Skip to main content

Effect of Nano-Formulated Agrochemicals on Rhizospheric Communities in Millets

  • Chapter
  • First Online:
Millet Rhizosphere

Abstract

Nanotechnology is an emerging technology that combines materials science and engineering fundamentals, altogether synthesizing materials at the nanoscale to solve various current problems. Agrochemicals are often used in modern intensive agriculture to protect crops from biotic stress, provide vital nutrients, and boost millet growth and yield. Although they are beneficial in the short term, their long-term and persistent applications damage soil fertility and negatively affect the rhizospheric microbiome. Nanotechnology in the form of nano-based agro-formulations is an innovative, environmentally acceptable, and practical solution for substitute synthetic fertilizers. Nanotechnological formulations and nanoparticles in the form of nanopesticides, nanoherbicides, nanogels, nanofertilizer, and nanofungicides are reported to have efficacy in continuous release of nutrients regulated distribution to plant nutrients very effectively. These nanoformulations helps in fighting phytopathological diseases, promotes plant, and microbiome productivity. In addition, they are effective in alleviating biotic and abiotic stress in crop plants. However, despite their extraordinary effectiveness, they also have several drawbacks, such as a tedious manufacturing process, shaky delivery, and dosage-sensitive effectiveness. Learning and acknowledging the influence of nano-based agrochemicals on highly nutritious crops such as millets is important for further commercialization and wide utilization in agriculture. Hence, this chapter focuses on the usage of nanoformulations on millet crops, their effects on soil rhizospheric communities, and soil fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz H, Hasaneen MN, Omar A (2018) Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egypt J Bot 58:87–95

    Google Scholar 

  • Abdel-Hafez SII, Nafady NA, Abdel-Rahim IR et al (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6:1–12

    Google Scholar 

  • Adams M, Xie J, Xie J et al (2020) The effect of carrier addition on Anammox start-up and microbial community: a review. Rev Environ Sci Bio/Technol 19:355–368

    CAS  Google Scholar 

  • Adisa IO, Reddy Pullagurala VL, Rawat S et al (2018) Role of cerium compounds in Fusarium wilt suppression and growth enhancement in tomato (Solanum lycopersicum). J Agric Food Chem 66:5959–5970

    CAS  PubMed  Google Scholar 

  • Adisa IO, Pullagurala VLR, Peralta-Videa JR et al (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6:2002–2030. https://doi.org/10.1039/C9EN00265K

    Article  CAS  Google Scholar 

  • Ahmed B, Khan MS, Musarrat J (2018a) Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): a study on growth dynamics and plant cell death. Environ Pollut 240:802–816

    CAS  PubMed  Google Scholar 

  • Ahmed B, Shahid M, Khan MS, Musarrat J (2018b) Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics 10:1315–1327

    CAS  PubMed  Google Scholar 

  • Ali M, Ahmed T, Wu W et al (2020) Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 10:1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (‘Solanum lycopersicum’ L.) seedlings under salt stress. Plant Omics 9:106–114

    CAS  Google Scholar 

  • Amellal N, Burtin G, Bartoli F, Heulin T (1998) Colonization of wheat roots by an exopolysaccharide-producing Pantoea agglomerans strain and its effect on rhizosphere soil aggregation. Appl Environ Microbiol 64:3740–3747

    CAS  PubMed  PubMed Central  Google Scholar 

  • An C, Sun C, Li N et al (2022) Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnol 20:1–19

    Google Scholar 

  • Arora S, Murmu G, Mukherjee K et al (2022) A comprehensive overview of nanotechnology in sustainable agriculture. J Biotechnol 355:21–41

    CAS  PubMed  Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9:246

    CAS  Google Scholar 

  • Ayoub HA, Khairy M, Elsaid S et al (2018) Pesticidal activity of nanostructured metal oxides for generation of alternative pesticide formulations. J Agric Food Chem 66:5491–5498

    CAS  PubMed  Google Scholar 

  • Babu AS, Mohan RJ, Parimalavalli R (2019) Effect of single and dual-modifications on stability and structural characteristics of foxtail millet starch. Food Chem 271:457–465

    CAS  PubMed  Google Scholar 

  • Baccaro M, Harrison S, van den Berg H et al (2019) Bioturbation of Ag2S-NPs in soil columns by earthworms. Environ Pollut 252:155–162

    CAS  PubMed  Google Scholar 

  • Balah MA, Pudake RN (2019) Use nanotools for weed control and exploration of weed plants in nanotechnology. In: Nanoscience for sustainable agriculture. Springer, Cham, pp 207–231

