Skip to main content

Mechanisms of Oncogenesis

  • Living reference work entry
  • First Online:
Handbook of Oncobiology: From Basic to Clinical Sciences

Abstract

Carcinogenesis can be due to replication errors, faulty repair of damaged DNA, and exposure to DNA-damaging agents. The two major carcinogenesis mechanisms are activation of oncogene and inactivation of tumor suppressor gene. Among oncogenes are cell cycle regulators (bcl, barc), the secreted growth factors (c-sis, hst), cell surface receptors (erb B, fms, ret, trk, fes), intracellular transducers (c-src, c-abl, mst, ras), and DNA-binding nuclear proteins (myc, jun, fos). Oncogenes including E2F-1, beta-catenin, Myc, and Ras increase ARF levels. ATM and ARF control the function of MDM2, which is a negative regulator of tumor suppressor gene TP53 and RB1. Inactivation of TP53 is a frequent and early event in carcinogenesis. TP53 and RB1 play an important role in regulation of cell cycle, apoptosis, DNA repair, and suppression of tumor formation. The level of TP53 and MDM2 fluctuates in response to genotoxic stress signals, ribosomal stress, psychological stress signals, and oncogenic activation. Genotoxic stress signals including radiations cause DNA damage resulting in activation of ATM and ATR genes. DNA damage signaling and double strand break repair by homologous recombination, mRNA splicing, and microRNA biogenesis are influenced by BRCA1. The loss of function of BRCA1 and BRCA2 genes impairs DNA homologous recombination repair pathway and results in genetic instability and an increased risk of cancer, especially breast or ovarian. RAD51, a conserved eukaryotic gene, plays a major role in DNA repair during DSB and is also associated with modulation of HIF-dependent signaling pathways involved in promoting adaptation in cancer cells in hypoxic conditions. The HIF-α-c-Myc pathway influences cell–cell interaction, malignant progression, aggressive local invasion, and epithelial-mesenchymal transition. As tumor growth requires continuous angiogenesis, HIF-1α and HIF-2α induce angiogenesis by activation of expression of angiogenic pathway involving VEGF and VEGFRs. If DNA damage is unrepaired, viral integration can block DNA repair pathways or prevent recruitment of repair proteins like RAD51 to damage DNA site. The HPVE6 and E7 oncoproteins can bind to the tumor suppressor proteins p53 and RB1, inhibiting their function. Oncogenesis is the maintenance and evolution of cancer after its initiation. The mechanisms involved in oncogenesis can be viral integration in the genome or non-viral mechanisms of chromosomal aberration, gene amplification, and even modification at level of nucleosome and histones. Understanding these interactions has implications for future therapeutic regimes for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbruscato TJ, Davis TP (1999) Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: influence of astrocyte contact. Brain Res 842(2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3):219–227

    Article  CAS  PubMed  Google Scholar 

  • Amelio I, Mancini M, Petrova V, Cairns RA, Vikhreva P, Nicolai S, Marini A, Antonov AA, Le Quesne J, Baena Acevedo JD, Dudek K (2018) p53 mutants cooperate with HIF-1 in transcriptional regulation of extracellular matrix components to promote tumor progression. Proc Natl Acad Sci 115(46):E10869–E10878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408

    Article  CAS  PubMed  Google Scholar 

  • Axelson H, Fredlund E, Ovenberger M, Landberg G, Påhlman S (2005) Hypoxia-induced dedifferentiation of tumor cells–a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin Cell Dev Biol 16(4-5):554–563

    Article  CAS  PubMed  Google Scholar 

  • Barker N, Ridgway RA, Van Es JH, Van De Wetering M, Begthel H, Van Den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611

    Article  CAS  PubMed  Google Scholar 

  • Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87(8):3336–3343

    Article  CAS  PubMed  Google Scholar 

  • Benecke AG, Eilebrecht S (2015) RNA-mediated regulation of HMGA1 function. Biomol Ther 5(2):943–957

    CAS  Google Scholar 

  • Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8(12):967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodelon C, Untereiner ME, Machiela MJ, Vinokurova S, Wentzensen N (2016) Genomic characterization of viral integration sites in HPV-related cancers. Int J Cancer 139(9):2001–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JM, Giaccia AJ (1998) The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416

    CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294(5545):1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  CAS  PubMed  Google Scholar 

  • Cid MC, Grant DS, Hoffman GS, Auerbach R, Fauci AS, Kleinman HK (1993) Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J Clin Invest 91(3):977–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauss M, Weich H, Breier G, Knies U, Röckl W, Waltenberger J, Risau W (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271(30):17629–17634

