSciTech 8:E102

    Article  PubMed  Google Scholar 

  • Zhang Y, Lai BS, Juhas M (2019) Recent advances in aptamer discovery and applications. Molecules 24:941

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Zhao S, Yu X et al (2017) Simultaneous targeting of CD44 and EpCAM with a bispecific aptamer effectively inhibits intraperitoneal ovarian cancer growth. Theranostics 7:1373–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H-X, Pang X (2018) Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 118:1691–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prasad, S., Roy, I. (2023). Innovation in Stabilization of Biopharmaceuticals. In: Singh, P.P. (eds) Recent Advances in Pharmaceutical Innovation and Research. Springer, Singapore. https://doi.org/10.1007/978-981-99-2302-1_1

Download citation

Publish with us

Policies and ethics