    Google Scholar 

  • Banerjee K, Pramanik P, Maity A et al (2019) Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers). In: Advances in phytonanotechnology. Elsevier, Amsterdam, pp 123–152

    Google Scholar 

  • Bardgett RD, Chan KF (1999) Experimental evidence that soil fauna enhance nutrient mineralization and plant nutrient uptake in montane grassland ecosystems. Soil Biol Biochem 31:1007–1014

    CAS  Google Scholar 

  • Behboudi F, Tahmasebi Sarvestani Z, Kassaee MZ et al (2018) Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. J Water Environ Nanotechnol 3:22–39

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M et al (2016) Nano-biofungicides: emerging trend in insect pest control. In: Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Google Scholar 

  • Borgatta J, Ma C, Hudson-Smith N et al (2018) Copper based nanomaterials suppress root fungal disease in watermelon (Citrullus lanatus): role of particle morphology, composition and dissolution behavior. ACS Sustain Chem Eng 6:14847–14856

    CAS  Google Scholar 

  • Bouché MB (1992) Earthworm species and ecotoxicological studies. Ecotoxicol Earthworms 1:269

    Google Scholar 

  • Braga LPP, Yoshiura CA, Borges CD et al (2016) Disentangling the influence of earthworms in sugarcane rhizosphere. Sci Rep 6:1–13

    Google Scholar 

  • Bratovcic A, Hikal WM, Said-Al Ahl HAH et al (2021) Nanopesticides and nanofertilizers and agricultural development: scopes, advances and applications. Open J Ecol 11:301–316

    Google Scholar 

  • Bray N, Kao-Kniffin J, Frey SD et al (2019) Soil macroinvertebrate presence alters microbial community composition and activity in the rhizosphere. Front Microbiol 10:256

    PubMed  PubMed Central  Google Scholar 

  • Bueno V, Ghoshal S (2022) Inorganic porous nanoparticles as pesticide or nutrient carriers. In: Fernandes Fraceto L, Pereira de Carvalho HW, de Lima R et al (eds) Inorganic nanopesticides and nanofertilizers: a view from the mechanisms of action to field applications. Springer International Publishing, Cham, pp 363–390

    Google Scholar 

  • Cai L, Liu M, Liu Z et al (2018) MgONPs can boost plant growth: evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules 23:3375

    PubMed  PubMed Central  Google Scholar 

  • Chen G, Li Y, Liu S, Junaid M, Wang J (2022) Effects of micro (nano) plastics on higher plants and the rhizosphere environment. Sci Total Environ 807:150841

    CAS  PubMed  Google Scholar 

  • Chookhongkha N, Sopondilok T, Photchanachai S (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality. In: I International conference on postharvest pest and disease management in exporting horticultural crops-PPDM2012, no. 973. International Society for Horticultural Science (ISHS), Leuven, pp 231–237

    Google Scholar 

  • Choudhary MK, Joshi A, Sharma SS, Saharan V (2017) Effect of laboratory synthesized Cu-chitosan nanocomposites on control of PFSR disease of maize caused by Fusarium verticillioides. Int J Curr Microbiol Appl Sci 6:1656–1664

    Google Scholar 

  • Chun SC, Chandrasekaran M (2019) Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato. Int J Biol Macromol 125:948–954

    CAS  PubMed  Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J Nematol 46:261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cumplido-Nájera CF, González-Morales S, Ortega-Ortíz H et al (2019) The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Sci Hortic (Amsterdam) 245:82–89

    Google Scholar 

  • Cunha L, Brown GG, Stanton DWG et al (2016) Soil animals and pedogenesis: the role of earthworms in anthropogenic soils. Soil Sci 181:110–125

    CAS  Google Scholar 

  • Cycoń M, Piotrowska-Seget Z, Kozdrój J (2010) Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. Int Biodeterior Biodegrad 64:316–323

    Google Scholar 

  • Das CK, Srivastava G, Dubey A et al (2016) Nano-iron pyrite seed dressing: a sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol Environ Eng 1:1–12

    Google Scholar 

  • Das S, Yadav A, Debnath N (2019) Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): a comparative analysis. J Stored Prod Res 83:92–96

    Google Scholar 

  • Dawadi S, Katuwal S, Gupta A et al (2021) Current research on silver nanoparticles: synthesis, characterization, and applications. J Nanomater 2021:6687290. https://doi.org/10.1155/2021/6687290

    Article  CAS  Google Scholar 

  • De Lamo FJ, Takken FLW (2020) Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11:37

    PubMed  PubMed Central  Google Scholar 

  • de Oliveira JL, Campos EVR, Goncalves da Silva CM et al (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432