    Article  CAS  PubMed  Google Scholar 

  • Coleman CN, Mitchell JB, Camphausen K (2002) Tumor hypoxia: chicken, egg, or a piece of the farm? J Clin Oncol Off J Am Soc Clin Oncol 20(3):610–615

    Article  Google Scholar 

  • de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255(5047):989–991

    Article  PubMed  Google Scholar 

  • Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146(5):1029–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebner F, Schremmer-Danninger E, Rehbock J (2010) The role of TP53 and p21 gene polymorphisms in breast cancer biology in a well specified and characterized German cohort. J Cancer Res Clin Oncol 136(9):1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y (1997) A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci 94(9):4273–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espiritu D, Gribkova AK, Gupta S, Shaytan AK, Panchenko AR (2021) Molecular mechanisms of oncogenesis through the lens of nucleosomes and histones. J Phys Chem B 125(16):3963–3976

    Article  CAS  PubMed  Google Scholar 

  • Fabregat RI (2009) Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 15(5):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N (1999) Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 237:1–30

    CAS  PubMed  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5(12):1359–1364

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18(1):4–26

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? JNCI: Journal of the National Cancer Institute 82(1):4–7

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2001) Angiogenesis-dependent diseases. Semin Oncol 28(6):536–542

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934

    Article  CAS  PubMed  Google Scholar 

  • Fortunato EA, Dell'Aquila ML, Spector DH (2000) Specific chromosome 1 breaks induced by human cytomegalovirus. Proc Natl Acad Sci 97(2):853–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garraway LA, Sellers WR (2006) Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6(8):593–602

    Article  CAS  PubMed  Google Scholar 

  • Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273(21):13313–13316

    Article  CAS  PubMed  Google Scholar 

  • Goldberg Z, Sionov RV, Berger M, Zwang Y, Perets R, Van Etten RA, Oren M, Taya Y, Haupt Y (2002) Tyrosine phosphorylation of Mdm2 by c-Abl: implications for p53 regulation. EMBO J 21(14):3715–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordan JD, Simon MC (2007) Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev 17(1):71–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA (1998) Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α Gene Expression. The Journal of Liver Research 7(3):205–213

    CAS  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Harry LE, Paleolog EM (2003) From the cradle to the clinic: VEGF in developmental, physiological, and pathological angiogenesis. Birth Defects Res C Embryo Today 69(4):363–374

    Article  CAS  PubMed  Google Scholar 

  • Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci 95(16):9349–9354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278(33):30772–30780

    Article  PubMed  Google Scholar 

  • Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  • Hogenesch JB, Chan WK, Jackiw VH, Brown RC, Gu YZ, Pray-Grant M, Perdew GH, Bradfield CA (1997) Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272(13):8581–8593

    Article  CAS  PubMed  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 mutations in human cancers. Science 253(5015):49–53

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Miao X, Zhang X, Ding F, Luo A, Guo Y, Tan W, Liu Z, Lin D (2005) The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res 65(20):9582–9587

    Article  CAS  PubMed  Google Scholar 

  • Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Phys Heart Circ Phys 274(3):H1054–H1058

    CAS  Google Scholar 

  • Hu Y (2009) BRCA1, hormone, and tissue-specific tumor suppression. Int J Biol Sci 5(1):20–27

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Feng Z, Levine AJ (2012) The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3(3-4):199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468

    Article  CAS  PubMed  Google Scholar 

  • Ivan M, Haberberger T, Gervasi DC, Michelson KS, Günzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr (2002) Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci 99(21):13459–13464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W (1992) Erythropoietin: structure, control of production, and function. Physiol Rev 72(2):449–489

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Berkovich E (2007) p53: a two-faced cancer gene. Nat Cell Biol 9(5):489–491

    Article  CAS  PubMed  Google Scholar 

  • Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437(2):169–183

    Article  CAS  PubMed  Google Scholar 

  • Kori M, Yalcin Arga K (2018) Potential biomarkers and therapeutic targets in cervical cancer: insights from the meta-analysis of transcriptomics data within network biomedicine perspective. PLoS One 13(7):e0200717

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroll J, Waltenberger J (1999) A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem Biophys Res Commun 265(3):636–639

    Article  CAS  PubMed  Google Scholar 

  • Kunz M, Ibrahim S, Koczan D, Thiesen HJ, Köhler HJ, Acker T, Plate KH, Ludwig S, Rapp UR, Bröcker EB, van Muijen GN (2001) Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma. Cell Growth Differ 12(3):137–145

    CAS  PubMed  Google Scholar 

  • Laderoute KR, Mendonca HL, Calaoagan JM, Knapp AM, Giaccia AJ, Stork PJ (1999) Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments: a candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 274(18):12890–12897

