Skip to main content

Applications of Circular Dichroism Spectroscopy in Studying Protein Folding, Stability, and Interaction

  • Chapter
  • First Online:
Protein Folding Dynamics and Stability

Abstract

Circular dichroism (CD) spectroscopy has been extensively used to determine the structure and folding of proteins. It provides valuable information about the protein folding phenomenon, especially the molten globule or other intermediates of the folding/unfolding pathway. This technique is beneficial in characterizing protein obtained via recombinant techniques or isolated from tissues. In addition, the effect of mutations on the folding and conformational stability of the protein can be readily assessed using CD spectroscopy. Unlike X-ray crystallography and NMR spectroscopy, the two primary powerful structure determination techniques, the ease and the requirement of low protein concentrations, make CD spectroscopy a desirable and demanding method of choice. This chapter discusses applications of CD spectroscopy in measuring protein structure and stability. The CD spectroscopic investigation of conformational changes and protein stability studied through steady-state and time-resolved CD measurements have been further highlighted. This chapter will provide a better understanding of CD spectroscopy and its uses in biomolecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.B. Durowoju, K.S. Bhandal, J. Hu, B. Carpick, M. Kirkitadze, Differential scanning calorimetry—a method for assessing the thermal stability and conformation of protein antigen. J. Vis. Exp. 121, 55262 (2017)

    Google Scholar 

  2. P. Gill, T.T. Moghadam, B. Ranjbar, Differential scanning calorimetry techniques: applications in biology and nanoscience. J. Biomol. Tech. 21, 167 (2010)

    PubMed  PubMed Central  Google Scholar 

  3. W. Jiskoot, D. Crommelin, Methods for Structural Analysis of Protein Pharmaceuticals (Springer Science & Business Media, New York, 2005)

    Google Scholar 

  4. M.R. Eftink, The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys. J. 66, 482–501 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A.E. Johnson, Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6, 1078–1092 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. N.J. Greenfield, Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S.M. Kelly, T.J. Jess, N.C. Price, How to study proteins by circular dichroism. Biochim. Biophys. Acta 1751, 119–139 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. S.M. Kelly, N.C. Price, The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1, 349–384 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. A.A. Yee, A. Savchenko, A. Ignachenko, J. Lukin, X. Xu, T. Skarina, E. Evdokimova, C.S. Liu, A. Semesi, V. Guido, A.M. Edwards, C.H. Arrowsmith, NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 127, 16512–16517 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. D.B. Singh, T. Tripathi, Frontiers in Protein Structure, Function, and Dynamics (Singapore, Springer Nature, 2020)

    Book  Google Scholar 

  11. T. Tripathi, V.K. Dubey, Advances in Protein Molecular and Structural Biology Methods, 1st edn. (Academic Press, London, 2022)

    Google Scholar 

  12. F. van Eerden, Differential Scanning Calorimetry and Protein Stability, Faculty of Science and Engineering (2009)

    Google Scholar 

  13. H. Chosrowjan, S. Taniguchi, F. Tanaka, Ultrafast fluorescence upconversion technique and its applications to proteins. FEBS J. 282, 3003–3015 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. B. Bhattacharyya, S. Kapoor, D. Panda, Fluorescence spectroscopic methods to analyze drug–tubulin interactions, in Methods in Cell Biology, ed. by L. Wilson, J.J. Correia, (Academic Press, Cambridge, MA, 2010), pp. 301–329

    Google Scholar 

  15. A.A.T. Naqvi, T. Mohammad, G.M. Hasan, M.I. Hassan, Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Curr. Top. Med. Chem. 18, 1755–1768 (2018)

    Article  PubMed  Google Scholar 

  16. D.M. Rogers, S.B. Jasim, N.T. Dyer, F. Auvray, M. Réfrégiers, J.D. Hirst, Electronic circular dichroism spectroscopy of proteins. Chem 5, 2751–2774 (2019)