    PubMed  Google Scholar 

  • De Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants. Planta 209:259–263

    Google Scholar 

  • Deshpande P, Dapkekar A, Oak MD et al (2017) Zinc complexed chitosan/TPP nanoparticles: a promising micronutrient nanocarrier suited for foliar application. Carbohydr Polym 165:394–401

    CAS  PubMed  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1

    Google Scholar 

  • Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J (2017) Nanoparticle and ionic Zn promote nutrient loading of sorghum grain under low NPK fertilization. J Agric Food Chem 65:8552–8559

    CAS  PubMed  Google Scholar 

  • Dinesh GK, Ramesh PT, Chitra N, Sugumaran MP (2018) Ecology of birds and insects in organic and conventional (in-organic) rice ecosystem. Int J Curr Microbiol Appl Sci 7:1769–1779. https://doi.org/10.20546/ijcmas.2018.704.201

    Article  Google Scholar 

  • Dinesh GK, Priyanka B, Anokhe A et al (2022) Ecosystem services and ecological role of birds in insect and pest control. In: Soni R, Suyal DC, Goel R (eds) Plant protection: from chemicals to biologicals, 1st edn. De Gruyter, Berlin, p 623

    Google Scholar 

  • Dotaniya ML, Meena VD (2015) Rhizosphere effect on nutrient availability in soil and its uptake by plants: a review. Proc Natl Acad Sci India Sect B Biol Sci 85:1–12

    CAS  Google Scholar 

  • Du H, Yang X, Zhai G (2014) Design of chitosan-based nanoformulations for efficient intracellular release of active compounds. Nanomedicine 9:723–740

    CAS  PubMed  Google Scholar 

  • Du W, Yang J, Peng Q et al (2019) Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227:109–116

    CAS  PubMed  Google Scholar 

  • Dweck HKM, Ebrahim SAM, Thoma M et al (2015) Pheromones mediating copulation and attraction in Drosophila. Proc Natl Acad Sci 112:E2829–E2835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2016) Understanding the role of nanomaterials in agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi

    Google Scholar 

  • Egbe CC, Oyetibo GO, Ilori MO (2021) Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol Environ Saf 207:111319

    CAS  PubMed  Google Scholar 

  • El-Ghamry A, Mosa AA, Alshaal T, El-Ramady H (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2(1):51–72

    Google Scholar 

  • Elhady A, Adss S, Hallmann J, Heuer H (2018) Rhizosphere microbiomes modulated by pre-crops assisted plants in defense against plant-parasitic nematodes. Front Microbiol 9:1133

    PubMed  PubMed Central  Google Scholar 

  • Elshahawy I, Abouelnasr HM, Lashin SM, Darwesh OM (2018) First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. J Plant Prot Res 58(2):137–151. https://doi.org/10.24425/122929

    Article  CAS  Google Scholar 

  • Elsheery NI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020) Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10:558

    CAS  Google Scholar 

  • El-Temsah YS, Joner EJ (2012a) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82. https://doi.org/10.1016/j.chemosphere.2012.04.020

    Article  CAS  PubMed  Google Scholar 

  • El-Temsah YS, Joner EJ (2012b) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27:42–49

    CAS  PubMed  Google Scholar 

  • Faiz MA, Bana RS, Choudhary AK et al (2022) Zero tillage, residue retention and system-intensification with legumes for enhanced pearl millet productivity and mineral biofortification. Sustainability 14:543

    CAS  Google Scholar 

  • Fan D, Smith DL (2021) Characterization of selected plant growth-promoting rhizobacteria and their non-host growth promotion effects. Microbiol Spectr 9:e00279–e00221

    CAS  Google Scholar 

  • Faraji J, Sepehri A (2020) Exogenous nitric oxide improves the protective effects of TiO2 nanoparticles on growth, antioxidant system, and photosynthetic performance of wheat seedlings under drought stress. J Soil Sci Plant Nutr 20:703–714

    CAS  Google Scholar 

  • Ferreira RAA, Kfouri MS, Pires-Oliveira R et al (2022) Physicochemical properties of inorganic nanopesticides/nanofertilizers in aqueous media and tank mixtures. In: Fernandes Fraceto L, Pereira de Carvalho HW, de Lima R et al (eds) Inorganic nanopesticides and nanofertilizers: a view from the mechanisms of action to field applications. Springer International Publishing, Cham, pp 253–270

    Google Scholar 

  • Ghorbani R, Movafeghi A, Gangeali A, Nabati J (2021) Effects of TiO2 nanoparticles on morphological characteristics of chickpea (Cicer arietinum L.) under drought stress. Environ Stress Crop Sci 14:85–98

    Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    CAS  Google Scholar 

  • Giorgetti L, Spanò C, Muccifora S et al (2019) An integrated approach to highlight biological responses of Pisum sativum root to nano-TiO2 exposure in a biosolid-amended agricultural soil. Sci Total Environ 650:2705–2716

    CAS  PubMed  Google Scholar 

  • Gomes DG, Pieretti JC, Lourenço IM et al (2022) Copper-based nanoparticles for pesticide effects. In: Fernandes Fraceto L, Pereira de Carvalho HW, de Lima R et al (eds) Inorganic nanopesticides and nanofertilizers: a view from the mechanisms of action to field applications. Springer International Publishing, Cham, pp 187–212

    Google Scholar 

  • Guan X, Gao X, Avellan A, Spielman-Sun E, Xu J, Laughton S, Yun J, Zhang Y, Bland GD, Zhang Y (2020) CuO nanoparticles alter the rhizospheric bacterial community and local nitrogen cycling for wheat grown in a calcareous soil. Environ Sci Technol 54(14):8699–8709

    CAS  PubMed  Google Scholar 

  • Guo Z, Chen Y, Lu NL (2018) Multifunctional nanocomposites for energy and environmental applications. Wiley, New York. https://doi.org/10.1002/9783527342501

    Book  Google Scholar 

  • Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on fenugreek seed germination under salinity levels. Russ Agric Sci 43:61–65

    Google Scholar 

  • Holden RJ, Carayon P, Gurses AP et al (2013) SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients. Ergonomics 56:1669–1686

    PubMed  Google Scholar 

  • Hu CW, Li M, Cui YB et al (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591. https://doi.org/10.1016/j.soilbio.2009.12.007

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51:9774–9783

    CAS  PubMed  Google Scholar 

  • Hussain S, Siddique T, Saleem M et al (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102:159–200

    CAS  Google Scholar 

  • Hussein MM, Abou-Baker NH (2018) The contribution of nano-zinc to alleviate salinity stress on cotton plants. R Soc Open Sci 5:171809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imada K, Sakai S, Kajihara H et al (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    CAS  Google Scholar 

  • Iqbal M, Raja NI, Mashwani Z-U-R et al (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iran J Sci Technol Trans A Sci 43:387–395

    Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hortic Agrobot Cluj-Napoca 41:201–207

    CAS  Google Scholar 

  • Karthika S, Lakshmanan A, Rajkishore SK et al (2019) The green synthesis and characterisation of zero valent iron nanoparticles using azolla and blue green algal systems. Int J Agric Sci Res 9:13–20

    Google Scholar 

  • Khan M, Siddiqui ZA (2018) Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol 71:355–364

    Google Scholar 

  • Khan N, Bano AMD, Babar A (2020) Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS One 15:e0231426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khati P, Chaudhary P, Gangola S et al (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 7:1–9

    Google Scholar 

  • Kolenčík M, Ernst D, Komár M et al (2019) Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions. Nano 9:1559

    Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinghe AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221

    CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav AN et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487

    Google Scholar 

  • Kremer RJ, Means NE (2009) Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms. Eur J Agron 31:153–161

    CAS  Google Scholar 

  • Kubavat D, Trivedi K, Vaghela P et al (2020) Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Degrad Dev 31:2734–2746

    Google Scholar 

  • Kumar S, Bhanjana G, Sharma A et al (2017) Development of nanoformulation approaches for the control of weeds. Sci Total Environ 586:1272–1278

    CAS  PubMed  Google Scholar 

  • Kumar S, Nehra M, Dilbaghi N et al (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153

    CAS  PubMed  Google Scholar 

  • Kumar A, Singh K, Verma P et al (2022) Effect of nitrogen and zinc nanofertilizer with the organic farming practices on cereal and oil seed crops. Sci Rep 12:6938. https://doi.org/10.1038/s41598-022-10843-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Singh DP (2020) Nano-biofertilizer: an emerging eco-friendly approach for sustainable agriculture. Proc Natl Acad Sci India Sect B Biol Sci 90:733–741

    Google Scholar 

  • Kyei-Boahen S, Slinkard AE, Walley FL (2001) Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Can J Microbiol 47:585–589

    CAS  PubMed  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973

    CAS  PubMed  Google Scholar 

  • Lateef A, Nazir R, Jamil N et al (2016) Synthesis and characterization of zeolite based nano-composite: an environment friendly slow release fertilizer. Microporous Mesoporous Mater 232:174–183

    CAS  Google Scholar 

  • Layet C, Auffan M, Santaella C et al (2017) Evidence that soil properties and organic coating drive the phytoavailability of cerium oxide nanoparticles. Environ Sci Technol 51:9756–9764

    CAS  PubMed  Google Scholar 

  • Leveque T, Capowiez Y, Schreck E et al (2014) Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils. Environ Pollut 191:199–206

    CAS  PubMed  Google Scholar 

  • Li Z, Chen J, Liu F et al (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63:241–246

    CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    CAS  PubMed  Google Scholar 

  • Liu E, Yan C, Mei X et al (2010) Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in Northwest China. Geoderma 158:173–180

    CAS  Google Scholar 

  • Liu H, Huang Y, Duan W et al (2020) Microbial community composition turnover and function in the mesophilic phase predetermine chicken manure composting efficiency. Bioresour Technol 313:123658

    CAS  PubMed  Google Scholar 

  • Liu L, Nian H, Lian T (2022) Plants and rhizospheric environment: affected by zinc oxide nanoparticles (ZnO NPs). A review. Plant Physiol Biochem 185:91–100

    CAS  PubMed  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59

    CAS  Google Scholar 

  • Madbouly AK, Abdel-Aziz MS, Abdel-Wahhab MA (2017) Biosynthesis of nanosilver using Chaetomium globosum and its application to control Fusarium wilt of tomato in the greenhouse. IET Nanobiotechnol 11:702–708

    PubMed Central  Google Scholar 

  • Mahmoud LM, Dutt M, Shalan AM et al (2020) Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata ‘Grand Nain’) under simulated water deficit or salinity stress. S Afr J Bot 132:155–163

    CAS  Google Scholar 

  • Maluin FN, Hussein MZ (2020) Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules 25:1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RS, Kumar S, Datta R et al (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:34

    Google Scholar 

  • Merino D, Tomadoni B, Salcedo MF et al (2020) Nanoclay as carriers of bioactive molecules applied to agriculture. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer, Cham, pp 1–22

    Google Scholar 

  • Mirbolook A, Rasouli-Sadaghiani M, Sepehr E et al (2021) Synthesized Zn(II)-amino acid and-chitosan chelates to increase Zn uptake by bean (Phaseolus vulgaris) plants. J Plant Growth Regul 40:831–847

    CAS  Google Scholar 

  • Mishra S, Singh BR, Singh A et al (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9:e97881

    PubMed  PubMed Central  Google Scholar 

  • Moghaddasi S, Fotovat A, Khoshgoftarmanesh AH et al (2017) Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol Environ Saf 144:543–551

    CAS  PubMed  Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    CAS  Google Scholar 

  • Morab PN, Sumanth Kumar G, Akshay K (2021) Foliar nutrition of nano-fertilizers: a smart way to increase the growth and productivity of crops. J Pharmacogn Phytochem 10:1325–1330

    CAS  Google Scholar 

  • Nadendla SR, Rani TS, Vaikuntapu PR et al (2018) HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr Polym 199:11–19

    CAS  PubMed  Google Scholar 

  • Najafi Disfani M, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63:817–826

    CAS  Google Scholar 

  • Nandini B, Hariprasad P, Prakash HS et al (2017) Trichogenic-selenium nanoparticles enhance disease suppressive ability of Trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci Rep 7:2612. https://doi.org/10.1038/s41598-017-02737-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nizzetto L, Futter M, Langaas S (2016) Are agricultural soils dumps for microplastics of urban origin? Environ Sci Technol 50(20):10777–10779

    CAS  PubMed  Google Scholar 

  • Noshad A, Iqbal M, Hetherington C, Wahab H (2020) Biogenic AgNPs—a nano weapon against bacterial canker of tomato (BCT). Adv Agric 1:1–10

    Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA et al (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    CAS  PubMed  Google Scholar 

  • OECD (1986) OECD guideline for the testing of chemicals. In: Genetic toxicology, mouse heritable translocation assay. OECD, Paris

    Google Scholar 

  • Parada J, Rubilar O, Fernández-Baldo MA, Bertolino FA, Durán N, Seabra AB, Tortella GR (2019) The nanotechnology among US: are metal and metal oxides nanoparticles a nano or mega risk for soil microbial communities? Crit Rev Biotechnol 39(2):157–172

    CAS  PubMed  Google Scholar 

  • Paret ML, Vallad GE, Averett DR et al (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology 103:228–236

    CAS  PubMed  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb Technol 95:107–111

    CAS  PubMed  Google Scholar 

  • Pereira AES, Sandoval-Herrera IE, Zavala-Betancourt SA et al (2017) γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr Polym 157:1862–1873