    Article  CAS  PubMed  Google Scholar 

  • Lahav R, Suva ML, Rimoldi D, Patterson PH, Stamenkovic I (2004) Endothelin receptor B inhibition triggers apoptosis and enhances angiogenesis in melanomas. Cancer Res 64(24):8945–8953

    Article  CAS  PubMed  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science 295(5556):858–861

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, Geil L, Schmidt L (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260(5112):1317–1320

    Article  CAS  PubMed  Google Scholar 

  • Lawson JS, Heng B (2010) Viruses and breast cancer. Cancers (Basel). 2(2):752–772

    Google Scholar 

  • Lawson JS, Glenn WK, Salmons B, Ye Y, Heng B, Moody P, Johal H, Rawlinson WD, Delprado W, Lutze-Mann L, Whitaker NJ (2010) Mouse mammary tumor virus–like sequences in human breast cancer. Cancer Res 70(9):3576–3585

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Ocejo O, Viloria-Petit A, Bequet-Romero M, Mukhopadhyay D, Rak J, Kerbel RS (2000) Oncogenes and tumor angiogenesis: the HPV-16 E6 oncoprotein activates the vascular endothelial growth factor (VEGF) gene promoter in a p53 independent manner. Oncogene 19(40):4611–4620

    Article  CAS  PubMed  Google Scholar 

  • Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Manfredi JJ (2010) The Mdm2–p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. Genes Dev 24(15):1580–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1805(1):105–117

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Claesson-Welsh L (2001) VEGF receptor signal transduction. Science’s signal transduction knowledge. Environment 2001(112): Sci. STKE: re21

    Google Scholar 

  • Matsuzawa SI, Takayama S, Froesch BA, Zapata JM, Reed JC (1998) p53-inducible human homologue of drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J 17(10):2736–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mavaddat N, Peock S, Frost D, Ellis S, Platte R, Fineberg E, Evans DG, Izatt L, Eeles RA, Adlard J, Davidson R (2013) Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst 105(11):812–822

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CA, Ratcliffe PJ (1997) Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci 94(15):8104–8109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399(6733):271–275

    Article  CAS  PubMed  Google Scholar 

  • Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O, Moas M, Buschmann T, Ronai ZE, Shiloh Y, Kastan MB (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 15(9):1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ (1996) Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 56(15):3436–3440

    CAS  PubMed  Google Scholar 

  • McConnell BB, Gregory FJ, Stott FJ, Hara E, Peters G (1999) Induced expression of p16 INK4a inhibits both CDK4-and CDK2-associated kinase activity by reassortment of cyclin-CDK-inhibitor complexes. Mol Cell Biol 19(3):1981–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows KN, Bryant P, Pumiglia K (2001) Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem 276(52):49289–49298

    Article  CAS  PubMed  Google Scholar 

  • Morabito A, Sarmiento R, Bonginelli P, Gasparini G (2004) Antiangiogenic strategies, compounds, and early clinical results in breast cancer. Crit Rev Oncol Hematol 49(2):91–107

    Article  PubMed  Google Scholar 

  • Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4(4):511–518

    Article  CAS  PubMed  Google Scholar 

  • Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, Vodicka P (2012) Mutations and polymorphisms in TP53 gene – an overview on the role in colorectal cancer. Mutagenesis 27(2):211–218

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, Kadoya T, Erdjument-Bromage H, Tempst P, Frappell PB, Bowtell DD (2004) Siah2 regulates stability of prolyl-hydroxylases, controls HIF1α abundance, and modulates physiological responses to hypoxia. Cell 117(7):941–952

    Article  CAS  PubMed  Google Scholar 

  • Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4(9):665–676

    Article  CAS  PubMed  Google Scholar 

  • Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hosteller R, Cleary K, Signer SH, Davidson N, Baylin S, Devilee P, Glover T (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342(6250):705–708

    Article  CAS  PubMed  Google Scholar 

  • Oh MK, Park HJ, Kim NH, Park SJ, Park IY, Kim IS (2011) Hypoxia-inducible factor-1α enhances haptoglobin gene expression by improving binding of STAT3 to the promoter. J Biol Chem 286(11):8857–8865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orhan E, Velazquez C, Tabet I, Sardet C, Theillet C (2021) Regulation of RAD51 at the transcriptional and functional levels: what prospects for cancer therapy? Cancers (Basel) 13(12):2930

    Google Scholar 

  • Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 269(41):25646–25654

    Article  CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Risau W (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol 4(3):207–218

    Article  CAS  PubMed  Google Scholar 

  • Poon E, Harris AL, Ashcroft M (2009) Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med 11:e26

    Article  PubMed  Google Scholar 

  • Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  PubMed  Google Scholar 

  • Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT (2010) Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Update 16(4):415–431