    Article  CAS  Google Scholar 

  17. G. Büyükköroğlu, D.D. Dora, F. Özdemir, C. Hızel, Techniques for protein analysis, in Omics Technologies and Bio-Engineering, ed. by D. Barh, V. Azevedo, (Academic Press, London, 2018), pp. 317–351

    Chapter  Google Scholar 

  18. J. Skolnick, H. Zhou, M. Gao, On the possible origin of protein homochirality, structure, and biochemical function. Proc. Natl. Acad. Sci. 116, 26571–26579 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.-L. Towse, G. Hopping, I. Vulovic, V. Daggett, Nature versus design: the conformational propensities of D-amino acids and the importance of side chain chirality. Protein Eng. Des. Sel. 27, 447–455 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Jeong, H.W. Kim, J. Ku, J. Seo, Breakdown of chiral recognition of amino acids in reduced dimensions. Sci. Rep. 10, 16166 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Mulkerrin, Protein Structure Analysis Using Circular Dichroism (VCH Publishers, New York, 1996)

    Google Scholar 

  22. N.J. Greenfield, Biomacromolecular applications of circular dichroism and ORD, in Encylopedia of Spectroscopy and Spectrometry, ed. by J.C. Lindon, G.E. Trantor, J.L. Holmes, (Academic Press, Oxford, 1999), pp. 117–130

    Chapter  Google Scholar 

  23. N. Sreerama, R.W. Woody, Computation and analysis of protein circular dichroism spectra. Methods Enzymol. 383, 318–351 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. D.H.A. Corrêa, C.H.I. Ramos, The use of circular dichroism spectroscopy to study protein folding, form and function. Afr. J. Biochem. Res. 3, 164–173 (2009)

    Google Scholar 

  25. N. Greenfield, Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Rodger, Near UV protein CD, in Encyclopedia of Biophysics, ed. by G.C.K. Roberts, (Springer, Berlin, 2013), pp. 1694–1694

    Chapter  Google Scholar 

  27. A. Naiyer, B. Khan, A. Hussain, A. Islam, M.F. Alajmi, M.I. Hassan, M. Sundd, F. Ahmad, Stability of uniformly labeled (13C and 15N) cytochrome C and its L94G mutant. Sci. Rep. 11, 6804 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.M. Antosiewicz, D. Shugar, UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications. Biophys. Rev. 8, 163–177 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Mcauley, J. Jacob, C.G. Kolvenbach, K. Westland, H.J. Lee, S.R. Brych, D. Rehder, G.R. Kleemann, D.N. Brems, M. Matsumura, Contributions of a disulfide bond to the structure, stability, and dimerization of human IgG1 antibody CH3 domain. Protein Sci. 17, 95–106 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Nagai, Y. Nagai, K. Imai, S. Neya, Circular dichroism of hemoglobin and myoglobin. Chirality 26, 438–442 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. L. Whitmore, B.A. Wallace, Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89, 392–400 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. A. Micsonai, F. Wien, É. Bulyáki, J. Kun, É. Moussong, Y.H. Lee, Y. Goto, M. Réfrégiers, J. Kardos, BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 46, W315–W322 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Louis-Jeune, M.A. Andrade-Navarro, C. Perez-Iratxeta, Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80, 374–381 (2012)

    Article  CAS  PubMed  Google Scholar 

  34. A.J. Miles, R.W. Janes, B.A. Wallace, Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem. Soc. Rev. 50, 8400–8413 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. B.A. Wallace, R.W. Janes, Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy (IOS Press, Amsterdam, 2009)

    Google Scholar 

  36. L. Whitmore, B. Wallace, DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32, W668–W673 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J.C. Ezerski, P. Zhang, N.C. Jennings, M.N. Waxham, M.S. Cheung, Molecular dynamics ensemble refinement of intrinsically disordered peptides according to deconvoluted spectra from circular dichroism. Biophys. J. 118, 1665–1678 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. H.A. Lashuel, C.R. Overk, A. Oueslati, E. Masliah, The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. G.-f. Chen, T.-h. Xu, Y. Yan, Y.-r. Zhou, Y. Jiang, K. Melcher, H.E. Xu, Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin. 38, 1205–1235 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. Soto, N. Satani, The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol. Med. 17, 14–24 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Negrini, V.G. Gorgoulis, T.D. Halazonetis, Genomic instability—an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. M. Vihinen, Functional effects of protein variants. Biochimie 180, 104–120 (2021)

    Article  CAS  PubMed  Google Scholar 

  43. M. Li, A. Goncearenco, A.R. Panchenko, Annotating mutational effects on proteins and protein interactions: designing novel and revisiting existing protocols. Methods Mol. Biol. 1550, 235–260 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Li, M. Petukh, E. Alexov, A.R. Panchenko, Predicting the impact of missense mutations on protein–protein binding affinity. J. Chem. Theory Comput. 10, 1770–1780 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S.L. Clark, A.M. Rodriguez, R.R. Snyder, G.D.V. Hankins, D. Boehning, Structure-function of the tumor suppressor BRCA1. Comput. Struct. Biotechnol. J. 1, e201204005 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  46. K.L. Bradley, C.A. Stokes, S.J. Marciniak, L.C. Parker, A.M. Condliffe, Role of unfolded proteins in lung disease. Thorax 76, 92–99 (2021)

    Article  PubMed  Google Scholar 

  47. S.G. Kelsen, The unfolded protein response in chronic obstructive pulmonary disease. Ann. Am. Thorac. Soc. 13(Suppl 2), S138–S145 (2016)

    PubMed  PubMed Central  Google Scholar 

  48. C. Mueller, U. Altenburger, S. Mohl, Challenges for the pharmaceutical technical development of protein coformulations. J. Pharm. Pharmacol. 70, 666–674 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. K.S. Satheeshkumar, R. Jayakumar, Conformational polymorphism of the amyloidogenic peptide homologous to residues 113–127 of the prion protein. Biophys. J. 85, 473–483 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Steinmetzer, A. Hillisch, J. Behlke, S. Brantl, Transcriptional repressor CopR: amino acids involved in forming the dimeric interface. Proteins 39, 408–416 (2000)

    Article  CAS  PubMed  Google Scholar 

  51. V.P.R. Vendra, S. Chandani, D. Balasubramanian, The mutation V42M distorts the compact packing of the human gamma-S-Crystallin molecule, resulting in congenital cataract. PLoS One 7, e51401 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. G. Siligardi, R. Hussain, S.G. Patching, M.K. Phillips-Jones, Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy. Biochim. Biophys. Acta Biomembr. 1838, 34–42 (2014)

    Article  CAS  Google Scholar 

  53. F.M. Assadi-Porter, J. Radek, H. Rao, M. Tonelli, Multimodal ligand binding studies of human and mouse G-coupled taste receptors to correlate their species-specific sweetness tasting properties. Molecules 23, 2531 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  54. R. Hussain, G. Siligardi, Characterisation of conformational and ligand binding properties of membrane proteins using synchrotron radiation circular dichroism (SRCD). Adv. Exp. Med. Biol. 922, 43–59 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. A. Podjarny, A. Dejaegere, B. Kieffer, Biophysical Approaches Determining Ligand Binding to Biomolecular Targets: Detection, Measurement and Modelling (Royal Society of Chemistry, Cambridge, 2011)

    Book  Google Scholar 

  56. R.S. Mani, F. Karimi-Busheri, C.E. Cass, M. Weinfeld, Physical properties of human polynucleotide kinase: hydrodynamic and spectroscopic studies. Biochemistry 40, 12967–12973 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. S. Anwar, A. Shamsi, T. Mohammad, A. Islam, M.I. Hassan, Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim. Biophys. Acta Rev. Cancer 1876, 188568 (2021)

    Article  CAS  PubMed  Google Scholar 

  58. H. Roder, K. Maki, H. Cheng, Early events in protein folding explored by rapid mixing methods. Chem. Rev. 106, 1836–1861 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. H. Svilenov, U. Markoja, G. Winter, Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. Eur. J. Pharm. Biopharm. 125, 106–113 (2018)

    Article  CAS  PubMed  Google Scholar 

  60. W. Messens, J. Van Camp, A. Huyghebaert, The use of high pressure to modify the functionality of food proteins. Trends Food Sci. Technol. 8, 107–112 (1997)

    Article  CAS  Google Scholar 

  61. Y. Matsuura, M. Takehira, Y. Joti, K. Ogasahara, T. Tanaka, N. Ono, N. Kunishima, K. Yutani, Thermodynamics of protein denaturation at temperatures over 100 °C: CutA1 mutant proteins substituted with hydrophobic and charged residues. Sci. Rep. 5, 15545 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. N. Dhanapati, M. Ishioroshi, I. Yoshida, K. Samejima, Effects of mechanical agitation, heating and pH on the structure of bovine alpha lactalbumin. Anim. Sci. Technol. 68, 545–554 (1997)

    CAS  Google Scholar 

  63. V. De Leo, L. Catucci, A.E. Di Mauro, A. Agostiano, L. Giotta, M. Trotta, F. Milano, Effect of ultrasound on the function and structure of a membrane protein: the case study of photosynthetic reaction center from Rhodobacter sphaeroides. Ultrason. Sonochem. 35, 103–111 (2017)

    Article  PubMed  Google Scholar 

  64. J.H. Clark, The denaturation of egg albumin by ultra-violet radiation. J. Gen. Physiol. 19, 199–210 (1935)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. R. Dahiya, T. Mohammad, M.F. Alajmi, M.T. Rehman, G.M. Hasan, A. Hussain, M.I. Hassan, Insights into the conserved regulatory mechanisms of human and yeast aging. Biomol. Ther. 10, 1–27 (2020)

    Google Scholar 

  66. S. Singh, C. Tyagi, I.A. Rather, J.S.M. Sabir, M.I. Hassan, A. Singh, I.K. Singh, Molecular modeling of chemosensory protein 3 from Spodoptera litura and its binding property with plant defensive metabolites. Int. J. Mol. Sci. 21, 1–15 (2020)

    Article  Google Scholar 

  67. P. Gupta, F.I. Khan, S. Roy, S. Anwar, R. Dahiya, M.F. Alajmi, A. Hussain, M.T. Rehman, D. Lai, M.I. Hassan, Functional implications of pH-induced conformational changes in the Sphingosine kinase 1. Spectrochim. Acta A Mol. Biomol. Spectrosc. 225, 117453 (2020)

    Article  CAS  PubMed  Google Scholar 

  68. F. Ahmad, Protein stability from denaturation transition curves. Indian J. Biochem. Biophys. 28, 168–173 (1991)

    CAS  PubMed  Google Scholar 

  69. F. Ahmad, Measuring the Conformational Stability of Enzymes in the Thermostability of Enzymes (Narosa Publishing House: India, New Delhi, 1993), pp. 95–112

    Google Scholar 

  70. D. Matulis, J.K. Kranz, F.R. Salemme, M.J. Todd, Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using thermofluor. Biochemistry 44, 5258–5266 (2005)

    Article  CAS  PubMed  Google Scholar 

  71. E. Freire, A. Schön, B.M. Hutchins, R.K. Brown, Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discov. Today 18, 1007–1013 (2013)

    Article  CAS  PubMed  Google Scholar 

  72. A. Azuaga, C. Dobson, P. Mateo, F. Conejero-Lara, Unfolding and aggregation during the thermal denaturation of streptokinase. Eur. J. Biochem. 269, 4121–4133 (2002)

    Article  CAS  PubMed  Google Scholar 

  73. A. Schön, B.R. Clarkson, M. Jaime, E. Freire, Temperature stability of proteins: analysis of irreversible denaturation using isothermal calorimetry. Proteins 85, 2009–2016 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  74. J.M. Sanchez-Ruiz, Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys. J. 61, 921–935 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. D.C. Rees, A.D. Robertson, Some thermodynamic implications for the thermostability of proteins. Protein Sci. 10, 1187–1194 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. A. Sinha, S. Yadav, R. Ahmad, F. Ahmad, A possible origin of differences between calorimetric and equilibrium estimates of stability parameters of proteins. Biochem. J. 345, 711–717 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. S. Yadav, F. Ahmad, A new method for the determination of stability parameters of proteins from their heat-induced denaturation curves. Anal. Biochem. 283, 207–213 (2000)

    Article  CAS  PubMed  Google Scholar 

  78. F. Ahmad, Protein folding: estimates of stability parameters from heat-induced conformational transition curves of proteins. PINSA 68, 385–390 (2002)

    CAS  Google Scholar 

  79. H. Kim, S. Kim, Y. Jung, J. Han, J.-H. Yun, I. Chang, W. Lee, Probing the folding-unfolding transition of a thermophilic protein, MTH1880. PLoS One 11, e0145853 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  80. J. Ramstein, N. Hervouet, F. Coste, C. Zelwer, J. Oberto, B. Castaing, Evidence of a thermal unfolding dimeric intermediate for the Escherichia coli histone-like HU proteins: thermodynamics and structure. J. Mol. Biol. 331, 101–121 (2003)

    Article  CAS  PubMed  Google Scholar 

  81. E. Freire, A. Schon, B. Hutchins, R. Brown, Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discov. Today 18, 1007 (2013)

    Article  CAS  PubMed  Google Scholar 

  82. F.I. Khan, P. Gupta, S. Roy, N. Azum, K.A. Alamry, A.M. Asiri, D. Lai, M.I. Hassan, Mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Int. J. Biol. Macromol. 161, 1496–1505 (2020)

    Article  CAS  PubMed  Google Scholar 

  83. P. Gupta, F.I. Khan, D. Ambreen, D. Lai, M.F. Alajmi, A. Hussain, A. Islam, F. Ahmad, M.I. Hassan, Investigation of guanidinium chloride-induced unfolding pathway of sphingosine kinase 1. Int. J. Biol. Macromol. 147, 177–186 (2020)

    Article  CAS  PubMed  Google Scholar 

  84. R. Singh, M.I. Hassan, A. Islam, F. Ahmad, Cooperative unfolding of residual structure in heat denatured proteins by urea and guanidinium chloride. PLoS One 10, e0128740 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  85. F. Ahmad, P. McPhie, Thermodynamics of the denaturation of pepsinogen by urea. Biochemistry 17, 241–246 (1978)

    Article  CAS  PubMed  Google Scholar 

  86. F. Ahmad, C.C. Bigelow, Estimation of the free energy of stabilization of ribonuclease a, lysozyme, alpha-lactalbumin, and myoglobin. J. Biol. Chem. 257, 12935–12938 (1982)

    Article  CAS  PubMed  Google Scholar 

  87. F. Ahmad, C.C. Bigelow, Estimation of the stability of globular proteins. Biopolymers 25, 1623–1633 (1986)

    Article  CAS  Google Scholar 

  88. F. Ahmad, S. Yadav, S. Taneja, Determining stability of proteins from guanidinium chloride transition curves. Biochem. J. 287, 481–485 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. R. Gupta, S. Yadav, F. Ahmad, Protein stability: urea-induced versus guanidine-induced unfolding of metmyoglobin. Biochemistry 35, 11925–11930 (1996)

    Article  CAS  PubMed  Google Scholar 

  90. T. Tripathi, S. Rahlfs, K. Becker, V. Bhakuni, Structural and stability characteristics of a monothiol glutaredoxin: glutaredoxin-like protein 1 from plasmodium falciparum. Biochim. Biophys. Acta 1784, 946–952 (2008)

    Article  CAS  PubMed  Google Scholar 

  91. T. Tripathi, B.K. Na, W.M. Sohn, K. Becker, V. Bhakuni, Structural, functional and unfolding characteristics of glutathione S-transferase of plasmodium vivax. Arch. Biochem. Biophys. 487, 115–122 (2009)

    Article  CAS  PubMed  Google Scholar 

  92. T. Tripathi, A. Röseler, S. Rahlfs, K. Becker, V. Bhakuni, Conformational stability and energetics of plasmodium falciparum glutaredoxin. Biochimie 92, 284–291 (2010)

    Article  CAS  PubMed  Google Scholar 

  93. T. Tripathi, Calculation of thermodynamic parameters of protein unfolding using far-ultraviolet circular dichroism. J. Protein. Proteomics 4, 85–91 (2013)

    Google Scholar 

  94. H. Rahaman, M.K.A. Khan, M.I. Hassan, A. Islam, A.A. Moosavi-Movahedi, F. Ahmad, Evidence of non-coincidence of normalized sigmoidal curves of two different structural properties for two-state protein folding/unfolding. J. Chem. Thermodyn. 58, 351–358 (2013)

    Article  CAS  Google Scholar 

  95. D.M. Wahiduzzaman, M.A. Haque, D. Idrees, M.I. Hassan, A. Islam, F. Ahmad, Characterization of folding intermediates during urea-induced denaturation of human carbonic anhydrase II. Int. J. Biol. Macromol. 95, 881–887 (2017)

    Article  CAS  PubMed  Google Scholar 

  96. P. Gupta, P. Mahlawat, S. Deep, Effect of disease-linked mutations on the structure, function, stability and aggregation of human carbonic anhydrase II. Int. J. Biol. Macromol. 143, 472–482 (2020)

    Article  CAS  PubMed  Google Scholar 

  97. D.R. Tompa, S. Kadhirvel, Far positioned ALS associated mutants of cu/Zn SOD forms partially metallated, destabilized misfolding intermediates. Biochem. Biophys. Res. Commun. 516, 494–499 (2019)

    Article  CAS  PubMed  Google Scholar 

  98. S. Boopathy, T.V. Silvas, M. Tischbein, S. Jansen, S.M. Shandilya, J.A. Zitzewitz, J.E. Landers, B.L. Goode, C.A. Schiffer, D.A. Bosco, Structural basis for mutation-induced destabilization of profilin 1 in ALS. Proc. Natl. Acad. Sci. 112, 7984–7989 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. M. Andreasen, S.B. Nielsen, K. Runager, G. Christiansen, N.C. Nielsen, J.J. Enghild, D.E. Otzen, Polymorphic fibrillation of the destabilized fourth fasciclin-1 domain mutant A546T of the transforming growth factor-β-induced protein (TGFBIp) occurs through multiple pathways with different oligomeric intermediates. J. Biol. Chem. 287, 34730–34742 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Y.G. Thomas, I. Szundi, J.W. Lewis, D.S. Kliger, Microsecond time-resolved circular dichroism of rhodopsin photointermediates. Biochemistry 48, 12283–12289 (2009)

    Article  CAS  PubMed  Google Scholar 

  101. C.M. Dobson, Protein folding and misfolding. Nature 426, 884–890 (2003)

    Article  CAS  PubMed  Google Scholar 

  102. C.N. Pace, Conformational stability of globular proteins. Trends Biochem. Sci. 15, 14–17 (1990)

    Article  CAS  PubMed  Google Scholar 

  103. R.L. Baldwin, G.D. Rose, How the hydrophobic factor drives protein folding. Proc. Natl. Acad. Sci. 113, 12462–12466 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. C. Rat, J.C. Heiby, J.P. Bunz, H. Neuweiler, Two-step self-assembly of a spider silk molecular clamp. Nat. Commun. 9, 4779 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Indian Council of Medical Research, Government of India (Grant No. ISRM/12(22)/2020). P.G. thanks DST for the award of the National Post Doctoral Fellowship (File no. PDF/2017/001084). F.A. is thankful to the Indian National Science Academy for the award of the Senior Scientist Position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Imtaiyaz Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, P., Islam, A., Ahmad, F., Hassan, M.I. (2023). Applications of Circular Dichroism Spectroscopy in Studying Protein Folding, Stability, and Interaction. In: Saudagar, P., Tripathi, T. (eds) Protein Folding Dynamics and Stability. Springer, Singapore. https://doi.org/10.1007/978-981-99-2079-2_1

Download citation

Publish with us

Policies and ethics