    CAS  PubMed  Google Scholar 

  • Pide JLV, Organo ND, Cruz AF et al (2022) Effects of nanofertilizer and nano-plant hormone on soil chemical properties and microbial community in two different soil types. Pedosphere 2022:48

    Google Scholar 

  • Prakash S, Deswal R (2020) Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. Plant Physiol Biochem 146:143–156

    CAS  PubMed  Google Scholar 

  • Priester JH, Ge Y, Mielke RE et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci 109:E2451–E2456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pudake RN, Chauhan N, Kole C (2019) Nanoscience for sustainable agriculture. Springer International Publishing, Cham, p 711

    Google Scholar 

  • Pudake RN, Sahu BB, Kumari M, Sharma AK (2021) Omics science for rhizosphere biology. Springer Singapore, Singapore

    Google Scholar 

  • Puga-Freitas R, Blouin M (2015) A review of the effects of soil organisms on plant hormone signalling pathways. Environ Exp Bot 114:104–116

    CAS  Google Scholar 

  • Pullagurala VLR, Adisa IO, Rawat S et al (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol Biochem 132:120–127

    Google Scholar 

  • Raj ANP, Bennie RB, Xavier GAI et al (2021) Influence of Ag doped MoO3 nanoparticles in the seedling growth and inhibitory action against microbial organisms. J Clust Sci 33:2429–2441. https://doi.org/10.1007/s10876-021-02164-8

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2017) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66:6487–6503

    PubMed  Google Scholar 

  • Rana K, Kumari M, Mishra A, Pudake RN (2019) Engineered nanoparticles for increasing micronutrient use efficiency. In: Nanoscience for sustainable agriculture. Springer, Cham, pp 25–49

    Google Scholar 

  • Rizwan M, Ali S, Malik S et al (2019) Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol Plant 41:1–12

    CAS  Google Scholar 

  • Rosen CJ, Allan DL (2007) Exploring the benefits of organic nutrient sources for crop production and soil quality. HortTechnology 17:422–430

    CAS  Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H et al (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    CAS  PubMed  Google Scholar 

  • Sáez F, Pozo C, Gómez MA et al (2006) Growth and denitrifying activity of Xanthobacter autotrophicus CECT 7064 in the presence of selected pesticides. Appl Microbiol Biotechnol 71:563–567

    PubMed  Google Scholar 

  • Salem SS, Fouda A (2021) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 199:344–370

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Charles RE (2015) Fungal cell wall polymer based nanoparticles in protection of tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Carbohydr Polym 133:400–407

    CAS  PubMed  Google Scholar 

  • Sathiyabama M, Manikandan A (2016) Chitosan nanoparticle induced defense responses in fingermillet plants against blast disease caused by Pyricularia grisea (Cke.) Sacc. Carbohydr Polym 154:241–246. https://doi.org/10.1016/j.carbpol.2016.06.089

    Article  CAS  PubMed  Google Scholar 

  • Sathiyabama M, Manikandan A (2018) Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. J Agric Food Chem 66:1784–1790. https://doi.org/10.1021/acs.jafc.7b05921

    Article  CAS  PubMed  Google Scholar 

  • Servin A, Elmer W, Mukherjee A et al (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:1–21

    CAS  Google Scholar 

  • Shalaby TA, Bayoumi Y, Abdalla N et al (2016) Nanoparticles, soils, plants and sustainable agriculture. In: Nanoscience in food and agriculture, 1st edn. Springer, Cham, pp 283–312

    Google Scholar 

  • Shang Y, Hasan M, Ahammed GJ et al (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24:2558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi-Rad J, Sharifi-Rad M, da Teixeira Silva JA (2018) Morphological, physiological and biochemical responses of crops (Zea mays L., Phaseolus vulgaris L.), medicinal plants (Hyssopus officinalis L., Nigella sativa L.), and weeds (Amaranthus retroflexus L., Taraxacum officinale F. H. Wigg) exposed to SiO2 nanoparticles. J Agric Sci Technol 18:1027–1040

    Google Scholar 

  • Sharma A, Sood K, Kaur J, Khatri M (2019) Agrochemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal Agric Biotechnol 18:101079

    Google Scholar 

  • Sharma S, Rana VS, Pawar R et al (2021) Nanofertilizers for sustainable fruit production: a review. Environ Chem Lett 19:1693–1714

    CAS  Google Scholar 

  • Shen Y, Yang H (2017) Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci Hortic (Amsterdam) 224:367–373

    CAS  Google Scholar 

  • Shukla G, Gaurav SS, Singh A (2020) Synthesis of mycogenic zinc oxide nanoparticles and preliminary determination of its efficacy as a larvicide against white grubs (Holotrichia sp.). Int Nano Lett 10:131–139

    CAS  Google Scholar 

  • Siddaiah CN, Prasanth KVH, Satyanarayana NR et al (2018) Chitosan nanoparticles having higher degree of acetylation induce resistance against pearl millet downy mildew through nitric oxide generation. Sci Rep 8:1–14

    CAS  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    CAS  PubMed  Google Scholar 

  • Sidorowicz A, Maqbool Q, Nazar M (2019) Future of nanofertilizer. In: Nanotechnology for agriculture: crop production and protection. Springer, Singapore, pp 143–152

    Google Scholar 

  • Silva GMC, Silva WB, Medeiros DB et al (2017) The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem 237:372–378

    PubMed  Google Scholar 

  • Silva WB, Silva GMC, Santana DB et al (2018) Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem 242:232–238

    CAS  PubMed  Google Scholar 

  • Sinduja M, Sathya V, Maheswari M et al (2022a) Evaluation and speciation of heavy metals in the soil of the sub urban region of Southern India. Soil Sediment Contam Int J 31:974–993. https://doi.org/10.1080/15320383.2022.2030298

    Article  CAS  Google Scholar 

  • Sinduja M, Sathya V, Maheswari M et al (2022b) Chemical transformation and bioavailability of chromium in the contaminated soil amended with bioamendments. Bioremediat J 2022:49677. https://doi.org/10.1080/10889868.2022.2049677

    Article  CAS  Google Scholar 

  • Sinduja M, Sathya V, Maheswari M et al (2022c) Chromium speciation and agricultural soil contamination in the surrounding tannery regions of Walajaphet, Vellore District, Southern India. J Curr Crop Sci Technol (Madras Agric Journal) 109:77–84. https://doi.org/10.29321/MAJ.10.000586metal

    Article  Google Scholar 

  • Singh D, Kumar A (2020) Quantification of metal uptake in Spinacia oleracea irrigated with water containing a mixture of CuO and ZnO nanoparticles. Chemosphere 243:125239

    CAS  PubMed  Google Scholar 

  • Singh N, Khandual A, Gupta PK, Vaish SS (2016) Preliminary test of functionalized ZnO2 against Bipolaris sorokiniana and other seed associated mycoflora for better wheat germination. Res J Biotechnol 11:60–73

    Google Scholar 

  • Singh H, Sharma A, Bhardwaj SK et al (2021) Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ Sci Process Impacts 23:213–239

    PubMed  Google Scholar 

  • Singh NRR, Sarma SS, Rao TN et al (2021b) Cryo-milled nano-DAP for enhanced growth of monocot and dicot plants. Nanoscale Adv 3:4834–4842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 240:109–126

    CAS  PubMed  Google Scholar 

  • Srivastava S, Bisht A (2021) Millet-based value-added food products for diabetics. In: Millets and millet technology. Springer, Singapore, pp 321–331

    Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3:502–504

    Google Scholar 

  • Srivastava G, Das A, Kusurkar TS et al (2014) Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Mater Express 4:23–31

    CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    CAS  PubMed  Google Scholar 

  • Tailor G, Yadav BL, Chaudhary J et al (2020) Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem Biophys Rep 24:100848

    PubMed  PubMed Central  Google Scholar 

  • Tan S, Wu X, Xing Y et al (2020) Enhanced synergetic antibacterial activity by a reduce graphene oxide/Ag nanocomposite through the photothermal effect. Colloids Surf B Biointerfaces 185:110616

    CAS  PubMed  Google Scholar 

  • Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J ChemTech Res 8:11–17

    CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262. https://doi.org/10.1007/s40003-014-0113-y

    Article  CAS  Google Scholar 

  • Tirani MM, Haghjou MM, Ismaili A (2019) Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct Plant Biol 46:360–375

    Google Scholar 

  • Tourinho PS, Van Gestel CAM, Lofts S et al (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    CAS  PubMed  Google Scholar 

  • Tyagi J, Sultan E, Mishra A, Kumari M, Pudake RN (2017) The impact of AMF symbiosis in alleviating drought tolerance in field crops. In: Mycorrhiza-nutrient uptake, biocontrol, ecorestoration. Springer, Cham, pp 211–234

    Google Scholar 

  • Ul Haq I, Ijaz S (2019) Use of metallic nanoparticles and nanoformulations as nanofungicides for sustainable disease management in plants. In: Nanobiotechnology in bioformulations. Springer, Cham, pp 289–316

    Google Scholar 

  • Vanti GL, Nargund VB, Vanarchi R et al (2019) Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Appl Organomet Chem 33:e4630

    Google Scholar 

  • Vega-Vásquez P, Mosier NS, Irudayaraj J (2020) Nanoscale drug delivery systems: from medicine to agriculture. Front Bioeng Biotechnol 8:79

    PubMed  PubMed Central  Google Scholar 

  • Venkatesh G, Priya PS, Anithaa V et al (2022) Role of entomopathogenic fungi in biocontrol of insect pests. In: Soni R, Suyal DC, Goel R (eds) Plant protection: from chemicals to biologicals, 1st edn. De Gruyter, Berlin, p 623

    Google Scholar 

  • Virág D, Naár Z, Kiss A (2007) Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bull Environ Contam Toxicol 79:356–359

    PubMed  Google Scholar 

  • Rajput VD, Singh A, Minkina T, Rawat S, Mandzhieva S, Sushkova S, Shuvaeva V, Nazarenko O, Rajput P, Komariah, Verma KK, Singh AK, Rao M, Upadhyay SK. Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture. Plants (Basel). 2021 Dec 11;10(12):2727. https://doi.org/10.3390/plants10122727. PMID: 34961197; PMCID: PMC8707238

  • Vryzas Z (2018) Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr Opin Environ Sci Health 4:5–9

    Google Scholar 

  • Wang M-C, Gong M, Zang H-B et al (2006) Effect of methamidophos and urea application on microbial communities in soils as determined by microbial biomass and community level physiological profiles. J Environ Sci Health Part B 41:399–413

    CAS  Google Scholar 

  • Wang Z, Yue L, Dhankher OP, Xing B (2020) Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environ Int 142:105831. https://doi.org/10.1016/j.envint.2020.105831

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Fang Q, Yan S et al (2020) Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake. Environ Sci Pollut Res 27:26974–26981

    CAS  Google Scholar 

  • Wu C, Wang Z, Ma Y et al (2021) Influence of the neonicotinoid insecticide thiamethoxam on soil bacterial community composition and metabolic function. J Hazard Mater 405:124275

    CAS  PubMed  Google Scholar 

  • Xiang Y, Zhang G, Chen C et al (2018) Fabrication of a pH-responsively controlled-release pesticide using an Attapulgite-based hydrogel. ACS Sustain Chem Eng 6:1192–1201. https://doi.org/10.1021/acssuschemeng.7b03469

    Article  CAS  Google Scholar 

  • Xie Y, Dong H, Zeng G et al (2017) The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J Hazard Mater 321:390–407

    CAS  PubMed  Google Scholar 

  • Xu C, Cao L, Zhao P et al (2018) Emulsion-based synchronous pesticide encapsulation and surface modification of mesoporous silica nanoparticles with carboxymethyl chitosan for controlled azoxystrobin release. Chem Eng J 348:244–254

    CAS  Google Scholar 

  • Yadav SK, Patel JS, Kumar G et al (2018) Factors affecting the fate, transport, bioavailability and toxicity of nanoparticles in the agroecosystem. In: Emerging trends in agri-nanotechnology: fundamental and applied aspects. Springer, Cham

    Google Scholar 

  • Yiamsawas D, Kangwansupamonkon W, Kiatkamjornwong S (2021) Lignin-based nanogels for the release of payloads in alkaline conditions. Eur Polym J 145:110241

    CAS  Google Scholar 

  • Yousefi S, Kartoolinejad D, Naghdi R (2017) Effects of priming with multi-walled carbon nanotubes on seed physiological characteristics of Hopbush (Dodonaea viscosa L.) under drought stress. Int J Environ Stud 74:528–539

    CAS  Google Scholar 

  • Zhai Q-Z (2020) Studies of adsorption of crystal violet from aqueous solution by nano mesocellular foam silica: process equilibrium, kinetic, isotherm, and thermodynamic studies. Water Sci Technol 81:2092–2108

    CAS  PubMed  Google Scholar 

  • Zhang L, Fang W, Li X et al (2020) Strong linkages between dissolved organic matter and the aquatic bacterial community in an urban river. Water Res 184:116089

    CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM et al (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759

    CAS  PubMed  Google Scholar 

  • Zhao L, Lu L, Wang A et al (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68:1935–1947

    CAS  PubMed  Google Scholar 

  • Zhou MI, Hernandez-Sanabria E, Guan LL (2009) Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl Environ Microbiol 75:6524–6533

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Dinesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dinesh, G.K. et al. (2023). Effect of Nano-Formulated Agrochemicals on Rhizospheric Communities in Millets. In: Pudake, R.N., Kumari, M., Sapkal, D.R., Sharma, A.K. (eds) Millet Rhizosphere . Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-99-2166-9_15

Download citation

Publish with us

Policies and ethics