    Article  CAS  PubMed  Google Scholar 

  • Rademakers SE, Span PN, Kaanders JH, Sweep FC, van der Kogel AJ, Bussink J (2008) Molecular aspects of tumour hypoxia. Mol Oncol 2(1):41–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Rak J, Mitsuhashi Y, Bayko L, Filmus J, Shirasawa S, Sasazuki TE, Kerbel RS (1995) Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55(20):4575–4580

    CAS  PubMed  Google Scholar 

  • Rasooly A, Jacobson J (2006) Development of biosensors for cancer clinical testing. Biosens Bioelectron 21(10):1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E, Vacca A (2007) Macrophages and tumor angiogenesis. Leukemia 21(10):2085–2089

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2007) Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62(3):179–213

    Article  PubMed  Google Scholar 

  • Ryan HE, Lo J, Johnson RS (1998) HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J 17(11):3005–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawano A, Takahashi T, Yamaguchi S, Aonuma M, Shibuya M (1996) Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular endothelial growth factor. Cell Growth Differ 7(2):213–221

    CAS  PubMed  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  CAS  PubMed  Google Scholar 

  • Schoppmann SF, Horvat R, Birner P (2002) Lymphatic vessels and lymphangiogenesis in female cancer: mechanisms, clinical impact and possible implications for anti-lymphangiogenic therapies. Oncol Rep 9(3):455–460

    PubMed  Google Scholar 

  • Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10(1):135–147

    CAS  PubMed  Google Scholar 

  • Semenza GL (2007) Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov Today 12(19–20):853–859

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Koury ST, Nejfelt MK, Gearhart JD, Antonarakis SE (1991) Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc Natl Acad Sci 88(19):8725–8729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki T, Nota A, Taya Y, Okamoto K (2003) Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22(55):8870–8880

    Article  CAS  PubMed  Google Scholar 

  • Silver DP, Livingston DM (2012) Mechanisms of BRCA1 tumor suppression. Cancer Discov 2(8):679–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI, Tumor and Angiogenesis Research Group (2002) Association of hypoxia-inducible factors 1α and 2α with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 95(5):1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Song M, Lim JM, Min S, Oh JS, Kim DY, Woo JS, Nishimasu H, Cho SR, Yoon S, Kim HH (2021) Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nat Commun 12(1):1–8

    Article  CAS  Google Scholar 

  • Suzuki H, Tomida A, Tsuruo T (2001) Dephosphorylated hypoxia-inducible factor 1α as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20(41):5779–5788

    Article  CAS  PubMed  Google Scholar 

  • Terman BI, Dougher-Vermazen M (1996) Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev 15(2):159–163

    Article  CAS  PubMed  Google Scholar 

  • Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annual Review of Patholog 1:119

    Article  CAS  Google Scholar 

  • Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA (2001) Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20(6):1223–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visvader JE (2011) Cells of origin in cancer. Nature 469(7330):314–322

    Article  CAS  PubMed  Google Scholar 

  • Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    Article  CAS  PubMed  Google Scholar 

  • Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269(43):26988–26995

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci 90(9):4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhang R, Wu X, Hankinson O (2010) Roles of coactivators in hypoxic induction of the erythropoietin gene. PLoS One 5(4):e10002

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinstein IB (2002) Addiction to oncogenes-the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  • Westphal CH, Hoyes KP, Canman CE, Huang X, Kastan MB, Hendry JH, Leder P (1998) Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res 58(24):5637–5639

    CAS  PubMed  Google Scholar 

  • Xu L, Wu T, Lu S, Hao X, Qin J, Wang J, Zhang X, Liu Q, Kong B, Gong Y, Liu Z (2020) Mitochondrial superoxide contributes to oxidative stress exacerbated by DNA damage response in RAD51-depleted ovarian cancer cells. Redox Biol 36:101604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, White SB, Zhao Q, Lee FS (2001) HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci 98(17):9630–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng X, Shi G, He Q, Zhu P (2021) Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis. Sci Rep 11(1):20799

    Google Scholar 

  • Zhang L, Hill RP (2004) Hypoxia enhances metastatic efficiency by up-regulating Mdm2 in KHT cells and increasing resistance to apoptosis. Cancer Res 64(12):4180–4189

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ma N, Yao W, Li S, Ren Z (2019) RAD51 is a potential marker for prognosis and regulates cell proliferation in pancreatic cancer. Cancer Cell Int 19:356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudha Sambyal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guleria, K., Sambyal, V. (2023). Mechanisms of Oncogenesis. In: Sobti, R.C., Ganguly, N.K., Kumar, R. (eds) Handbook of Oncobiology: From Basic to Clinical Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-99-2196-6_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2196-6_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2196-6

  • Online ISBN: 978-981-99-2196-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics